
Package ‘BioMark’
October 12, 2022

Type Package

Title Find Biomarkers in Two-Class Discrimination Problems

Version 0.4.5

Author Ron Wehrens, Pietro Franceschi

Maintainer Ron Wehrens <ron.wehrens@gmail.com>

Description Variable selection methods are provided for several classification meth-
ods: the lasso/elastic net, PCLDA, PLSDA, and several t-tests. Two approaches for selecting cut-
offs can be used, one based on the stability of model coefficients under perturba-
tion, and the other on higher criticism.

License GPL (>= 2)

Depends pls, glmnet, MASS, st (>= 1.1.6)

LazyLoad yes

NeedsCompilation no

Repository CRAN

Date/Publication 2015-09-07 18:17:37

R topics documented:
aux.biom . 2
biom.options . 3
gen.data . 5
get.biom . 7
get.segments . 10
HCthresh . 11
ROC . 12
scalefun . 14
selection . 15
SpikedApple . 16
spikedApples . 18
traceplot . 19

Index 20

1

2 aux.biom

aux.biom Auxiliary functions in the biomarker package

Description

These functions return coefficient sizes for a variety of modelling methods. Not to be called directly
by the user - use function get.biom for that.

Usage

pcr.coef(X, Y, ncomp, scale.p, ...)
pcr.stab(X, Y, ncomp, scale.p,

segments = NULL, variables = NULL, ...)

pls.coef(X, Y, ncomp, scale.p, ...)
pls.stab(X, Y, ncomp, scale.p,

segments = NULL, variables = NULL, ...)

vip.coef(X, Y, ncomp, scale.p, ...)
vip.stab(X, Y, ncomp, scale.p,

segments = NULL, variables = NULL, ...)

lasso.coef(X, Y, scale.p,
lasso.opt = biom.options()$lasso,...)

lasso.stab(X, Y, scale.p,
segments = NULL, variables = NULL, ...)

shrinkt.coef(X, Y, scale.p, ...)
shrinkt.stab(X, Y, scale.p,

segments = NULL, variables = NULL, ...)

studentt.coef(X, Y, scale.p, ...)
studentt.stab(X, Y, scale.p,

segments = NULL, variables = NULL, ...)

pval.pcr(X, Y, ncomp, scale.p, npermut)
pval.plsvip(X, Y, ncomp, scale.p, npermut, smethod)

Arguments

X Data matrix. Usually the number of columns (variables) is (much) larger than
the number of rows (samples).

Y Class indication. Either a factor, or a numeric vector.

ncomp Number of latent variables to use in PCR and PLS (VIP) modelling. In function
get.biom this may be a vector; in all other functions it should be one number.
Default: 2.

biom.options 3

scale.p Scaling. This is performed individually in every crossvalidation iteration, and
can have a profound effect on the results. Default: "none". Other possible
choices: "auto" for autoscaling, "pareto" for pareto scaling, "log" and "sqrt" for
log and square root scaling, respectively.

segments matrix where each column indicates a set of samples to be left out of the analysis.

variables indices of variables to be used in the analysis.

lasso.opt optional arguments to the glmnet function, in the form of a list.

... Further arguments for modelling functions. Often used to catch unused argu-
ments.

npermut Number of permutations to use in the calculation of the p values.

smethod Either "both", "pls", or "vip" - indicates what coefficients to convert to p values.
Both are derived from PLS models so it is much more efficient to calculate them
together.

Value

The functions ending in coef return t-statistics or model coefficients for all variables. The functions
ending in stab return these statistics in a matrix, one column per segment. The functions starting
with pval convert model coefficients or VIP statistics into p values, using permutation resampling.

Author(s)

Ron Wehrens

See Also

get.biom, glmnet, scalefun

biom.options Set or return options for stability-based biomarker selection

Description

A function to set options for stability-based biomarker selection in the BioMark package, or to
return the current options.

Usage

biom.options(..., reset = FALSE)

Arguments

... a single list, a single character vector, or any number of named arguments (name
= value).

reset logical: if TRUE all options are set to their factory defaults.

4 biom.options

Details

If called with no arguments, or with an empty list as the single argument, biom.options returns
the current options.

If called with a character vector as the single argument, a list with the arguments named in the
vector are returned.

If called with a non-empty list as the single arguments, the list elements should be named, and are
treated as named arguments to the function.

Otherwise, biom.options should be called with one or more named arguments name = value . For
each argument, the option named name will be given the value value .

The options are saved in an envirtonment variable .biom.Options, and remain in effect until the
end of the session. If the environment is saved upon exit, they will be remembered in the next
session.

