
Package ‘BTSR’
September 24, 2023

Type Package

Date 2023-09-22

Title Bounded Time Series Regression

Version 0.1.5

Copyright see file COPYRIGHTS

Depends R (>= 4.0.0)

Description Simulate, estimate and forecast a wide range of regression based dynamic mod-
els for bounded time series, covering the most commonly applied models in the litera-
ture. The main calculations are done in 'FORTRAN', which translates into very fast algo-
rithms. The main references are
Bayer et al. (2017) <doi:10.1016/j.jhydrol.2017.10.006>,
Pumi et al. (2019) <doi:10.1016/j.jspi.2018.10.001>,
Pumi et al. (2021) <doi:10.1111/sjos.12439> and

Pumi et al. (2022) <arXiv:2211.02097>.

License GPL (>= 3)

Encoding UTF-8

NeedsCompilation yes

RoxygenNote 7.2.3

Author Taiane Schaedler Prass [aut, cre, com]
(<https://orcid.org/0000-0003-3136-909X>),

Guilherme Pumi [ctb, aut] (<https://orcid.org/0000-0002-6256-3170>),
Fábio Mariano Bayer [ctb] (<https://orcid.org/0000-0002-1464-0805>),
Jack Joseph Dongarra [ctb],
Cleve Moler [ctb],
Gilbert Wright Stewart [ctb],
Ciyou Zhu [ctb],
Richard H. Byrd [ctb],
Jorge Nocedal [ctb],
Jose Luis Morales [ctb],
Peihuang Lu-Chen [ctb],
John Burkardt [ctb],
Alan Miller [ctb],
B.E. Schneider [ctb],

1

https://doi.org/10.1016/j.jhydrol.2017.10.006
https://doi.org/10.1016/j.jspi.2018.10.001
https://doi.org/10.1111/sjos.12439
https://arxiv.org/abs/2211.02097
https://orcid.org/0000-0003-3136-909X
https://orcid.org/0000-0002-6256-3170
https://orcid.org/0000-0002-1464-0805

2 BARC.functions

Alfred H. Morris [ctb],
D.E. Shaw [ctb],
Robert W.M. Wedderburn [ctb],
Jason Blevins [ctb],
Brian Wichman [ctb],
David Hill [ctb],
Hiroshi Takano [ctb],
George Marsaglia [ctb],
Jean-Michel Brankart [ctb],
Steve Kifowit [ctb],
Donald E. Knuth [ctb],
Catherine Loader [ctb]

Maintainer Taiane Schaedler Prass <taianeprass@gmail.com>

Repository CRAN

Date/Publication 2023-09-23 22:50:12 UTC

R topics documented:

BARC.functions . 2
BARFIMA.functions . 10
btsr.functions . 17
coefs.start . 25
fit.control . 26
GARFIMA.functions . 28
KARFIMA.functions . 34
link.btsr . 41
predict.btsr . 42
print.btsr . 43
summary . 44
UWARFIMA.functions . 45

Index 53

BARC.functions Functions to simulate, extract components and fit BARC models

Description

These functions can be used to simulate, extract components and fit any model of the class barc. A
model with class barc is a special case of a model with class btsr . See ‘The BTSR structure’ in
BARC.functions for more details on the general structure. See ‘Details’.

BARC.functions 3

Usage

BARC.sim(n = 1, burn = 0, xreg = NULL, map = 4, coefs = list(alpha =
0, beta = NULL, phi = NULL, theta = 0.5, nu = 20, u0 = pi/4),
y.start = NULL, xreg.start = NULL, xregar = TRUE, error.scale = 0,
complete = FALSE, linkg = c("linear", "linear"), linkh = "linear",
ctt.h = 1, seed = NULL, rngtype = 2, debug = FALSE)

BARC.extract(yt, xreg = NULL, nnew = 0, xnew = NULL, p, r,
coefs = list(), lags = list(), fixed.values = list(),
fixed.lags = list(), y.start = NULL, xreg.start = NULL,
xregar = TRUE, error.scale = 0, map = 4, linkg = c("linear",
"linear"), linkh = "linear", ctt.h = 1, llk = TRUE, sco = FALSE,
info = FALSE, debug = FALSE)

BARC.fit(yt, xreg = NULL, nnew = 0, xnew = NULL, p = 0, r = 1,
start = list(), lags = list(), fixed.values = list(),
ignore.start = FALSE, fixed.lags = list(), lower = list(nu = 0, u0 =
0), upper = list(nu = Inf, u0 = 1), map = 4, linkg = c("linear",
"linear"), linkh = "linear", ctt.h = 1, sco = FALSE, info = FALSE,
xregar = TRUE, y.start = NULL, xreg.start = NULL, error.scale = 0,
control = list(), report = TRUE, debug = FALSE, ...)

Arguments

n a strictly positive integer. The sample size of yt (after burn-in). Default is 1.

burn a non-negative integer. length of "burn-in" period. Default is 0.

xreg optionally, a vector or matrix of external regressors. For simulation purposes,
the length of xreg must be n+burn. Default is NULL. For extraction or fitting
purposes, the length of xreg must be the same as the length of the observed
time series yt.

map a non-negative integer from 1 to 5 corresponding to the map function. Default
is 4. See ‘The map function’.

coefs a list with the coefficients of the model. An empty list will result in an error.
The arguments that can be passed through this list are:

• alpha optionally, a numeric value corresponding to the intercept. If the
argument is missing, it will be treated as zero. See ‘The BTSR structure’ in
btsr.functions.

• beta optionally, a vector of coefficients corresponding to the regressors in
xreg. If xreg is provided but beta is missing in the coefs list, an error
message is issued.

• phi optionally, for the simulation function this must be a vector of size p,
corresponding to the autoregressive coefficients (including the ones that are
zero), where p is the AR order. For the extraction and fitting functions,
this is a vector with the non-fixed values in the vector of autoregressive
coefficients.

4 BARC.functions

• theta the parameter (or vector of parameters) corresponding to the map
function. If map = 5 this value is ignored. For simulation, purposes, the
default is map = 4 and theta = 0.5.

• nu the dispersion parameter. If missing, an error message is issued.
• u0 a numeric value in the interval (0, 1), corresponding to the value of the

random variable U0. For simulation purposes, the default is u0 = pi/4.

y.start optionally, a initial value for yt (to be used in the recursions). Default is NULL,
in which case, the recursion assumes that g2(yt) = 0, for t < 1.

xreg.start optionally, a vector of initial value for xreg (to be used in the recursions). Default
is NULL, in which case, the recursion assumes that Xt = 0, for t < 1. If xregar
= FALSE this argument is ignored.

xregar logical; indicates if xreg is to be included in the AR part of the model. See ‘The
BTSR structure’. Default is TRUE.

error.scale the scale for the error term. See ‘The BTSR structure’ in btsr.functions.
Default is 0.

complete logical; if FALSE the function returns only the simulated time series yt, other-
wise, additional time series are provided. Default is FALSE

linkg character or a two character vector indicating which links must be used in the
model. See ‘The BTSR structure’ in btsr.functions for details and link.btsr
for valid links. If only one value is provided, the same link is used for mut and
for yt in the AR part of the model. Default is c("linear", "linear")

linkh a character indicating which link must be associated to the the chaotic process.
See ‘The BTSR structure’ in btsr.functions for details and link.btsr for
valid links. Default is "linear".

ctt.h numeric; the constant to be associated to the link h, when linkh = "linear".
Default is 1.

seed optionally, an integer which gives the value of the fixed seed to be used by the
random number generator. If missing, a random integer is chosen uniformly
from 1,000 to 10,000.

rngtype optionally, an integer indicating which random number generator is to be used.
Default is 2. See ‘Common Arguments’ in btsr.functions.

debug logical, if TRUE the output from FORTRAN is return (for debuggin purposes).
Default is FALSE for all models.

yt a numeric vector with the observed time series. If missing, an error message is
issued.

nnew optionally, the number of out-of sample predicted values required. Default is 0.

xnew a vector or matrix, with nnew observations of the regressors observed/predicted
values corresponding to the period of out-of-sample forecast. If xreg = NULL,
xnew is ignored.

p a non-negative integer. The order of AR polynomial. If missing, the value of
p is calculated from length(coefs$phi) and length(fixed.values$phi). For fitting,
the default is 0.

BARC.functions 5

r a non-negative integer. The size of the vector theta. If missing, the value of t is
calculated from length(coefs$theta) and length(fixed.values$theta). For fitting,
the default is 1.

lags optionally, a list with the lags that the values in coefs correspond to. The names
of the entries in this list must match the ones in coefs. For one dimensional
coefficients, the lag is obviously always 1 and can be suppressed. An empty list
indicates that either the argument fixed.lags is provided or all lags must be
used.

fixed.values optionally, a list with the values of the coefficients that are fixed. By default, if
a given vector (such as the vector of AR coefficients) has fixed values and the
corresponding entry in this list is empty, the fixed values are set as zero. The
names of the entries in this list must match the ones in coefs.

fixed.lags optionally, a list with the lags that the fixed values in fixed.values correspond
to. The names of the entries in this list must match the ones in fixed.values.
##’ For one dimensional coefficients, the lag is obviously always 1 and can
be suppressed. If an empty list is provided and the model has fixed lags, the
argument lags is used as reference.

llk logical, if TRUE the value of the log-likelihood function is returned. Default is
TRUE.

sco logical, if TRUE the score vector is returned. Default is FALSE.

info logical, if TRUE the information matrix is returned. Default is FALSE. For the
fitting function, info is automatically set to TRUE when report = TRUE.

start a list with the starting values for the non-fixed coefficients of the model. If
an empty list is provided, the function coefs.start is used to obtain starting
values for the parameters.

ignore.start logical, if starting values are not provided, the function uses the default val-
ues and ignore.start is ignored. In case starting values are provided and
ignore.start = TRUE, those starting values are ignored and recalculated. The
default is FALSE.

lower optionally, list with the lower bounds for the parameters. The names of the
entries in these lists must match the ones in start. The default is to assume
that the parameters have no lower bound except for nu, for which de default is
0. Only the bounds for bounded parameters need to be specified.

upper optionally, list with the upper bounds for the parameters. The names of the
entries in these lists must match the ones in start. The default is to assume that
the parameters have no upper bound. Only the bounds for bounded parameters
need to be specified.

control a list with configurations to be passed to the optimization subroutines. Missing
arguments will receive default values. See fit.control.

report logical, if TRUE the summary from model estimation is printed and info is au-
tomatically set to TRUE. Default is TRUE.

... further arguments passed to the internal functions.

6 BARC.functions

Details

Neither the beta regression or an i.i.d. sample from a beta distribution can be obtained as special
cases of the βARC model since the term h(T (U0)) is always present

The model from Pumi et al. (2021) is obtained by setting xregar = TRUE (so that the regressors are
included in the AR part of the model) and using the same link for yt and µt.

The function BARC.sim generates a random sample from a βARC(p) model.

The function BARC.extract allows the user to extract the components yt, µt, ηt = g(µt), rt,
T t(u0), the log-likelihood, and the vectors and matrices used to calculate the score vector and the
information matrix associated to a given set of parameters.

This function can be used by any user to create an objective function that can be passed to opti-
mization functions not available in BTSR Package. At this point, there is no other use for which
this function was intended.

The function BARC.fit fits a BARC model to a given univariate time series. For now, available
optimization algorithms are "L-BFGS-B" and "Nelder-Mead". Both methods accept bounds for the
parameters. For "Nelder-Mead", bounds are set via parameter transformation.

Value

The function BARC.sim returns the simulated time series yt by default. If complete = TRUE, a list
with the following components is returned instead:

• model: string with the text "BARC"

• yt: the simulated time series

• mut: the conditional mean

• etat: the linear predictor g(µt)

• error: the error term rt

• xreg: the regressors (if included in the model).

• debug: the output from FORTRAN (if requested).

The function BARC.extract returns a list with the following components.

• model: string with the text "BARC".

• coefs: the coefficients of the model passed through the coefs argument.

• yt: the observed time series.

• gyt: the transformed time series g2(yt).

• mut: the conditional mean.

• etat: the linear predictor g1(µt).

• error: the error term rt.

• xreg: the regressors (if included in the model).

• TS: the chaotic process T t(u0).

• sll: the sum of the conditional log-likelihood (if requested).

• sco: the score vector (if requested).

BARC.functions 7

• info: the information matrix (if requested).

• Drho, T, E, h: additional matrices and vectors used to calculate the score vector and the infor-
mation matrix. (if requested).

• yt.new: the out-of-sample forecast (if requested).

• Ts.new: the out-of-sample forecast for the chaotic process (if requested).

• out.Fortran: FORTRAN output (if requested).

The function btsr.fit returns a list with the following components. Each particular model can
have additional components in this list.

• model: string with the text "BARC"

• convergence: An integer code. 0 indicates successful completion. The error codes depend
on the algorithm used.

• message: A character string giving any additional information returned by the optimizer, or
NULL.