The recognised options are:

max.seg Maximal number of jackknife iterations. Default: 100.

oob.size, oob.fraction Size of the out-of-bag fraction, either given as an absolute number (oob.size)
or as a fraction. Default is to leave out ten percent. If oob.size is given explicitly, it takes
precedence over oob.fraction. Default: oob.fraction = .1.

variable.fraction Use 1 to always include all variables - use a smaller fraction to have a different
random subset of all variables in each iteration (stability-based identification). Default: .7.

ntop The number of "top" coefficients taken into account in stability-based biomarker identifica-
tion. If a variable appears consistently among the ntop biggest coefficients, it is said to be
stable. If ntop is a number between 0 and 1, it is taken to indicate the fraction of variables to
be included in the model. Default: 10.

min.present The minimal fraction of times a variable should be in the top list to be considered as
a potential biomarker (stability-based identification). Setting this argument to 0 will lead to a
list containing all coefficients that were present in the top list at least once - a value of 1 only
returns those variables that are selected in every iteration. Default: .1.

nset The number of permutations to establish null distributions for PCR, PLS and VIP statistics in
the Higher-Criticism approach. Default: 10,000.

fmethods All biomarker selection methods available within BioMark. Currently equal to c("studentt",
"shrinkt", "pcr","pls", "vip", "lasso".

univ.methods The names of the univariate biomarker selection methods currently known to BioMark.
Currently equal to c("studentt", "shrinkt")

HCalpha The default of the alpha parameter in the HC method. Value: 0.1.

lasso a list of arguments passed to the underlying glmnet function, such as family, nlambda,
alpha, lambda, or lambda.min.ratio. For binary classification, the "binomial" family is the
default, but the most similar setting compared to the other methods in the package is family
= "gaussian". For choices other than the default, a warning is printed to the screen.

Value

A list with the (possibly changed) options. If any named argument (or list element) was provided,
the list is returned invisibly.

gen.data 5

Side Effects

If any named argument (or list element) was provided, biom.options updates the elements of the
option list .biom.Options$options.

Note

This function is based on the pls.options function in package pls.

Author(s)

Ron Wehrens

See Also

glmnet

Examples

Return current options:
biom.options()
biom.options("max.seg")

Set options:
biom.options(max.seg = 100, oob.fraction = .2)
biom.options(lasso = list(alpha = .75, nlambda = 50))
biom.options()
the next line removes some options - for these, glmnet defaults will be used
biom.options(lasso = list(alpha = .9, family = "binomial"))

Restore factory settings:
biom.options(reset = TRUE)

gen.data Simulate data sets

Description

The functions gen.data and gen.data2 generate one or more two-class data matrices where the
first nbiom variables are changed in the treatment class. The aim is to provide an easy means to
evaluate the performance of biomarker identification methods. Function gen.data samples from a
multivariate normal distribution; gen.data2 generates spiked data either by adding differences to
the first columns, or by multiplying with factors given by the user. Note that whereas gen.data
will provide completely new simulated data, both for the control and treatment classes, gen.data2
essentially only changes the biomarker part of the treated class.

6 gen.data

Usage

gen.data(ncontrol, ntreated = ncontrol, nvar, nbiom = 5, group.diff = 0.5,
nsimul = 100, means = rep(0, nvar), cormat = diag(nvar))

gen.data2(X, ncontrol, nbiom, spikeI,
type = c("multiplicative", "additive"),
nsimul = 100, stddev = .05)

Arguments

ncontrol, ntreated

Numbers of objects in the two classes. If only ncontrol is given, the two classes
are assumed to be of equal size, or, in the case of gen.data2, the remainder of
the samples are taken to be the treatment samples.

nvar Number of variables.

nbiom Number of biomarkers, i.e. the number of variables to be changed in the treat-
ment class compared to the control class. The variables that are changed are
always the first variables in the data matrix.

group.diff group difference; the average difference between values of the biomarkers in the
two classes.

nsimul Number of data sets to simulate.

means Mean values of all variables, a vector.

cormat Correlation matrix to be used in the simulation. Default is the identity matrix.

X Experimental data matrix, without group differences.

spikeI A vector of at least three different numbers, used to generate new values for the
biomarker variables in the treated class.

type Whether to use multiplication (useful when simulating cases where things like
"twofold differences" are relevant), or addition (in the case of absolute differ-
ences in the treatment and control groups).

stddev Additional noise: in every simulation, normally distributed noise with a standard
deviation of stddev * mean(spikeI) will be added to spikeI before generating
the actual simulated data.

Details

The spikeI argument in function gen.data2 provides the numbers that will be used to artificially
"spike" the biomarker variables, either by multiplication (the default) or by addition. To obtain
approximate two-fold differences, for example, one could use spikeI = c(1.8, 2.0, 2.2). At
least three different values should be given since in most cases more than one set will be simulated
and we require different values in the biomarker variables.

Value

A list with the following elements:

X An array of dimension nobj1 + nobj2 times nvar times nsimul.

Y The class vector.

get.biom 7

n.biomarkers The number of biomarkers.

Note that the biomarkers are always in the first nbiom columns of the data matrix.

Author(s)

Ron Wehrens

Examples

Not run:
X <- gen.data(10, nvar = 200)
names(X)
dim(X$X)

set.seed(7)
simdat <- gen.data(10, nvar = 1200, nbiom = 22, nsimul = 1,

group.diff = 2)
simdat.stab <- get.biom(simdat$X[,,1], simdat$Y, fmethod = "all",

type = "stab", ncomp = 3, scale.p = "auto")
show LASSO success
traceplot(simdat.stab, lty = 1, col = rep(2:1, c(22, 1610)))

data(SpikePos)
real.markers <- which(SpikePos$annotation$found.in.standards > 0)
X.no.diff <- SpikePos$data[1:20, -real.markers]

set.seed(7)
simdat2 <- gen.data2(X.no.diff, ncontrol = 10, nbiom = 22,

spikeI = c(1.2, 1.4, 2), nsimul = 1)
simdat2.stab <- get.biom(simdat2$X[,,1], simdat$Y,

fmethod = "all", type = "stab", ncomp = 3,
scale.p = "auto")

show LASSO success
traceplot(simdat2.stab, lty = 1, col = rep(2:1, c(22, 1610)))

End(Not run)

get.biom Get biomarkers discriminating between two classes

Description

Biomarkers can be identified in several ways: the classical way is to look at those variables with
large model coefficients or large t statistics. One other is based on the higher criticism approach
(HC), and the third possibility assesses the stability of these coefficients under subsampling of the
data set.

8 get.biom

Usage

get.biom(X, Y, fmethod = "all", type = c("stab", "HC", "coef"),
ncomp = 2, biom.opt = biom.options(), scale.p = "auto",
...)

S3 method for class 'BMark'
coef(object, ...)
S3 method for class 'BMark'
print(x, ...)
S3 method for class 'BMark'
summary(object, ...)

Arguments

X Data matrix. Usually the number of columns (variables) is (much) larger than
the number of rows (samples).

Y Class indication. For classification with two or more factors a factor; a numeric
vector will be interpreted as a regression situation, which can only be tackled by
fmethod = "lasso".

fmethod Modelling method(s) employed. The default is to use "all", which will test
all methods in the current biom.options$fmethods list. Note that from version
0.4.0, "plsda" and "pclda" are no longer in the list of methods - they have been
replaced by "pls" and "pcr", respectively. For compatibility reasons, using the
old terms will not lead to an error but only a warning.

type Whether to use coefficient size as a criterion ("coef"), "stab" or "HC".

ncomp Number of latent variables to use in PCR and PLS (VIP) modelling. In function
get.biom this may be a vector; in all other functions it should be one number.
Default: 2.

biom.opt Options for the biomarker selection - a list with several named elements. See
biom.options.

scale.p Scaling. This is performed individually in every crossvalidation iteration, and
can have a profound effect on the results. Default: "auto" (autoscaling). Other
possible choices: "none" for no scaling, "pareto" for pareto scaling, "log" and
"sqrt" for log and square root scaling, respectively.

object, x A BMark object.

... Further arguments for modelling functions. Often used to catch unused argu-
ments.

Value

Function get.biom returns an object of class "BMark", a list containing an element for every
fmethod that is selected, as well as an element info. The individual elements contain informa-
tion depending on the type chosen: for type == "coef", the only element returned is a matrix
containing coefficient sizes. For type == "HC" and type == "stab", a list is returned containing el-
ements biom.indices, and either pvals (for type == "HC") or fraction.selected (for type ==
"stab"). Element biom.indices contains the indices of the selected variables, and can be extracted
using function selection. Element pvals contains the p values used to perform HC thresholding;

get.biom 9

these are presented in the original order of the variables, and can be obtained directly from e.g. t
statistics, or from permutation sampling. Element fraction.selected indicates in what fraction
of the stability selection iterations a particular variable has been selected. The more often it has
been selected, the more stable it is as a biomarker. Generic function coef.biom extracts model
coefficients, p values or stability fractions for types "coef", "HC" and "stab", respectively.