• counts: an integer giving the number of function evaluations.

• control: a list of control parameters.

• start: the starting values used by the algorithm.

• coefficients: The best set of parameters found.

• n: the sample size used for estimation.

• series: the observed time series

• gyt: the transformed time series g2(yt)

• fitted.values: the conditional mean, which corresponds to the in-sample forecast, also
denoted fitted values

• etat: the linear predictor g1(µt)

• error.scale: the scale for the error term.

• error: the error term rt

• residual: the observed minus the fitted values. The same as the error term if error.scale
= 0.

• forecast: the out-of-sample forecast for yt (if requested).

• Ts.forecas: the out-of-sample forecast for T t(u0) (if requested).

• xnew: the observations of the regressors observed/predicted values corresponding to the period
of out-of-sample forecast. Only inlcudes if xreg is not NULL and nnew > 0.

• sll: the sum of the conditional log-likelihood (if requested)

• info.Matrix: the information matrix (if requested)

• configs: a list with the configurations adopted to fit the model. This information is used by
the prediction function.

• out.Fortran: FORTRAN output (if requested)

• call: a string with the description of the fitted model.

8 BARC.functions

The map function

The map function T : [0, 1] → [0, 1] is a dynamical system, i.e., a function, potentially depending
on a r-dimensional vector of parameters θ. Available choices are

• map = 1, θ = k, for k integer greater or equal to 2.

T (u) = (ku)(mod1)

• map = 2, 0 ≤ θ ≤ 1

T (u) =
u

θ
I(u < θ) + θ

(u− θ)
(1− θ)

I(u ≥ θ)

• map = 3 (logistic map), 0 ≤ θ ≤ 4,

T (u) = θ(1− θ)

• map = 4 (Manneville-Pomeau map), 0 < θ < 1

T (u) = (u+ u1+θ)(mod1)

• map = 5 (Lasota-Mackey’s map),

T (u) =
u

(1− u)
I(u ≤ 0.5) + (2u− 1)I(u > 0.5)

References

Pumi, G.; Prass, T.S. and Souza, R.R. (2021). A dynamic model for double bounded time series
with chaotic driven conditional averages. Scandinavian Journal of Statistics. Vol 48 (1), 68-86.

See Also

btsr.sim, btsr.extract, btsr.fit

btsr.extract

btsr.fit

Examples

m1 <- BARC.sim(linkg = "linear", linkh = "linear",
n = 100, seed = 2021, complete = TRUE, ctt.h = 0.6,
coefs = list(nu = 15, theta = 0.85, u0 = pi/4))

plot.ts(m1$yt)
lines(m1$mut, col = "red")

#--
Generating a sample from a BARC model
#--

m1 <- BARC.sim(linkg = "linear", linkh = "linear",

BARC.functions 9

n = 100, seed = 2021, complete = TRUE, ctt.h = 0.6,
coefs = list(nu = 15, theta = 0.85, u0 = pi/4))

#--
Extracting the conditional time series given yt and
a set of parameters
#--

e1 = BARC.extract(yt = m1$yt, map = 4, ctt.h = 0.6,
coefs = list(nu = 15, theta = 0.85),
fixed.values = list(u0 = pi/4),
linkg = "linear", linkh = "linear", llk = TRUE,
sco = TRUE, info = TRUE)

#--
comparing the simulated and the extracted values
#--
cbind(head(m1$mut), head(e1$mut))

#---
the log-likelihood, score vector and information matrix
score vector and information matrix are obtained
numerically.
#---
e1$sll
e1$score
e1$info.Matrix

#--
Generating a sample from a BARC model
#--

m1 <- BARC.sim(linkg = "linear", linkh = "linear",
n = 100, seed = 2021, complete = TRUE, ctt.h = 0.6,
coefs = list(nu = 15, theta = 0.85, u0 = pi/4))

#--
Fitting a BARC model. Assuming only alpha fixed.
#--
f1 = BARC.fit(yt = m1$yt, map = 4, ctt.h = 0.6,

start = list(nu = 10, theta = 0.6, u0 = 0.5),
lower = list(nu = 0, theta = 0, u0 = 0),
upper = list(theta = 1, u0 = 1),
fixed.values = list(alpha = 0),
control = list(iprint = -1, method = "Nelder-Mead"))

coefficients(f1)

plot.ts(m1$yt)
lines(f1$fitted.values, col = "red")

#--

10 BARFIMA.functions

Out-of-sample forecast
#--
pred = predict(f1, nnew = 5)
pred$forecast
pred$Ts.forecast

BARFIMA.functions Functions to simulate, extract components and fit BARFIMA models

Description

These functions can be used to simulate, extract components and fit any model of the class barfima.
A model with class barfima is a special case of a model with class btsr . See ‘The BTSR structure’
in btsr.functions for more details on the general structure.

The βARMA model, the beta regression and a i.i.d. sample from a beta distribution can be obtained
as special cases. See ‘Details’.

Usage

BARFIMA.sim(n = 1, burn = 0, xreg = NULL, coefs = list(alpha = 0, beta
= NULL, phi = NULL, theta = NULL, d = 0, nu = 20), y.start = NULL,
xreg.start = NULL, xregar = TRUE, error.scale = 1, complete = FALSE,
inf = 1000, linkg = c("logit", "logit"), seed = NULL, rngtype = 2,
debug = FALSE)

BARFIMA.extract(yt, xreg = NULL, nnew = 0, xnew = NULL, p, q,
coefs = list(), lags = list(), fixed.values = list(),
fixed.lags = list(), y.start = NULL, xreg.start = NULL,
xregar = TRUE, error.scale = 1, inf = 1000, m = 0,
linkg = c("logit", "logit"), llk = TRUE, sco = FALSE, info = FALSE,
extra = FALSE, debug = FALSE)

BARFIMA.fit(yt, xreg = NULL, nnew = 0, xnew = NULL, p = 0, d = TRUE,
q = 0, m = 0, inf = 1000, start = list(), ignore.start = FALSE,
lags = list(), fixed.values = list(), fixed.lags = list(),
lower = list(nu = 0), upper = list(nu = Inf), linkg = c("logit",
"logit"), sco = FALSE, info = FALSE, extra = FALSE, xregar = TRUE,
y.start = NULL, xreg.start = NULL, error.scale = 1, control = list(),
report = TRUE, debug = FALSE, ...)

Arguments

n a strictly positive integer. The sample size of yt (after burn-in). Default is 1.

burn a non-negative integer. The length of the "burn-in" period. Default is 0.

BARFIMA.functions 11

xreg optionally, a vector or matrix of external regressors. For simulation purposes,
the length of xreg must be n+burn. Default is NULL. For extraction or fitting
purposes, the length of xreg must be the same as the length of the observed
time series yt.

coefs a list with the coefficients of the model. An empty list will result in an error.
The arguments that can be passed through this list are:

• alpha optionally, a numeric value corresponding to the intercept. If the
argument is missing, it will be treated as zero. See ‘The BTSR structure’ in
btsr.functions.

• beta optionally, a vector of coefficients corresponding to the regressors in
xreg. If xreg is provided but beta is missing in the coefs list, an error
message is issued.

• phi optionally, for the simulation function this must be a vector of size p,
corresponding to the autoregressive coefficients (including the ones that are
zero), where p is the AR order. For the extraction and fitting functions,
this is a vector with the non-fixed values in the vector of autoregressive
coefficients.

• theta optionally, for the simulation function this must be a vector of size q,
corresponding to the moving average coefficients (including the ones that
are zero), where q is the MA order. For the extraction and fitting functions,
this is a vector with the non-fixed values in the vector of moving average
coefficients.

• d optionally, a numeric value corresponding to the long memory parameter.
If the argument is missing, it will be treated as zero.

• nu the dispersion parameter. If missing, an error message is issued.
y.start optionally, an initial value for yt (to be used in the recursions). Default is NULL,

in which case, the recursion assumes that g2(yt) = 0, for t < 1.
xreg.start optionally, a vector of initial value for xreg (to be used in the recursions). Default

is NULL, in which case, the recursion assumes that Xt = 0, for t < 1. If xregar
= FALSE this argument is ignored.

xregar logical; indicates if xreg is to be included in the AR part of the model. See ‘The
BTSR structure’. Default is TRUE.

error.scale the scale for the error term. See ‘The BTSR structure’ in btsr.functions.
Default is 1.

complete logical; if FALSE the function returns only the simulated time series yt, other-
wise, additional time series are provided. Default is FALSE

inf the truncation point for infinite sums. Default is 1,000. In practice, the Fortran
subroutine uses inf = q, if d = 0.

linkg character or a two character vector indicating which links must be used in the
model. See ‘The BTSR structure’ in btsr.functions for details and link.btsr
for valid links. If only one value is provided, the same link is used for mut and
for yt in the AR part of the model. Default is c("logit", "logit"). For the
linear link, the constant will be always 1.

seed optionally, an integer which gives the value of the fixed seed to be used by the
random number generator. If missing, a random integer is chosen uniformly
from 1,000 to 10,000.

12 BARFIMA.functions

rngtype optionally, an integer indicating which random number generator is to be used.
Default is 2: the Mersenne Twister algorithm. See ‘Common Arguments’ in
btsr.functions.

debug logical, if TRUE the output from FORTRAN is return (for debugging purposes).
Default is FALSE for all models.

yt a numeric vector with the observed time series. If missing, an error message is
issued.

nnew optionally, the number of out-of sample predicted values required. Default is 0.
xnew a vector or matrix, with nnew observations of the regressors observed/predicted

values corresponding to the period of out-of-sample forecast. If xreg = NULL,
xnew is ignored.

p a non-negative integer. The order of AR polynomial. If missing, the value of
p is calculated from length(coefs$phi) and length(fixed.values$phi). For fitting,
the default is 0.

q a non-negative integer. The order of the MA polynomial. If missing, the value
of q is calculated from length(coefs$theta) and length(fixed.values$theta). For
fitting, the default is 0.

lags optionally, a list with the lags that the values in coefs correspond to. The names
of the entries in this list must match the ones in coefs. For one dimensional
coefficients, the lag is obviously always 1 and can be suppressed. An empty list
indicates that either the argument fixed.lags is provided or all lags must be
used.

fixed.values optionally, a list with the values of the coefficients that are fixed. By default, if
a given vector (such as the vector of AR coefficients) has fixed values and the
corresponding entry in this list is empty, the fixed values are set as zero. The
names of the entries in this list must match the ones in coefs.

fixed.lags optionally, a list with the lags that the fixed values in fixed.values correspond
to. The names of the entries in this list must match the ones in fixed.values.
##’ For one dimensional coefficients, the lag is obviously always 1 and can
be suppressed. If an empty list is provided and the model has fixed lags, the
argument lags is used as reference.

m a non-negative integer indicating the starting time for the sum of the partial log-
likelihoods, that is ` =

∑n
t=m+1 `t. Default is 0.

llk logical, if TRUE the value of the log-likelihood function is returned. Default is
TRUE.

sco logical, if TRUE the score vector is returned. Default is FALSE.
info logical, if TRUE the information matrix is returned. Default is FALSE. For the

fitting function, info is automatically set to TRUE when report = TRUE.
extra logical, if TRUE the matrices and vectors used to calculate the score vector and

the information matrix are returned. Default is FALSE.
d logical, if TRUE, the parameter d is included in the model either as fixed or non-

fixed. If d = FALSE the value is fixed as 0. The default is TRUE.
start a list with the starting values for the non-fixed coefficients of the model. If

an empty list is provided, the function coefs.start is used to obtain starting
values for the parameters.

BARFIMA.functions 13

ignore.start logical, if starting values are not provided, the function uses the default val-
ues and ignore.start is ignored. In case starting values are provided and
ignore.start = TRUE, those starting values are ignored and recalculated. The
default is FALSE.

lower optionally, list with the lower bounds for the parameters. The names of the
entries in these lists must match the ones in start. The default is to assume
that the parameters have no lower bound except for nu, for which de default is
0. Only the bounds for bounded parameters need to be specified.

upper optionally, list with the upper bounds for the parameters. The names of the
entries in these lists must match the ones in start. The default is to assume that
the parameters have no upper bound. Only the bounds for bounded parameters
need to be specified.

control a list with configurations to be passed to the optimization subroutines. Missing
arguments will receive default values. See fit.control.

report logical, if TRUE the summary from model estimation is printed and info is au-
tomatically set to TRUE. Default is TRUE.

... further arguments passed to the internal functions.

Details

The βARMA model and the beta regression can be obtained as special cases of the βARFIMA
model.

• βARFIMA: the model from Pumi et al. (2019) is obtained by setting error.scale = 1 (pre-
dictive scale) and xregar = TRUE (so that the regressors are included in the AR part of the
model). Variations of this model are obtained by changing error.scale, xregar and/or by
using different links for y[t] (in the AR part of the model) and µ[t].

• βARMA: the model from Rocha and Cribari-Neto (2009, 2017) is obtained by setting coefs$d
= 0 and d = FALSE and error.scale = 1 (predictive scale). Variations of this model are ob-
tained by changing the error scale and/or by using a different link for y[t] in the AR part of
the model.

• beta regression: the model from Ferrari and Cribari-Neto (2004) is obtained by setting p = 0,
q = 0 and coefs$d = 0 and d = FALSE. The error.scale is irrelevant. The second argument
in linkg is irrelevant.

• an i.i.d. sample from a Beta distribution with parameters shape1 and shape2 (compatible with
the one from rbeta) is obtained by setting linkg = "linear", p = 0, q = 0, d = FALSE and, in
the coefficient list, alpha = shape1/(shape1+shape2) and nu = shape1+shape2. (error.scale
and xregar are irrelevant)

The function BARFIMA.sim generates a random sample from a βARFIMA(p,d,q) model.

The function BARFIMA.extract allows the user to extract the components yt, µt, ηt = g(µt), rt, the
log-likelihood, and the vectors and matrices used to calculate the score vector and the information
matrix associated to a given set of parameters.

This function can be used by any user to create an objective function that can be passed to optimiza-
tion algorithms not available in the BTSR Package.

14 BARFIMA.functions

The function BARFIMA.fit fits a BARFIMA model to a given univariate time series. For now, avail-
able optimization algorithms are "L-BFGS-B" and "Nelder-Mead". Both methods accept bounds
for the parameters. For "Nelder-Mead", bounds are set via parameter transformation.

Value

The function BARFIMA.sim returns the simulated time series yt by default. If complete = TRUE, a
list with the following components is returned instead:

• model: string with the text "BARFIMA"

• yt: the simulated time series

• mut: the conditional mean

• etat: the linear predictor g(µt)

• error: the error term rt

• xreg: the regressors (if included in the model).

• debug: the output from FORTRAN (if requested).

The function BARFIMA.extract returns a list with the following components.

• model: string with the text "BARFIMA"

• coefs: the coefficients of the model passed through the coefs argument

• yt: the observed time series

• gyt: the transformed time series g2(yt)

• mut: the conditional mean

• etat: the linear predictor g1(µt)

• error: the error term rt

• xreg: the regressors (if included in the model).

• sll: the sum of the conditional log-likelihood (if requested)

• sco: the score vector (if requested)

• info: the information matrix (if requested)

• Drho, T, E, h: additional matrices and vectors used to calculate the score vector and the infor-
mation matrix. (if requested)

• yt.new: the out-of-sample forecast (if requested)

• out.Fortran: FORTRAN output (if requested)

The function btsr.fit returns a list with the following components. Each particular model can
have additional components in this list.

• model: string with the text "BARFIMA"

• convergence: An integer code. 0 indicates successful completion. The error codes depend
on the algorithm used.

• message: A character string giving any additional information returned by the optimizer, or
NULL.

BARFIMA.functions 15

• counts: an integer giving the number of function evaluations.

• control: a list of control parameters.

• start: the starting values used by the algorithm.

• coefficients: The best set of parameters found.

• n: the sample size used for estimation.

• series: the observed time series

• gyt: the transformed time series g2(yt)

• fitted.values: the conditional mean, which corresponds to the in-sample forecast, also
denoted fitted values

• etat: the linear predictor g1(µt)

• error.scale: the scale for the error term.

• error: the error term rt

• residual: the observed minus the fitted values. The same as the error term if error.scale
= 0.

• forecast: the out-of-sample forecast (if requested).

• xnew: the observations of the regressors observed/predicted values corresponding to the period
of out-of-sample forecast. Only inlcudes if xreg is not NULL and nnew > 0.

• sll: the sum of the conditional log-likelihood (if requested)

• info.Matrix: the information matrix (if requested)

• configs: a list with the configurations adopted to fit the model. This information is used by
the prediction function.

• out.Fortran: FORTRAN output (if requested)

• call: a string with the description of the fitted model.

References

Ferrari, S.L.P. and Cribari-Neto, F. (2004). Beta regression for modelling rates and proportions. J.
Appl. Stat. 31 (7), 799-815.

Pumi, G.; Valk, M.; Bisognin, C.; Bayer, F.M. and Prass, T.S. (2019). Beta autoregressive frac-
tionally integrated moving average models. Journal of Statistical Planning and Inference (200),
196-212.

Rocha, A.V. and Cribari-Neto, F. (2009). Beta autoregressive moving average models. Test 18 (3),
529–545.

Rocha, A.V. and Cribari-Neto, F. (2017). Erratum to: Beta autoregressive moving average models.
Test 26 (2), 451-459.

See Also

btsr.sim

btsr.extract

btsr.fit

16 BARFIMA.functions

Examples

Generating a Beta model were mut does not vary with time
yt ~ Beta(a,b), a = mu*nu, b = (1-mu)*nu

y <- BARFIMA.sim(linkg = "linear", n = 1000, seed = 2021,
coefs = list(alpha = 0.2, nu = 20))

hist(y)

#--
Generating a Beta model were mut does not vary with time
yt ~ Beta(a,b), a = mu*nu, b = (1-mu)*nu
#--

m1 <- BARFIMA.sim(linkg = "linear",n = 100,
complete = TRUE, seed = 2021,
coefs = list(alpha = 0.2, nu = 20))

#--
Extracting the conditional time series given yt and
a set of parameters
#--

Assuming that all coefficients are non-fixed
e1 = BARFIMA.extract(yt = m1$yt, coefs = list(alpha = 0.2, nu = 20),

link = "linear", llk = TRUE,
sco = TRUE, info = TRUE)

#--
comparing the simulated and the extracted values
#--
cbind(head(m1$mut), head(e1$mut))

#---
the log-likelihood, score vector and information matrix
#---
e1$sll
e1$score
e1$info.Matrix

Generating a Beta model were mut does not vary with time
yt ~ Beta(a,b), a = mu*nu, b = (1-mu)*nu

y <- BARFIMA.sim(linkg = "linear", n = 100, seed = 2021,
coefs = list(alpha = 0.2, nu = 20))

fitting the model
f <- BARFIMA.fit(yt = y, report = TRUE,

start = list(alpha = 0.5, nu = 10),
linkg = "linear", d = FALSE)

btsr.functions 17

btsr.functions Generic functions to simulate, extract components and fit BTSR mod-
els

Description

These generic functions can be used to simulate, extract components and fit any model of the class
btsr. All functions are wrappers for the corresponding function associated to the chosen model.
See ‘The BTSR structure’ and ‘Common Arguments’.

Usage

btsr.sim(model, complete = FALSE, ...)

btsr.extract(model, ...)

btsr.fit(model, ...)

Arguments

model character; one of "BARFIMA", "GARFIMA", "KARFIMA", "BARC".

complete logical; if FALSE the function returns only the simulated time series yt, other-
wise, additional time series are provided. Default is FALSE for all models.

... further arguments passed to the functions, according to the model selected in the
argument model. See ‘Common Arguments’

Details

The function btsr.sim is used to generate random samples from BTSR models. See ‘The BTSR
structure’.

The function btsr.extract allows the user to extract the components yt, µt, ηt = g(µt), rt, the
log-likelihood, and the vectors and matrices used to calculate the score vector and the information
matrix associated to a given set of parameters.

This function can be used by any user to create an objective function that can be passed to opti-
mization functions not available in BTSR Package. At this point, there is no other use for which
this function was intended.

The function btsr.fit fits a BTSR model to a given univariate time series. For now, available
optimization algorithms are "L-BFGS-B" and "Nelder-Mead". Both methods accept bounds for the
parameters. For "Nelder-Mead", bounds are set via parameter transformation.

Value

The function btsr.sim returns the simulated time series yt by default. If complete = TRUE, a list
with the following components is returned instead:

• model: character; one of "BARFIMA", "GARFIMA", "KARFIMA", "BARC". (same as the input
argument)

18 btsr.functions

• yt: the simulated time series

• gyt: the transformed time series g2(yt)

• mut: the conditional mean

• etat: the linear predictor g(µt)

• error: the error term rt

• xreg: the regressors (if included in the model).

• debug: the output from FORTRAN (if requested).

The function btsr.extract returns a list with the following components. Each particular model
can have additional components in this list.

• model: character; one of "BARFIMA", "GARFIMA", "KARFIMA", "BARC". (same as the input
argument)

• coefs: the coefficients of the model passed through the coefs argument

• yt: the observed time series

• gyt: the transformed time series g2(yt)

• mut: the conditional mean

• etat: the linear predictor g1(µt)

• error: the error term rt

• xreg: the regressors (if included in the model).

• forecast: the out-of-sample forecast (if requested).

• xnew: the observations of the regressors observed/predicted values corresponding to the period
of out-of-sample forecast. Only inlcudes if xreg is not NULL and nnew > 0.

• sll: the sum of the conditional log-likelihood (if requested)

• sco: the score vector (if requested)

• info: the information matrix (if requested)

• Drho, T, E, h: additional matrices and vectors used to calculate the score vector and the infor-
mation matrix. (if requested)

• yt.new: the out-of-sample forecast (if requested)

• out.Fortran: FORTRAN output (if requested)

The function btsr.fit returns a list with the following components. Each particular model can
have additional components in this list.

• model: character; one of "BARFIMA", "GARFIMA", "KARFIMA", "BARC". (same as the input
argument)

• convergence: An integer code. 0 indicates successful completion. The error codes depend
on the algorithm used.

• message: A character string giving any additional information returned by the optimizer, or
NULL.

• counts: an integer giving the number of function evaluations.

• control: a list of control parameters.

btsr.functions 19

• start: the starting values used by the algorithm.

• coefficients: The best set of parameters found.

• n: the sample size used for estimation.

• series: the observed time series

• gyt: the transformed time series g2(yt)

• fitted.values: the conditional mean, which corresponds to the in-sample forecast, also
denoted fitted values

• etat: the linear predictor g1(µt)

• error.scale: the scale for the error term.

• error: the error term rt

• residuals: the observed minus the fitted values. The same as the error term if error.scale
= 0.

• sll: the sum of the conditional log-likelihood (if requested)

• info.Matrix: the information matrix (if requested)

• configs: a list with the configurations adopted to fit the model. This information is used by
the prediction function.

• out.Fortran: FORTRAN output (if requested)

• call: a string with the description of the fitted model.

The BTSR structure

The general structure of the deterministic part of a BTSR model is

g1(µt) = α+Xtβ +

p∑
j=1

φj [g2(yt−j)− IxregarXt−jβ] + ht

where

• Ixregar is 0, if xreg is not included in the AR part of the model and 1, otherwise

• the term ht depends on the argument model:

– for BARC models: ht = h(T t−1(u0))

– otherwise: ht =
∑∞
k=1 ckrt−k

• g1 and g2 are the links defined in linkg. Notice that g2 is only used in the AR part of the
model and, typically, g1 = g2.

• rt depends on the error.scale adopted:

– if error.scale = 0: rt = yt − µt (data scale)
– if error.scale = 1: rt = g1(yt)− g1(µt) (predictive scale)

• ck are the coefficients of (1−L)dθ(L). In particular, if d = 0, then ck = θk, for k = 1, . . . , q.

20 btsr.functions

Common Arguments

In what follows we describe some of the arguments that are commom to all BTSR models. For
more details on extra arguments, see the corresponding function associated to the selected model.

Simulation Function:
Common arguments passed through "..." in btsr.sim are:

• n a strictly positive integer. The sample size of yt (after burn-in). Default for all models is 1.
• burn a non-negative integer. length of "burn-in" period. Default for all models is 0.
• xreg optionally, a vector or matrix of external regressors. For simulation purposes, the length

of xreg must be n+burn. Default for all models is NULL
• coefs a list with the coefficients of the model. Each model has its default. An empty list will

result in an error. The arguments in this list are:
– alpha optionally, A numeric value corresponding to the intercept. If the argument is

missing, it will be treated as zero.
– beta optionally, a vector of coefficients corresponding to the regressors in xreg. If xreg

is provided but beta is missing in the coefs list, an error message is issued.
– phi optionally, a vector of size p, corresponding to the autoregressive coefficients (in-

cluding the ones that are zero), where p is the AR order.
– nu the dispersion parameter. If missing, an error message is issued.
– rho, y.lower, y.upper, theta, d, u0 model specif arguments. See the documenta-

tion corresponding to each model.
• y.start optionally, a initial value for yt (to be used in the recursions). Default is NULL, in

which case, the recursion assumes that g2(yt) = 0, for t < 1.
• xreg.start optionally, a vector of initial value for xreg (to be used in the recursions). De-

fault is NULL, in which case, the recursion assumes thatXt = 0, for t < 1. If xregar = FALSE
this argument is ignored.

• xregar logical; indicates if xreg is to be included in the AR part of the model. See ‘The
BTSR structure’. Default is TRUE.

• error.scale the scale for the error term. See also ‘The BTSR structure’. Each model has
its default.

• inf the truncation point for infinite sums. Default is 1000. In practice, the Fortran subroutine
uses inf = q, if d = 0. BARC models do not have this argument.

• linkg character or a two character vector indicating which links must be used in the model.
See ‘The BTSR structure’. If only one value is provided, the same link is used for mut and
for yt in the AR part of the model. Each model has its default.

• seed optionally, an integer which gives the value of the fixed seed to be used by the random
number generator. If missing, a random integer is chosen uniformly from 1,000 to 10,000.

• rngtype optionally, an integer indicating which random number generator is to be used.
Default is 2. The current options are:

– 0: Jason Blevins algorithm. Available at https://jblevins.org/log/openmp
– 1: Wichmann-Hill algorithm (Wichmann and Hill, 1982).
– 2: Mersenne Twister algorithm (Matsumoto and Nishimura, 1998). FORTRAN code

adapted from https://jblevins.org/mirror/amiller/mt19937.f90 and https://
jblevins.org/mirror/amiller/mt19937a.f90

https://jblevins.org/log/openmp
https://jblevins.org/mirror/amiller/mt19937.f90
https://jblevins.org/mirror/amiller/mt19937a.f90
https://jblevins.org/mirror/amiller/mt19937a.f90

btsr.functions 21

– 3: Marsaglia-MultiCarry algorithm - kiss 32. Random number generator suggested by
George Marsaglia in "Random numbers for C: The END?" posted on sci.crypt.random-
numbers in 1999.

– 4: Marsaglia-MultiCarry algorithm - kiss 64. Based on the 64-bit KISS (Keep It Simple
Stupid) random number generator distributed by George Marsaglia in https://groups.
google.com/d/topic/comp.lang.fortran/qFv18ql_WlU

– 5: Knuth’s 2002 algorithm (Knuth, 202). FORTRAN code adapted from https://
www-cs-faculty.stanford.edu/~knuth/programs/frng.f

– 6: L’Ecuyer’s 1999 algorithm - 64-bits (L’Ecuyer, 1999). FORTRAN code adapted from
https://jblevins.org/mirror/amiller/lfsr258.f90

For more details on these algorithms see Random and references therein.
• debug logical, if TRUE the output from FORTRAN is return (for debuggin purposes). Default

is FALSE for all models.

Extracting Function:
Common arguments passed through "..." in btsr.extract are:

• yt a numeric vector with the observed time series. If missing, an error message is issued.
• xreg optionally, a vector or matrix with the regressor’s values. Default is NULL for all models.
• nnew optionally, the number of out-of sample predicted values required. Default is 0 for all

models.
• xnew a vector or matrix, with nnew observations of the regressors observed/predicted values

corresponding to the period of out-of-sample forecast. If xreg = NULL, xnew is ignored.
• p a non-negative integer. The order of AR polynomial. If missing, the value of p is calculated

from length(coefs$phi) and length(fixed.values$phi).
• q,r a non-negative integer. The order of the MA polynomial and the size of the vector of

parameters for the map function (BARC only). If missing, the argument is calcualted based
on length(coefs$theta) and length(fixed.values$theta).

• coefs a list with the coefficients of the model. Each model has its default. Passing both,
coefs and fixed.values empty will result in an error. The arguments in this list are

– alpha a numeric value corresponding to the intercept. If missing, will be set as zero.
– beta a vector of coefficients corresponding to the regressors in xreg. If xreg is provided

but beta is missing in the coefs list, an error message is issued.
– phi a vector with the non-fixed values in the vector of AR coefficients.
– nu the dispersion parameter. If missing, an error message is issued.
– theta, d, u0 model specific arguments. See the documentation corresponding to each

model.
• lags optionally, a list with the lags that the values in coefs correspond to. The names of the

entries in this list must match the ones in coefs. For one dimensional coefficients, the lag is
obviously always 1 and can be suppressed. An empty list indicates that either the argument
fixed.lags is provided or all lags must be used.

• fixed.values optionally, a list with the values of the coefficients that are fixed. By default, if
a given vector (such as the vector of AR coefficients) has fixed values and the corresponding
entry in this list is empty, the fixed values are set as zero. The names of the entries in this list
must match the ones in coefs.

https://groups.google.com/d/topic/comp.lang.fortran/qFv18ql_WlU
https://groups.google.com/d/topic/comp.lang.fortran/qFv18ql_WlU
https://www-cs-faculty.stanford.edu/~knuth/programs/frng.f
https://www-cs-faculty.stanford.edu/~knuth/programs/frng.f
https://jblevins.org/mirror/amiller/lfsr258.f90

22 btsr.functions

• fixed.lags optionally, a list with the lags that the fixed values in fixed.values correspond
to. The names of the entries in this list must match the ones in fixed.values. ##’ For one
dimensional coefficients, the lag is obviously always 1 and can be suppressed. If an empty
list is provided and the model has fixed lags, the argument lags is used as reference.

• y.start optionally, a initial value for yt (to be used in the recursions). Default is NULL, in
which case, the recursion assumes that g2(yt) = 0, for t < 1.

• xreg.start optionally, a vector of initial value for xreg (to be used in the recursions). De-
fault is NULL, in which case, the recursion assumes thatXt = 0, for t < 1. If xregar = FALSE
this argument is ignored.

• xregar logical; indicates if xreg is to be included in the AR part of the model. See ‘The
BTSR structure’. Default is TRUE.

• error.scale the scale for the error term. See also ‘The BTSR structure’. Each model has
its default.

• inf the truncation point for infinite sums. Default is 1. BARC models do not have this
argument.

• m a non-negative integer indicating the starting time for the sum of the partial log-likelihoods,
that is ` =

∑n
t=m+1 `t. Default is 0.

• linkg character or a two character vector indicating which links must be used in the model.
See ‘The BTSR structure’. If only one value is provided, the same link is used for mut and
for yt in the AR part of the model. Each model has its default.

• llk logical, if TRUE the value of the log-likelihood function is returned. Default is TRUE for
all models.

• sco logical, if TRUE the score vector is returned. Default is FALSE for all models.
• info logical, if TRUE the information matrix is returned. Default is FALSE for all models.
• extra logical, if TRUE the matrices and vectors used to calculate the score vector and the

information matrix are returned. Default is FALSE for all models.
• debug logical, if TRUE the output from FORTRAN is return (for debuggin purposes). Default

is FALSE for all models.

Fitting Function:
Common arguments passed through "..." in btsr.fit are the same as in btsr.extract plus
the following:

• d logical, if TRUE, the parameter d is included in the model either as fixed or non-fixed. If d =
FALSE the value is fixed as 0. The default is TRUE for all models, except BARC that does not
have this parameter.

• start a list with the starting values for the non-fixed coefficients of the model. If an empty
list is provided, the function coefs.start is used to obtain starting values for the parameters.

• ignore.start logical, if starting values are not provided, the function uses the default values
and ignore.start is ignored. In case starting values are provided and ignore.start =
TRUE, those starting values are ignored and recalculated. The default is FALSE.

• lower, upper optionally, list with the lower and upper bounds for the parameters. The names
of the entries in these lists must match the ones in start. The default is to assume that the
parameters are unbounded. Only the bounds for bounded parameters need to be specified.

• control a list with configurations to be passed to the optimization subroutines. Missing
arguments will receive default values. See fit.control.

• report logical, if TRUE the summary from model estimation is printed and info is automat-
ically set to TRUE. Default is TRUE.

btsr.functions 23

References

Knuth, D. E. (2002). The Art of Computer Programming. Volume 2, third edition, ninth printing.

L’Ecuyer, P. (1999). Good parameters and implementations for combined multiple recursive ran-
dom number generators. Operations Research, 47, 159-164. doi:10.1287/opre.47.1.159.

Matsumoto, M. and Nishimura, T. (1998). Mersenne Twister: A 623-dimensionally equidistributed
uniform pseudo-random number generator, ACM Transactions on Modeling and Computer Simu-
lation, 8, 3-30.

Wichmann, B. A. and Hill, I. D. (1982). Algorithm AS 183: An Efficient and Portable Pseudo-
random Number Generator. Applied Statistics, 31, 188-190; Remarks: 34, 198 and 35, 89. doi:
10.2307/2347988.

See Also

BARFIMA.sim, GARFIMA.sim, KARFIMA.sim, BARC.sim

BARFIMA.extract, GARFIMA.extract, KARFIMA.extract, BARC.extract

BARFIMA.fit, GARFIMA.fit, KARFIMA.fit, BARC.fit

Examples

Generating a Beta model were mut does not vary with time
yt ~ Beta(a,b), a = mu*nu, b = (1-mu)*nu

y <- btsr.sim(model= "BARFIMA", linkg = "linear",
n = 1000, seed = 2021,
coefs = list(alpha = 0.2, nu = 20))

hist(y)

#--
Generating a Beta model were mut does not vary with time
yt ~ Beta(a,b), a = mu*nu, b = (1-mu)*nu
#--

m1 <- btsr.sim(model= "BARFIMA", linkg = "linear",
n = 100, seed = 2021, complete = TRUE,
coefs = list(alpha = 0.2, nu = 20))

#--
Extracting the conditional time series given yt and
a set of parameters
#--

Assuming that all coefficients are non-fixed
e1 = btsr.extract(model = "BARFIMA", yt = m1$yt,

coefs = list(alpha = 0.2, nu = 20),
link = "linear", llk = TRUE,
sco = TRUE, info = TRUE)

Assuming that all coefficients are fixed
e2 = btsr.extract(model = "BARFIMA", yt = m1$yt,

doi:10.1287/opre.47.1.159.
doi:10.2307/2347988.
doi:10.2307/2347988.

24 btsr.functions

fixed.values = list(alpha = 0.2, nu = 20),
link = "linear", llk = TRUE,
sco = TRUE, info = TRUE)

Assuming at least one fixed coefficient and one non-fixed
e3 = btsr.extract(model = "BARFIMA", yt = m1$yt,

fixed.values = list(alpha = 0.2, nu = 20),
link = "linear", llk = TRUE,
sco = TRUE, info = TRUE)

e4 = btsr.extract(model = "BARFIMA", yt = m1$yt,
fixed.values = list(alpha = 0.2, nu = 20),
link = "linear", llk = TRUE,
sco = TRUE, info = TRUE)

#--
comparing the simulated and the extracted values
#--
cbind(head(m1$mut), head(e1$mut), head(e2$mut), head(e3$mut), head(e4$mut))

#--
comparing the log-likelihood values obtained (must be the all equal)
#--
c(e1$sll, e2$sll, e3$sll, e4$sll)

#--
comparing the score vectors:
#--
- e1 must have 2 values: dl/dmu and dl/dnu
- e2 must be empty
- e3 and e4 must have one value corresponding
to the non-fixed coefficient
#--
e1$score
e2$score
e3$score
e4$score

#--
comparing the information matrices.
#--
- e1 must be a 2x2 matrix
- e2 must be empty
- e3 and e4 must have one value corresponding
to the non-fixed coefficient
#--
e1$info.Matrix
e2$info.Matrix
e3$info.Matrix
e4$info.Matrix

Generating a Beta model were mut does not vary with time
yt ~ Beta(a,b), a = mu*nu, b = (1-mu)*nu

coefs.start 25

y <- btsr.sim(model= "BARFIMA", linkg = "linear",
n = 100, seed = 2021,
coefs = list(alpha = 0.2, nu = 20))

fitting the model
f <- btsr.fit(model = "BARFIMA", yt = y, report = TRUE,

start = list(alpha = 0.5, nu = 10),
linkg = "linear", d = FALSE)

coefs.start Initial values for optimization

Description

This function calculates initial values for the parameter vector, to pass to the optimization function.

Usage

coefs.start(model = "Generic", yt, linkg = c("linear", "linear"),
xreg = NULL, p = 0, q = 0, d = TRUE, y.start = NULL,
y.lower = -Inf, y.upper = Inf, lags = list(), fixed.values = list(),
fixed.lags = list())

Arguments

model character; The model to be fitted to the data. One of "BARFIMA", "KARFIMA",
"GARFIMA", "BARC". Default is "Generic" so that no specific structure is as-
sumed.

yt a univariate time series. Missing values (NA’s) are not allowed.

linkg character; one of "linear", "logit", "log", "loglog", "cloglog". If only
one name is provided, the same link will be used for the conditional mean, that
is to define g(µ) and for the observed time series in the AR part of the model,
that is, g(y[t]).

xreg optional; a vector or matrix of external regressors, which must have the same
number of rows as x.

p an integer; the AR order. Default is zero.

q an integer; for BARC models represents the dimension of the parameter associated
to the map T . For other models is the MA order. Default is zero.

d logical; if FALSE, d is fixed as zero. Default is TRUE.

y.start optional; an initialization value for y[t], for t ≤ 0, to be used in the AR recursion.
If not provided, the default assume y[t] = 0, when using a "linear" link for yt,
and g(y[t]) = 0, otherwise.

y.lower lower limit for the distribution support. Default is -Inf.

26 fit.control

y.upper upper limit for the distribution support. Default is Inf.

lags optional; a list with the components beta, phi and theta specifying which lags
must be included in the model. An empty list or missing component indicates
that, based on the values nreg, p e q), all lags must be includes in the model.

fixed.values optional; a list with the fixed values for each component, if any. If fixed values
are provided, either lags or fixed.lags must also be provided.

fixed.lags optional; a list with the components beta, phi and theta specifying which lags
must be fixed. An empty list implies that fixed values will be set based on lags.

Value

a list with starting values for the parameters of the selected model. Possible outputs are:

alpha the intercept

beta the coefficients for the regressors

phi the AR coefficients

theta for BARC models, the map parameter. For any other model, the MA coefficients

d the long memory parameter

nu the precison parameter

Examples

mu = 0.5
nu = 20

yt = rbeta(100, shape1 = mu*nu, shape2 = (1-mu)*nu)
coefs.start(model = "BARFIMA", yt = yt,

linkg = "linear", d = FALSE,
y.lower = 0, y.upper = 1)

yt = rgamma(100, shape = nu, rate = mu*nu)
coefs.start(model = "GARFIMA", yt = yt,

linkg = "linear", d = FALSE,
y.lower = 0, y.upper = Inf)

fit.control Default control list

Description

Sets default values for constants used by the optimization functions in FORTRAN

Usage

fit.control(control = list())

fit.control 27

Arguments

control a list with configurations to be passed to the optimization subroutines. Missing
arguments will receive default values. See ‘Details’.

Details

The control argument is a list that can supply any of the following components:

method The optimization method. Current available options are "L-BFGS-B" and "Nelder-Mead".
Default is "L-BFGS-B".

maxit The maximum number of iterations. Defaults to 1000.

iprint The frequency of reports if control$trace is positive. Defaults is -1 (no report).

• For "L-BFGS-B" method:
iprint<0 no output is generated;
iprint=0 print only one line at the last iteration;
0<iprint<99 print also f and |proj g| every iprint iterations;
iprint=99 print details of every iteration except n-vectors;
iprint=100 print also the changes of active set and final x;
iprint>100 print details of every iteration including x and g;

• For "Nelder-Mead" method:
iprint<0 No printing
iprint=0 Printing of parameter values and the function Value after initial evidence of con-
vergence.
iprint>0 As for iprint = 0 plus progress reports after every Iprint evaluations, plus printing
for the initial simplex.

factr controls the convergence of the "L-BFGS-B" method. Convergence occurs when the reduc-
tion in the objective is within this factor of the machine tolerance. The iteration will stop
when

(fk − fk+1)/max{|fk|, |fk+1|, 1} ≤ factr ∗ epsmch

where epsmch is the machine precision, which is automatically generated by the code. Typical
values for factr: 1.e+12 for low accuracy; 1.e+7 for moderate accuracy; 1.e+1 for extremely
high accuracy. Default is 1e7, that is a tolerance of about 1e-8.

pgtol helps control the convergence of the "L-BFGS-B" method. It is a tolerance on the projected
gradient in the current search direction. the iteration will stop when

max{|projgi|, i = 1, ..., n} ≤ pgtol

where pgi is the ith component of the projected gradient. Default is 1e-12.

stopcr The criterion applied to the standard deviation of the values of objective function at the
points of the simplex, for "Nelder-Mead" method.

Value

a list with all arguments in ‘Details’.

28 GARFIMA.functions

Examples

BTSR::fit.control()

GARFIMA.functions Functions to simulate, extract components and fit GARFIMA models

Description

These functions can be used to simulate, extract components and fit any model of the class garfima.
A model with class garfima is a special case of a model with class btsr . See ‘The BTSR structure’
in btsr.functions for more details on the general structure.

The γARMA model, the gamma regression and a i.i.d. sample from a gamma distribution can be
obtained as special cases. See ‘Details’.

Usage

GARFIMA.sim(n = 1, burn = 0, xreg = NULL, coefs = list(alpha = 0, beta
= NULL, phi = NULL, theta = NULL, d = 0, nu = 20), y.start = NULL,
xreg.start = NULL, xregar = TRUE, error.scale = 0, complete = FALSE,
inf = 1000, linkg = c("log", "log"), seed = NULL, rngtype = 2,
debug = FALSE)

GARFIMA.extract(yt, xreg = NULL, nnew = 0, xnew = NULL, p, q,
coefs = list(), lags = list(), fixed.values = list(),
fixed.lags = list(), y.start = NULL, xreg.start = NULL,
xregar = TRUE, error.scale = 0, inf = 1000, m = 0, linkg = c("log",
"log"), llk = TRUE, sco = FALSE, info = FALSE, extra = FALSE,
debug = FALSE)

GARFIMA.fit(yt, xreg = NULL, nnew = 0, xnew = NULL, p = 0, d = TRUE,
q = 0, m = 0, inf = 1000, start = list(), ignore.start = FALSE,
lags = list(), fixed.values = list(), fixed.lags = list(),
lower = list(nu = 0), upper = list(nu = Inf), linkg = c("log", "log"),
sco = TRUE, info = FALSE, extra = FALSE, xregar = TRUE,
y.start = NULL, xreg.start = NULL, error.scale = 0, control = list(),
report = TRUE, debug = FALSE, ...)

Arguments

n a strictly positive integer. The sample size of yt (after burn-in). Default is 1.

burn a non-negative integer. The length of the "burn-in" period. Default is 0.

xreg optionally, a vector or matrix of external regressors. For simulation purposes,
the length of xreg must be n+burn. Default is NULL. For extraction or fitting
purposes, the length of xreg must be the same as the length of the observed
time series yt.

GARFIMA.functions 29

coefs a list with the coefficients of the model. An empty list will result in an error.
The arguments that can be passed through this list are:

• alpha optionally, a numeric value corresponding to the intercept. If the
argument is missing, it will be treated as zero. See ‘The BTSR structure’ in
btsr.functions.

• beta optionally, a vector of coefficients corresponding to the regressors in
xreg. If xreg is provided but beta is missing in the coefs list, an error
message is issued.

• phi optionally, for the simulation function this must be a vector of size p,
corresponding to the autoregressive coefficients (including the ones that are
zero), where p is the AR order. For the extraction and fitting functions,
this is a vector with the non-fixed values in the vector of autoregressive
coefficients.

• theta optionally, for the simulation function this must be a vector of size q,
corresponding to the moving average coefficients (including the ones that
are zero), where q is the MA order. For the extraction and fitting functions,
this is a vector with the non-fixed values in the vector of moving average
coefficients.

• d optionally, a numeric value corresponding to the long memory parameter.
If the argument is missing, it will be treated as zero.

• nu the dispersion parameter. If missing, an error message is issued.

y.start optionally, an initial value for yt (to be used in the recursions). Default is NULL,
in which case, the recursion assumes that g2(yt) = 0, for t < 1.

xreg.start optionally, a vector of initial value for xreg (to be used in the recursions). Default
is NULL, in which case, the recursion assumes that Xt = 0, for t < 1. If xregar
= FALSE this argument is ignored.

xregar logical; indicates if xreg is to be included in the AR part of the model. See ‘The
BTSR structure’. Default is TRUE.

error.scale the scale for the error term. See ‘The BTSR structure’ in btsr.functions.
Default is 0.

complete logical; if FALSE the function returns only the simulated time series yt, other-
wise, additional time series are provided. Default is FALSE

inf the truncation point for infinite sums. Default is 1,000. In practice, the Fortran
subroutine uses inf = q, if d = 0.

linkg character or a two character vector indicating which links must be used in the
model. See ‘The BTSR structure’ in btsr.functions for details and link.btsr
for valid links. If only one value is provided, the same link is used for mut and
for yt in the AR part of the model. Default is c("log", "log"). For the linear
link, the constant will be always 1.

seed optionally, an integer which gives the value of the fixed seed to be used by the
random number generator. If missing, a random integer is chosen uniformly
from 1,000 to 10,000.

rngtype optionally, an integer indicating which random number generator is to be used.
Default is 2: the Mersenne Twister algorithm. See ‘Common Arguments’ in
btsr.functions.

30 GARFIMA.functions

debug logical, if TRUE the output from FORTRAN is return (for debugging purposes).
Default is FALSE for all models.

yt a numeric vector with the observed time series. If missing, an error message is
issued.

nnew optionally, the number of out-of sample predicted values required. Default is 0.

xnew a vector or matrix, with nnew observations of the regressors observed/predicted
values corresponding to the period of out-of-sample forecast. If xreg = NULL,
xnew is ignored.

p a non-negative integer. The order of AR polynomial. If missing, the value of
p is calculated from length(coefs$phi) and length(fixed.values$phi). For fitting,
the default is 0.

q a non-negative integer. The order of the MA polynomial. If missing, the value
of q is calculated from length(coefs$theta) and length(fixed.values$theta). For
fitting, the default is 0.

lags optionally, a list with the lags that the values in coefs correspond to. The names
of the entries in this list must match the ones in coefs. For one dimensional
coefficients, the lag is obviously always 1 and can be suppressed. An empty list
indicates that either the argument fixed.lags is provided or all lags must be
used.

fixed.values optionally, a list with the values of the coefficients that are fixed. By default, if
a given vector (such as the vector of AR coefficients) has fixed values and the
corresponding entry in this list is empty, the fixed values are set as zero. The
names of the entries in this list must match the ones in coefs.

fixed.lags optionally, a list with the lags that the fixed values in fixed.values correspond
to. The names of the entries in this list must match the ones in fixed.values.
##’ For one dimensional coefficients, the lag is obviously always 1 and can
be suppressed. If an empty list is provided and the model has fixed lags, the
argument lags is used as reference.

m a non-negative integer indicating the starting time for the sum of the partial log-
likelihoods, that is ` =

∑n
t=m+1 `t. Default is 0.

llk logical, if TRUE the value of the log-likelihood function is returned. Default is
TRUE.

sco logical, if TRUE the score vector is returned. Default is FALSE.

info logical, if TRUE the information matrix is returned. Default is FALSE. For the
fitting function, info is automatically set to TRUE when report = TRUE.

extra logical, if TRUE the matrices and vectors used to calculate the score vector and
the information matrix are returned. Default is FALSE.

d logical, if TRUE, the parameter d is included in the model either as fixed or non-
fixed. If d = FALSE the value is fixed as 0. The default is TRUE.

start a list with the starting values for the non-fixed coefficients of the model. If
an empty list is provided, the function coefs.start is used to obtain starting
values for the parameters.

GARFIMA.functions 31

ignore.start logical, if starting values are not provided, the function uses the default val-
ues and ignore.start is ignored. In case starting values are provided and
ignore.start = TRUE, those starting values are ignored and recalculated. The
default is FALSE.

lower optionally, list with the lower bounds for the parameters. The names of the
entries in these lists must match the ones in start. The default is to assume
that the parameters have no lower bound except for nu, for which de default is
0. Only the bounds for bounded parameters need to be specified.

upper optionally, list with the upper bounds for the parameters. The names of the
entries in these lists must match the ones in start. The default is to assume that
the parameters have no upper bound. Only the bounds for bounded parameters
need to be specified.

control a list with configurations to be passed to the optimization subroutines. Missing
arguments will receive default values. See fit.control.

report logical, if TRUE the summary from model estimation is printed and info is au-
tomatically set to TRUE. Default is TRUE.

... further arguments passed to the internal functions.

Details

The γARMA model and the gamma regression can be obtained as special cases of the γARFIMA
model.

• γARFIMA: is obtained by default.

• γARMA: is obtained by setting d = 0.

• gamma regression: is obtained by setting p = 0, q = 0 and d = FALSE. The error.scale is
irrelevant. The second argument in linkg is irrelevant.

• an i.i.d. sample from a Gamma distribution with parameters shape and scale (compatible
with the one from rgamma) is obtained by setting linkg = "linear", p = 0, q = 0, coefs$d =
0, d = FALSE and, in the coefficient list, alpha = shape*scale and nu = shape. (error.scale
and xregar are irrelevant)

The function GARFIMA.sim generates a random sample from a γARFIMA(p,d,q) model.

The function GARFIMA.extract allows the user to extract the components yt, µt, ηt = g(µt), rt, the
log-likelihood, and the vectors and matrices used to calculate the score vector and the information
matrix associated to a given set of parameters.

This function can be used by any user to create an objective function that can be passed to optimiza-
tion algorithms not available in the BTSR Package.

The function GARFIMA.fit fits a GARFIMA model to a given univariate time series. For now, avail-
able optimization algorithms are "L-BFGS-B" and "Nelder-Mead". Both methods accept bounds
for the parameters. For "Nelder-Mead", bounds are set via parameter transformation.

Value

The function GARFIMA.sim returns the simulated time series yt by default. If complete = TRUE, a
list with the following components is returned instead:

32 GARFIMA.functions

• model: string with the text "GARFIMA"

• yt: the simulated time series

• mut: the conditional mean

• etat: the linear predictor g(µt)

• error: the error term rt

• xreg: the regressors (if included in the model).

• debug: the output from FORTRAN (if requested).

The function GARFIMA.extract returns a list with the following components.

• model: string with the text "GARFIMA"

• coefs: the coefficients of the model passed through the coefs argument

• yt: the observed time series

• gyt: the transformed time series g2(yt)

• mut: the conditional mean

• etat: the linear predictor g1(µt)

• error: the error term rt

• xreg: the regressors (if included in the model).

• sll: the sum of the conditional log-likelihood (if requested)

• sco: the score vector (if requested)

• info: the information matrix (if requested)

• Drho, T, E, h: additional matrices and vectors used to calculate the score vector and the infor-
mation matrix. (if requested)

• yt.new: the out-of-sample forecast (if requested)

• out.Fortran: FORTRAN output (if requested)

The function btsr.fit returns a list with the following components. Each particular model can
have additional components in this list.

• model: string with the text "GARFIMA"

• convergence: An integer code. 0 indicates successful completion. The error codes depend
on the algorithm used.

• message: A character string giving any additional information returned by the optimizer, or
NULL.

• counts: an integer giving the number of function evaluations.

• control: a list of control parameters.

• start: the starting values used by the algorithm.

• coefficients: The best set of parameters found.

• n: the sample size used for estimation.

• series: the observed time series

• gyt: the transformed time series g2(yt)

GARFIMA.functions 33

• fitted.values: the conditional mean, which corresponds to the in-sample forecast, also
denoted fitted values

• etat: the linear predictor g1(µt)

• error.scale: the scale for the error term.

• error: the error term rt

• residual: the observed minus the fitted values. The same as the error term if error.scale
= 0.

• forecast: the out-of-sample forecast (if requested).

• xnew: the observations of the regressors observed/predicted values corresponding to the period
of out-of-sample forecast. Only inlcudes if xreg is not NULL and nnew > 0.

• sll: the sum of the conditional log-likelihood (if requested)

• info.Matrix: the information matrix (if requested)

• configs: a list with the configurations adopted to fit the model. This information is used by
the prediction function.

• out.Fortran: FORTRAN output (if requested)

• call: a string with the description of the fitted model.

See Also

btsr.sim

btsr.extract

btsr.fit

Examples

Generating a Gamma model were mut does not vary with time
yt ~ Gamma(a,b), a = nu (shape), b = mu/nu (scale)

y <- GARFIMA.sim(linkg = "linear", n = 1000, seed = 2021,
coefs = list(alpha = 0.2, nu = 20))

hist(y)

#--
Generating a Gamma model were mut does not vary with time
yt ~ Gamma(a,b), a = nu (shape), b = mu/nu (scale)
#--

m1 <- GARFIMA.sim(linkg = "linear",n = 100,
complete = TRUE, seed = 2021,
coefs = list(alpha = 0.2, nu = 20))

#--
Extracting the conditional time series given yt and
a set of parameters
#--

Assuming that all coefficients are non-fixed

34 KARFIMA.functions

e1 = GARFIMA.extract(yt = m1$yt, coefs = list(alpha = 0.2, nu = 20),
link = "linear", llk = TRUE,
sco = TRUE, info = TRUE)

#--
comparing the simulated and the extracted values
#--
cbind(head(m1$mut), head(e1$mut))

#---
the log-likelihood, score vector and information matrix
#---
e1$sll
e1$score
e1$info.Matrix

Generating a Beta model were mut does not vary with time
yt ~ Beta(a,b), a = mu*nu, b = (1-mu)*nu

y <- GARFIMA.sim(linkg = "linear", n = 100, seed = 2021,
coefs = list(alpha = 0.2, nu = 20))

fitting the model
f <- GARFIMA.fit(yt = y, report = TRUE,

start = list(alpha = 0.5, nu = 10),
linkg = "linear", d = FALSE)

KARFIMA.functions Functions to simulate, extract components and fit KARFIMA models

Description

These functions can be used to simulate, extract components and fit any model of the class karfima.
A model with class karfima is a special case of a model with class btsr . See ‘The BTSR structure’
in btsr.functions for more details on the general structure.

The KARMA model, the Kumaraswamy regression and a i.i.d. sample from a Kumaraswamy dis-
tribution can be obtained as special cases. See ‘Details’.

Usage

KARFIMA.sim(n = 1, burn = 0, xreg = NULL, rho = 0.5, y.lower = 0,
y.upper = 1, coefs = list(alpha = 0, beta = NULL, phi = NULL, theta =
NULL, d = 0, nu = 20), y.start = NULL, xreg.start = NULL,
xregar = TRUE, error.scale = 1, complete = FALSE, inf = 1000,
linkg = c("logit", "logit"), seed = NULL, rngtype = 2, debug = FALSE)

KARFIMA.extract(yt, xreg = NULL, nnew = 0, xnew = NULL, p, q,

KARFIMA.functions 35

rho = 0.5, y.lower = 0, y.upper = 1, coefs = list(), lags = list(),
fixed.values = list(), fixed.lags = list(), y.start = NULL,
xreg.start = NULL, xregar = TRUE, error.scale = 1, inf = 1000,
m = 0, linkg = c("logit", "logit"), llk = TRUE, sco = FALSE,
info = FALSE, extra = FALSE, debug = FALSE)

KARFIMA.fit(yt, xreg = NULL, nnew = 0, xnew = NULL, p = 0, d = TRUE,
q = 0, m = 0, inf = 1000, rho = 0.5, y.lower = 0, y.upper = 1,
start = list(), ignore.start = FALSE, lags = list(),
fixed.values = list(), fixed.lags = list(), lower = list(nu = 0),
upper = list(nu = Inf), linkg = c("logit", "logit"), sco = FALSE,
info = FALSE, extra = FALSE, xregar = TRUE, y.start = NULL,
xreg.start = NULL, error.scale = 1, control = list(), report = TRUE,
debug = FALSE, ...)

Arguments

n a strictly positive integer. The sample size of yt (after burn-in). Default is 1.
burn a non-negative integer. The length of the "burn-in" period. Default is 0.
xreg optionally, a vector or matrix of external regressors. For simulation purposes,

the length of xreg must be n+burn. Default is NULL. For extraction or fitting
purposes, the length of xreg must be the same as the length of the observed
time series yt.

rho a positive number, between 0 and 1, indicating the quantile to be modeled so
that µt is the conditional rho-quantile.

y.lower the lower limit for the density support. Default is 0.
y.upper the upper limit for the density support. Default is 1.
coefs a list with the coefficients of the model. An empty list will result in an error.

The arguments that can be passed through this list are:
• alpha optionally, a numeric value corresponding to the intercept. If the

argument is missing, it will be treated as zero. See ‘The BTSR structure’ in
btsr.functions.

• beta optionally, a vector of coefficients corresponding to the regressors in
xreg. If xreg is provided but beta is missing in the coefs list, an error
message is issued.

• phi optionally, for the simulation function this must be a vector of size p,
corresponding to the autoregressive coefficients (including the ones that are
zero), where p is the AR order. For the extraction and fitting functions,
this is a vector with the non-fixed values in the vector of autoregressive
coefficients.

• theta optionally, for the simulation function this must be a vector of size q,
corresponding to the moving average coefficients (including the ones that
are zero), where q is the MA order. For the extraction and fitting functions,
this is a vector with the non-fixed values in the vector of moving average
coefficients.

• d optionally, a numeric value corresponding to the long memory parameter.
If the argument is missing, it will be treated as zero.

36 KARFIMA.functions

• nu the dispersion parameter. If missing, an error message is issued.

y.start optionally, an initial value for yt (to be used in the recursions). Default is NULL,
in which case, the recursion assumes that g2(yt) = 0, for t < 1.

xreg.start optionally, a vector of initial value for xreg (to be used in the recursions). Default
is NULL, in which case, the recursion assumes that Xt = 0, for t < 1. If xregar
= FALSE this argument is ignored.

xregar logical; indicates if xreg is to be included in the AR part of the model. See ‘The
BTSR structure’. Default is TRUE.

error.scale the scale for the error term. See ‘The BTSR structure’ in btsr.functions.
Default is 1.

complete logical; if FALSE the function returns only the simulated time series yt, other-
wise, additional time series are provided. Default is FALSE

inf the truncation point for infinite sums. Default is 1,000. In practice, the Fortran
subroutine uses inf = q, if d = 0.

linkg character or a two character vector indicating which links must be used in the
model. See ‘The BTSR structure’ in btsr.functions for details and link.btsr
for valid links. If only one value is provided, the same link is used for mut and
for yt in the AR part of the model. Default is c("logit", "logit"). For the
linear link, the constant will be always 1.

seed optionally, an integer which gives the value of the fixed seed to be used by the
random number generator. If missing, a random integer is chosen uniformly
from 1,000 to 10,000.

rngtype optionally, an integer indicating which random number generator is to be used.
Default is 2: the Mersenne Twister algorithm. See ‘Common Arguments’ in
btsr.functions.

debug logical, if TRUE the output from FORTRAN is return (for debugging purposes).
Default is FALSE for all models.

yt a numeric vector with the observed time series. If missing, an error message is
issued.

nnew optionally, the number of out-of sample predicted values required. Default is 0.

xnew a vector or matrix, with nnew observations of the regressors observed/predicted
values corresponding to the period of out-of-sample forecast. If xreg = NULL,
xnew is ignored.

p a non-negative integer. The order of AR polynomial. If missing, the value of
p is calculated from length(coefs$phi) and length(fixed.values$phi). For fitting,
the default is 0.

q a non-negative integer. The order of the MA polynomial. If missing, the value
of q is calculated from length(coefs$theta) and length(fixed.values$theta). For
fitting, the default is 0.

lags optionally, a list with the lags that the values in coefs correspond to. The names
of the entries in this list must match the ones in coefs. For one dimensional
coefficients, the lag is obviously always 1 and can be suppressed. An empty list
indicates that either the argument fixed.lags is provided or all lags must be
used.

KARFIMA.functions 37

fixed.values optionally, a list with the values of the coefficients that are fixed. By default, if
a given vector (such as the vector of AR coefficients) has fixed values and the
corresponding entry in this list is empty, the fixed values are set as zero. The
names of the entries in this list must match the ones in coefs.

fixed.lags optionally, a list with the lags that the fixed values in fixed.values correspond
to. The names of the entries in this list must match the ones in fixed.values.
##’ For one dimensional coefficients, the lag is obviously always 1 and can
be suppressed. If an empty list is provided and the model has fixed lags, the
argument lags is used as reference.

m a non-negative integer indicating the starting time for the sum of the partial log-
likelihoods, that is ` =

∑n
t=m+1 `t. Default is 0.

llk logical, if TRUE the value of the log-likelihood function is returned. Default is
TRUE.

sco logical, if TRUE the score vector is returned. Default is FALSE.

info logical, if TRUE the information matrix is returned. Default is FALSE. For the
fitting function, info is automatically set to TRUE when report = TRUE.

extra logical, if TRUE the matrices and vectors used to calculate the score vector and
the information matrix are returned. Default is FALSE.

d logical, if TRUE, the parameter d is included in the model either as fixed or non-
fixed. If d = FALSE the value is fixed as 0. The default is TRUE.

start a list with the starting values for the non-fixed coefficients of the model. If
an empty list is provided, the function coefs.start is used to obtain starting
values for the parameters.

ignore.start logical, if starting values are not provided, the function uses the default val-
ues and ignore.start is ignored. In case starting values are provided and
ignore.start = TRUE, those starting values are ignored and recalculated. The
default is FALSE.

lower optionally, list with the lower bounds for the parameters. The names of the
entries in these lists must match the ones in start. The default is to assume
that the parameters have no lower bound except for nu, for which de default is
0. Only the bounds for bounded parameters need to be specified.

upper optionally, list with the upper bounds for the parameters. The names of the
entries in these lists must match the ones in start. The default is to assume that
the parameters have no upper bound. Only the bounds for bounded parameters
need to be specified.

control a list with configurations to be passed to the optimization subroutines. Missing
arguments will receive default values. See fit.control.

report logical, if TRUE the summary from model estimation is printed and info is au-
tomatically set to TRUE. Default is TRUE.

... further arguments passed to the internal functions.

Details

The KARMA model and the Kumaraswamy regression can be obtained as special cases of the
KARFIMA model.

38 KARFIMA.functions

• KARFIMA: is obtained by default.

• KARMA: is obtained by setting d = 0.

• Kumaraswamy regression: is obtained by setting p = 0, q = 0 and d = FALSE. The error.scale
is irrelevant. The second argument in linkg is irrelevant.

• an i.i.d. sample from a Kumaraswamy distribution is obtained by setting linkg = "linear",
p = 0, q = 0, coefs$d = 0, d = FALSE. (error.scale and xregar are irrelevant)

The function KARFIMA.sim generates a random sample from a KARFIMA(p,d,q) model.

The function KARFIMA.extract allows the user to extract the components yt, µt, ηt = g(µt), rt, the
log-likelihood, and the vectors and matrices used to calculate the score vector and the information
matrix associated to a given set of parameters.

This function can be used by any user to create an objective function that can be passed to optimiza-
tion algorithms not available in the BTSR Package.

The function KARFIMA.fit fits a KARFIMA model to a given univariate time series. For now, avail-
able optimization algorithms are "L-BFGS-B" and "Nelder-Mead". Both methods accept bounds
for the parameters. For "Nelder-Mead", bounds are set via parameter transformation.

Value

The function KARFIMA.sim returns the simulated time series yt by default. If complete = TRUE, a
list with the following components is returned instead:

• model: string with the text "KARFIMA"

• yt: the simulated time series

• mut: the conditional mean

• etat: the linear predictor g(µt)

• error: the error term rt

• xreg: the regressors (if included in the model).

• debug: the output from FORTRAN (if requested).

The function KARFIMA.extract returns a list with the following components.

• model: string with the text "KARFIMA"

• coefs: the coefficients of the model passed through the coefs argument

• yt: the observed time series

• gyt: the transformed time series g2(yt)

• mut: the conditional mean

• etat: the linear predictor g1(µt)

• error: the error term rt

• xreg: the regressors (if included in the model).

• sll: the sum of the conditional log-likelihood (if requested)

• sco: the score vector (if requested)

• info: the information matrix (if requested)

KARFIMA.functions 39

• Drho, T, E, h: additional matrices and vectors used to calculate the score vector and the infor-
mation matrix. (if requested)

• yt.new: the out-of-sample forecast (if requested)

• out.Fortran: FORTRAN output (if requested)

The function btsr.fit returns a list with the following components. Each particular model can
have additional components in this list.

• model: string with the text "KARFIMA"

• convergence: An integer code. 0 indicates successful completion. The error codes depend
on the algorithm used.

• message: A character string giving any additional information returned by the optimizer, or
NULL.

• counts: an integer giving the number of function evaluations.

• control: a list of control parameters.

• start: the starting values used by the algorithm.

• coefficients: The best set of parameters found.

• n: the sample size used for estimation.

• series: the observed time series

• gyt: the transformed time series g2(yt)

• fitted.values: the conditional mean, which corresponds to the in-sample forecast, also
denoted fitted values

• etat: the linear predictor g1(µt)

• error.scale: the scale for the error term.

• error: the error term rt

• residual: the observed minus the fitted values. The same as the error term if error.scale
= 0.

• forecast: the out-of-sample forecast (if requested).

• xnew: the observations of the regressors observed/predicted values corresponding to the period
of out-of-sample forecast. Only inlcudes if xreg is not NULL and nnew > 0.

• sll: the sum of the conditional log-likelihood (if requested)

• info.Matrix: the information matrix (if requested)

• configs: a list with the configurations adopted to fit the model. This information is used by
the prediction function.

• out.Fortran: FORTRAN output (if requested)

• call: a string with the description of the fitted model.

See Also

btsr.sim

btsr.extract

btsr.fit

40 KARFIMA.functions

Examples

Generating a Kumaraswamy model were mut does not vary with time
For linear link, alpha = mu
#
Warning:
|log(1-rho)| >> |log(1 - mu^nu)|
may cause numerical instability.

y <- KARFIMA.sim(linkg = "linear", n = 1000, seed = 2021,
coefs = list(alpha = 0.7, nu = 2))

hist(y)

#--
Generating a Kumaraswamy model were mut does not vary with time
For linear link, alpha = mu
#
Warning:
|log(1-rho)| >> |log(1 - mu^nu)|
may cause numerical instability.
#--

m1 <- KARFIMA.sim(linkg = "linear",n = 100,
complete = TRUE, seed = 2021,
coefs = list(alpha = 0.7, nu = 2))

#--
Extracting the conditional time series given yt and
a set of parameters
#--

Assuming that all coefficients are non-fixed
e1 = KARFIMA.extract(yt = m1$yt, coefs = list(alpha = 0.7, nu = 2),

link = "linear", llk = TRUE,
sco = TRUE, info = TRUE)

#--
comparing the simulated and the extracted values
#--
cbind(head(m1$mut), head(e1$mut))

#---
the log-likelihood, score vector and information matrix
#---
e1$sll
e1$score
e1$info.Matrix

Generating a Kumaraswamy model were mut does not vary with time
For linear link, alpha = mu
#
Warning:

link.btsr 41

|log(1-rho)| >> |log(1 - mu^nu)|
may cause numerical instability.

y <- KARFIMA.sim(linkg = "logit", n = 100, seed = 2021,
coefs = list(alpha = 0.7, nu = 2))

fitting the model
f <- KARFIMA.fit(yt = y, report = TRUE,

start = list(alpha = 0.5, nu = 1),
linkg = "logit", d = FALSE)

link.btsr Create a Link for BTSR models

Description

Given the name of a link, this function returns a link function, an inverse link function, the derivative
dη/dµ and the derivative dµ/dη.

Usage

link.btsr(link)

Arguments

link character; one of "linear", "logit", "log", "loglog", "cloglog". See ‘De-
tails’.

Details

The available links are:

linear: f(x) = ax, for a real. The parameter is set using the argument ctt.ll, when invoking the
functions created by link.btsr

logit: f(x) = log(x/(1− x))
log: f(x) = log(x)

loglog: f(x) = log(−log(x))
cloglog: f(x) = log(−log(1− x))

Value

An object of class "link-btsr", a list with components

linkfun Link function function(mu)

linkinv Inverse link function function(eta)

linkdif Derivative function(mu) dη/dµ

mu.eta Derivative function(eta) dµ/dη

name a name to be used for the link

42 predict.btsr

Examples

mylink <- BTSR::link.btsr("linear")
y = 0.8
a = 3.4
gy = a*y

mylink$linkfun(mu = y, ctt.ll = a); gy
mylink$linkinv(eta = gy, ctt.ll = a); y
mylink$diflink(mu = y, ctt.ll = a); a
mylink$mu.eta(eta = gy, ctt.ll = a); 1/a

predict.btsr Predict method for BTSR

Description

Predicted values based on btsr object.

Usage

S3 method for class 'btsr'
predict(object, newdata, nnew = 0, ...)

Arguments

object Object of class inheriting from "btsr"

newdata A matrix with new values for the regressors. If omitted and "xreg" is present in
the model, the fitted values are returned. If the model does not include regres-
sors, the functions will use the value of nnew.

nnew number of out-of-sample forecasts required. If newdata is provided, nnew is
ignored.

... further arguments passed to or from other methods.

Details

predict.btsr produces predicted values, obtained by evaluating the regression function in the
frame newdata.

If newdata is omitted the predictions are based on the data used for the fit.

For now, prediction intervals are not provided.

print.btsr 43

Value

A list with the following arguments

series The original time series yt.

xreg The original regressors (if any).

fitted.values The in-sample forecast given by µt.

etat In-sample values of g(µ[t]).

error The error term (depends on the argument error.scale)

residuals The (in-sample) residuals, that is, the observed minus the predicted values.
Same as error when error.scale = 0

forecast The predicted values for yt.

TS only for "BARC" models. The iterated map.

Ts.forecast only for "BARC" models. The predicted values of the iterated map.

Examples

#--
Generating a Beta model were mut does not vary with time
yt ~ Beta(a,b), a = mu*nu, b = (1-mu)*nu
#--

y <- btsr.sim(model= "BARFIMA", linkg = "linear",
n = 100, seed = 2021,
coefs = list(alpha = 0.2, nu = 20))

fitting the model
f <- btsr.fit(model = "BARFIMA", yt = y, report = TRUE,

start = list(alpha = 0.5, nu = 10),
linkg = "linear", d = FALSE)

pred = predict(f, nnew = 5)
pred$forecast

print.btsr Print Method of class BTSR

Description

Print method for objects of class btsr.

Usage

S3 method for class 'btsr'
print(x, digits = max(3L, getOption("digits") - 3L), ...)

44 summary

Arguments

x object of class btsr.

digits minimal number of significant digits, see print.default.

... further arguments to be passed to or from other methods. They are ignored in
this function

Details

Users are not encouraged to call these internal functions directly. Internal functions for package
BTSR.

Value

Invisibly returns its argument, x.

summary Summary Method of class BTSR

Description

summary method for class "btsr".

Usage

S3 method for class 'btsr'
summary(object, ...)

S3 method for class 'summary.btsr'
print(x, digits = max(3L, getOption("digits") - 3L),
signif.stars = getOption("show.signif.stars"), ...)

Arguments

object object of class "btsr".

... further arguments passed to or from other methods.

x an object of class "summary.btsr", usually, a result of a call to summary.btsr.

digits minimal number of significant digits, see print.default.

signif.stars logical. If TRUE, ‘significance stars’ are printed for each coefficient.

Details

print.summary.btsr tries to be smart about formatting the coefficients, standard errors, etc. and
additionally provides ‘significance stars’.

UWARFIMA.functions 45

Value

The function summary.btsr computes and returns a list of summary statistics of the fitted model
given in object. Returns a list of class summary.btsr, which contains the following components:

model the corresponding model.

call the matched call.

residuals the residuals of the model. Depends on the definition of error.scale. If er-
ror.scale= 1, residuals = g(y)− g(µ). If error.scale = 0, residuals = y − µ.

coefficients a k × 4 matrix with columns for the estimated coefficient, its standard error,
z-statistic and corresponding (two-sided) p-value. Aliased coefficients are omit-
ted.

aliased named logical vector showing if the original coefficients are aliased.

sigma.res the square root of the estimated variance of the random error

σ̂2 =
1

n− k
∑
i

r2i ,

where ri is the i-th residual, residuals[i].

df degrees of freedom, a 3-vector (k, n− k, k∗), the first being the number of non-
aliased coefficients, the last being the total number of coefficients.

vcov a k×k matrix of (unscaled) covariances. The inverse ov the information matrix.

loglik the sum of the log-likelihood values

aic the AIC value. AIC = −2 ∗ loglik + 2 ∗ k.

bic the BIC value. BIC = −2 ∗ loglik + log(n) ∗ k.

hqc the HQC value. HQC = −2 ∗ loglik + log(log(n)) ∗ k.

UWARFIMA.functions Functions to simulate, extract components and fit UWARFIMA models

Description

These functions can be used to simulate, extract components and fit any model of the class uwarfima.
A model with class uwarfima is a special case of a model with class btsr . See ‘The BTSR struc-
ture’ in btsr.functions for more details on the general structure.

The UWARMA model, the Unit-Weibull regression and a i.i.d. sample from a Unit-Weibull distri-
bution can be obtained as special cases. See ‘Details’.

46 UWARFIMA.functions

Usage

UWARFIMA.sim(n = 1, burn = 0, xreg = NULL, rho = 0.5,
coefs = list(alpha = 0, beta = NULL, phi = NULL, theta = NULL, d = 0, nu =
20), y.start = NULL, xreg.start = NULL, xregar = TRUE,
error.scale = 1, complete = FALSE, inf = 1000, linkg = c("logit",
"logit"), seed = NULL, rngtype = 2, debug = FALSE)

UWARFIMA.extract(yt, xreg = NULL, nnew = 0, xnew = NULL, p, q,
rho = 0.5, coefs = list(), lags = list(), fixed.values = list(),
fixed.lags = list(), y.start = NULL, xreg.start = NULL,
xregar = TRUE, error.scale = 1, inf = 1000, m = 0,
linkg = c("logit", "logit"), llk = TRUE, sco = FALSE, info = FALSE,
extra = FALSE, debug = FALSE)

UWARFIMA.fit(yt, xreg = NULL, nnew = 0, xnew = NULL, p = 0, d = TRUE,
q = 0, m = 0, inf = 1000, rho = 0.5, start = list(),
ignore.start = FALSE, lags = list(), fixed.values = list(),
fixed.lags = list(), lower = list(nu = 0), upper = list(nu = Inf),
linkg = c("logit", "logit"), sco = FALSE, info = FALSE,
extra = FALSE, xregar = TRUE, y.start = NULL, xreg.start = NULL,
error.scale = 1, control = list(), report = TRUE, debug = FALSE, ...)

Arguments

n a strictly positive integer. The sample size of yt (after burn-in). Default is 1.

burn a non-negative integer. Length of the "burn-in" period. Default is 0.

xreg optionally, a vector or matrix of external regressors. For simulation purposes,
the length of xreg must be n+burn. Default is NULL. For extraction or fitting
purposes, the length of xreg must be the same as the length of the observed
time series yt.

rho a positive number, between 0 and 1, indicating the quantile to be modeled. In
this case, µt corresponds to the conditional rho-quantile of the distribution.

coefs a list with the coefficients of the model. An empty list will result in an error.
The arguments that can be passed through this list are:

• alpha optionally, a numeric value corresponding to the intercept. If the
argument is missing, it will be treated as zero. See ‘The BTSR structure’ in
btsr.functions.

• beta optionally, a vector of coefficients corresponding to the regressors in
xreg. If xreg is provided but beta is missing in the coefs list, an error
message is issued.

• phi optionally, for the simulation function this must be a vector of size p,
corresponding to the autoregressive coefficients (including the ones that are
zero), where p is the AR order. For the extraction and fitting functions,
this is a vector with the non-fixed values in the vector of autoregressive
coefficients.

UWARFIMA.functions 47

• theta optionally, for the simulation function this must be a vector of size q,
corresponding to the moving average coefficients (including the ones that
are zero), where q is the MA order. For the extraction and fitting functions,
this is a vector with the non-fixed values in the vector of moving average
coefficients.

• d optionally, a numeric value corresponding to the long memory parameter.
If the argument is missing, it will be treated as zero.

• nu is a shape parameter. If missing, an error message is issued.

y.start optionally, an initial value for yt (to be used in the recursions). Default is NULL,
in which case, the recursion assumes that g2(yt) = 0, for t < 1.

xreg.start optionally, a vector of initial value for xreg (to be used in the recursions). Default
is NULL, in which case, the recursion assumes that Xt = 0, for t < 1. If xregar
= FALSE this argument is ignored.

xregar logical; indicates if xreg is to be included in the AR part of the model. See ‘The
BTSR structure’. Default is TRUE.

error.scale the scale for the error term. See ‘The BTSR structure’ in btsr.functions.
Default is 1.

complete logical; if FALSE the function returns only the simulated time series yt, other-
wise, additional time series are provided (see below). Default is FALSE

inf the truncation point for infinite sums. Default is 1,000. In practice, the Fortran
subroutine uses inf = q, if d = 0.

linkg character or a two character vector indicating which links must be used in the
model. See ‘The BTSR structure’ in btsr.functions for details and link.btsr
for valid links. If only one value is provided, the same link is used for mut and
for yt in the AR part of the model. Default is c("logit", "logit"). For the
linear link, the constant will be always 1.

seed optionally, an integer which gives the value of the fixed seed to be used by the
random number generator. If missing, a random integer is chosen uniformly
from 1,000 to 10,000.

rngtype optionally, an integer indicating which random number generator is to be used.
Default is 2: the Mersenne Twister algorithm. See ‘Common Arguments’ in
btsr.functions.

debug logical, if TRUE the output from FORTRAN is return (for debugging purposes).
Default is FALSE for all models.

yt a numeric vector with the observed time series. If missing, an error message is
issued.

nnew optionally, the number of out-of sample predicted values required. Default is 0.

xnew a vector or matrix, with nnew observations of the regressors observed/predicted
values corresponding to the period of out-of-sample forecast. If xreg = NULL,
xnew is ignored.

p a non-negative integer. The order of AR polynomial. If missing, the value of
p is calculated from length(coefs$phi) and length(fixed.values$phi). For fitting,
the default is 0.

48 UWARFIMA.functions

q a non-negative integer. The order of the MA polynomial. If missing, the value
of q is calculated from length(coefs$theta) and length(fixed.values$theta). For
fitting, the default is 0.

lags optionally, a list with the lags that the values in coefs correspond to. The names
of the entries in this list must match the ones in coefs. For one dimensional
coefficients, the lag is obviously always 1 and can be suppressed. An empty list
indicates that either the argument fixed.lags is provided or all lags must be
used.

fixed.values optionally, a list with the values of the coefficients that are fixed. By default, if
a given vector (such as the vector of AR coefficients) has fixed values and the
corresponding entry in this list is empty, the fixed values are set as zero. The
names of the entries in this list must match the ones in coefs.

fixed.lags optionally, a list with the lags that the fixed values in fixed.values correspond
to. The names of the entries in this list must match the ones in fixed.values.
##’ For one dimensional coefficients, the lag is obviously always 1 and can
be suppressed. If an empty list is provided and the model has fixed lags, the
argument lags is used as reference.

m a non-negative integer indicating the starting time for the sum of the partial log-
likelihoods, that is ` =

∑n
t=m+1 `t. Default is 0.

llk logical, if TRUE the value of the log-likelihood function is returned. Default is
TRUE.

sco logical, if TRUE the score vector is returned. Default is FALSE.

info logical, if TRUE the information matrix is returned. Default is FALSE. For the
fitting function, info is automatically set to TRUE when report = TRUE.

extra logical, if TRUE the matrices and vectors used to calculate the score vector and
the information matrix are returned. Default is FALSE.

d logical, if TRUE, the parameter d is included in the model either as fixed or non-
fixed. If d = FALSE the value is fixed as 0. The default is TRUE.

start a list with the starting values for the non-fixed coefficients of the model. If
an empty list is provided, the function coefs.start is used to obtain starting
values for the parameters.

ignore.start logical, if starting values are not provided, the function uses the default val-
ues and ignore.start is ignored. In case starting values are provided and
ignore.start = TRUE, those starting values are ignored and recalculated. The
default is FALSE.

lower optionally, list with the lower bounds for the parameters. The names of the
entries in these lists must match the ones in start. The default is to assume
that the parameters have no lower bound except for nu, for which de default is
0. Only the bounds for bounded parameters need to be specified.

upper optionally, list with the upper bounds for the parameters. The names of the
entries in these lists must match the ones in start. The default is to assume that
the parameters have no upper bound. Only the bounds for bounded parameters
need to be specified.

control a list with configurations to be passed to the optimization subroutines. Missing
arguments will receive default values. See fit.control.

UWARFIMA.functions 49

report logical, if TRUE the summary from model estimation is printed and info is au-
tomatically set to TRUE. Default is TRUE.

... further arguments passed to the internal functions.

Details

The UWARMA model and the Unit-Weibull regression can be obtained as special cases of the
UWARFIMA model.

• UWARFIMA: is obtained by default.

• UWARMA: is obtained by setting d = 0.

• Unit-Weibull regression: is obtained by setting p = 0, q = 0 and d = FALSE. The error.scale
is irrelevant. The second argument in linkg is irrelevant.

• an i.i.d. sample from a Unit-Weibull distribution is obtained by setting linkg = "linear", p
= 0, q = 0, coefs$d = 0, d = FALSE. (error.scale and xregar are irrelevant)

The function UWARFIMA.sim generates a random sample from a UWARFIMA(p,d,q) model.

The function UWARFIMA.extract allows the user to extract the components yt, µt, ηt = g(µt), rt,
the log-likelihood, and the vectors and matrices used to calculate the score vector and the informa-
tion matrix associated to a given set of parameters.

This function can be used by any user to create an objective function that can be passed to optimiza-
tion algorithms not available in the BTSR Package.

The function UWARFIMA.fit fits a UWARFIMA model to a given univariate time series. For
now, available optimization algorithms are "L-BFGS-B" and "Nelder-Mead". Both methods ac-
cept bounds for the parameters. For "Nelder-Mead", bounds are set via parameter transformation.

Value

The function UWARFIMA.sim returns the simulated time series yt by default. If complete = TRUE, a
list with the following components is returned instead:

• model: string with the text "UWARFIMA"

• yt: the simulated time series

• mut: the conditional mean

• etat: the linear predictor g(µt)

• error: the error term rt

• xreg: the regressors (if included in the model).

• debug: the output from FORTRAN (if requested).

The function UWARFIMA.extract returns a list with the following components.

• model: string with the text "UWARFIMA"

• coefs: the coefficients of the model passed through the coefs argument

• yt: the observed time series

• gyt: the transformed time series g2(yt)

50 UWARFIMA.functions

• mut: the conditional mean
• etat: the linear predictor g1(µt)
• error: the error term rt

• xreg: the regressors (if included in the model).
• sll: the sum of the conditional log-likelihood (if requested)
• sco: the score vector (if requested)
• info: the information matrix (if requested)
• Drho, T, E, h: additional matrices and vectors used to calculate the score vector and the infor-

mation matrix. (if requested)
• yt.new: the out-of-sample forecast (if requested)
• out.Fortran: FORTRAN output (if requested)

The function btsr.fit returns a list with the following components. Each particular model can
have additional components in this list.

• model: string with the text "UWARFIMA"
• convergence: An integer code. 0 indicates successful completion. The error codes depend

on the algorithm used.
• message: A character string giving any additional information returned by the optimizer, or

NULL.
• counts: an integer giving the number of function evaluations.
• control: a list of control parameters.
• start: the starting values used by the algorithm.
• coefficients: The best set of parameters found.
• n: the sample size used for estimation.
• series: the observed time series
• gyt: the transformed time series g2(yt)
• fitted.values: the conditional mean, which corresponds to the in-sample forecast, also

denoted fitted values
• etat: the linear predictor g1(µt)
• error.scale: the scale for the error term.
• error: the error term rt

• residual: the observed minus the fitted values. The same as the error term if error.scale
= 0.

• forecast: the out-of-sample forecast (if requested).
• xnew: the observations of the regressors observed/predicted values corresponding to the period

of out-of-sample forecast. Only inlcudes if xreg is not NULL and nnew > 0.
• sll: the sum of the conditional log-likelihood (if requested)
• info.Matrix: the information matrix (if requested)
• configs: a list with the configurations adopted to fit the model. This information is used by

the prediction function.
• out.Fortran: FORTRAN output (if requested)
• call: a string with the description of the fitted model.

UWARFIMA.functions 51

See Also

btsr.sim

btsr.extract

btsr.fit

Examples

Generating a Unit-Weibull model were mut does not vary with time
For linear link, alpha = mu

y <- UWARFIMA.sim(linkg = "linear", n = 1000, seed = 2021,
coefs = list(alpha = 0.7, nu = 2))

hist(y)

#--
Generating a Unit-Weibull model were mut does not vary with time
For linear link, alpha = mu
#--

m1 <- UWARFIMA.sim(linkg = "linear",n = 100,
complete = TRUE, seed = 2021,
coefs = list(alpha = 0.7, nu = 2))

#--
Extracting the conditional time series given yt and
a set of parameters
#--

Assuming that all coefficients are non-fixed
e1 = UWARFIMA.extract(yt = m1$yt, coefs = list(alpha = 0.7, nu = 2),

link = "linear", llk = TRUE,
sco = TRUE, info = TRUE)

#--
comparing the simulated and the extracted values
#--
cbind(head(m1$mut), head(e1$mut))

#---
the log-likelihood, score vector and information matrix
#---
e1$sll
e1$score
e1$info.Matrix

Generating a Unit-Weibull model were mut does not vary with time
For linear link, alpha = mu

y <- UWARFIMA.sim(linkg = "logit", n = 100, seed = 2021,
coefs = list(alpha = 0.7, nu = 2))

52 UWARFIMA.functions

fitting the model
f <- UWARFIMA.fit(yt = y, report = TRUE,

start = list(alpha = 0.5, nu = 1),
linkg = "logit", d = FALSE)

Index

BARC.extract, 23
BARC.extract (BARC.functions), 2
BARC.fit, 23
BARC.fit (BARC.functions), 2
BARC.functions, 2, 2
BARC.sim, 23
BARC.sim (BARC.functions), 2
BARFIMA.extract, 23
BARFIMA.extract (BARFIMA.functions), 10
BARFIMA.fit, 23
BARFIMA.fit (BARFIMA.functions), 10
BARFIMA.functions, 10
BARFIMA.sim, 23
BARFIMA.sim (BARFIMA.functions), 10
btsr.extract, 8, 15, 22, 33, 39, 51
btsr.extract (btsr.functions), 17
btsr.fit, 8, 15, 33, 39, 51
btsr.fit (btsr.functions), 17
btsr.functions, 3, 4, 10–12, 17, 28, 29,

34–36, 45–47
btsr.sim, 8, 15, 33, 39, 51
btsr.sim (btsr.functions), 17

coefs.start, 5, 12, 22, 25, 30, 37, 48

fit.control, 5, 13, 22, 26, 31, 37, 48

GARFIMA.extract, 23
GARFIMA.extract (GARFIMA.functions), 28
GARFIMA.fit, 23
GARFIMA.fit (GARFIMA.functions), 28
GARFIMA.functions, 28
GARFIMA.sim, 23
GARFIMA.sim (GARFIMA.functions), 28

KARFIMA.extract, 23
KARFIMA.extract (KARFIMA.functions), 34
KARFIMA.fit, 23
KARFIMA.fit (KARFIMA.functions), 34
KARFIMA.functions, 34

KARFIMA.sim, 23
KARFIMA.sim (KARFIMA.functions), 34

link.btsr, 4, 11, 29, 36, 41, 47

predict.btsr, 42
print.btsr, 43
print.default, 44
print.summary.btsr (summary), 44

Random, 21
rbeta, 13
rgamma, 31

summary, 44

UWARFIMA.extract (UWARFIMA.functions),
45

UWARFIMA.fit (UWARFIMA.functions), 45
UWARFIMA.functions, 45
UWARFIMA.sim (UWARFIMA.functions), 45

53

	BARC.functions
	BARFIMA.functions
	btsr.functions
	coefs.start
	fit.control
	GARFIMA.functions
	KARFIMA.functions
	link.btsr
	predict.btsr
	print.btsr
	summary
	UWARFIMA.functions
	Index