Author(s)

Ron Wehrens

See Also

biom.options, get.segments, selection, scalefun

Examples

Real apple data (small set)
data(spikedApples)
apple.coef <- get.biom(X = spikedApples$dataMatrix,

Y = factor(rep(1:2, each = 10)),
ncomp = 2:3, type = "coef")

coef.sizes <- coef(apple.coef)
sapply(coef.sizes, range)

stability-based selection
set.seed(17)
apple.stab <- get.biom(X = spikedApples$dataMatrix,

Y = factor(rep(1:2, each = 10)),
ncomp = 2:3, type = "stab")

selected.variables <- selection(apple.stab)
unlist(sapply(selected.variables, function(x) sapply(x, length)))
Ranging from more than 70 for pcr, approx 40 for pls and student t,
to 0-29 for the lasso
unlist(sapply(selected.variables,

function(x) lapply(x, function(xx, y) sum(xx %in% y),
spikedApples$biom)))

TPs (stab): all find 5/5, except pcr.2 and the lasso with values for lambda
larger than 0.0484

unlist(sapply(selected.variables,
function(x) lapply(x, function(xx, y) sum(!(xx %in% y)),
spikedApples$biom)))

FPs (stab): PCR finds most FPs (approx. 60), other latent-variable
methods approx 40, lasso allows for the optimal selection around
lambda = 0.0702

regression example
data(gasoline) ## from the pls package
gasoline.stab <- get.biom(gasoline$NIR, gasoline$octane,

fmethod = c("pcr", "pls", "lasso"), type = "stab")

10 get.segments

Not run:
Same for HC-based selection
Warning: takes a long time!
apple.HC <- get.biom(X = spikedApples$dataMatrix,

Y = factor(rep(1:2, each = 10)),
ncomp = 2:3, type = "HC")

sapply(apple.HC[names(apple.HC) != "info"],
function(x, y) sum(x$biom.indices %in% y),
spikedApples$biom)

sapply(apple.HC[names(apple.HC) != "info"],
function(x, y) sum(!(x$biom.indices %in% y)),
spikedApples$biom)

End(Not run)

get.segments Subsampling segments

Description

Provides combinations of samples to be left out in subsampling, with a maximum given by param-
eter max.seg.

Usage

get.segments(i1, i2 = NULL, oob.size = 1, max.seg = 100)

Arguments

i1 either an index vector for objects in class 1, or a classification vector (factor, or
numeric), from which the indices of both classes can be derived.

i2 if non-NULL, vector indexing objects in class 2.

oob.size number of samples to be left out in every iteration. If one (the default), this
corresponds to LOO subsampling.

max.seg maximal number of segments to return. If null, all possible combinations are
returned – this option is only possible if oob.size equals 1. If oob.size is larger,
max.seg must be defined since the number of possibilities becomes too large for
even very small numbers of objects.

Value

Returns a matrix where the columns contain the numbers of the samples to be left out in the respec-
tive iterations.

Author(s)

Ron Wehrens

HCthresh 11

See Also

get.biom

Examples

i1 <- seq(1, 10, by = 2)
i2 <- seq(2, 15, by = 2)
get.segments(i1, i2)
get.segments(i1, i2, max.seg = 10)
get.segments(i1, i2, oob.size = 2, max.seg = 10)

I <- rep(1:2, c(5,6))
get.segments(I)
get.segments(I, max.seg = 15)

HCthresh Biomarker thresholding by Higher Criticism

Description

Higher Criticism (HC) is a second-level significance testing approach to determine which variables
in a multivariate set show significant differences in two classes. Function HCthresh selects those p
values that are significantly different from what would be expected from their uniform distribution
under the null hypothesis.

Usage

HCthresh(pvec, alpha = 0.1, plotit = FALSE)

Arguments

pvec Vector of p values.

alpha Parameter of the HC approach: the maximal fraction of differentially expressed
p values.

plotit Logical, whether or not a plot should be produced.

Details

In HC, one tests the deviation of the expected behaviour of p values under a null distribution. Func-
tion HCthresh implements the approach by Donoho and Jin to find out which of these correspond
to real differences. The prerequisites are that the true biomarkers are rare (consist of only a small
fraction of all variables) and weak (are not able to discriminate between the two classes all by
themselves).

Value

A vector containing the ordered indices of the p values satisfying the HC criterion.

12 ROC

Author(s)

Ron Wehrens

References

David Donoho and Jiashun Jin: Higher criticism thresholding: Optimal feature selection when
useful features are rare and weak. PNAS 108:14790-14795 (2008).

Ron Wehrens and Pietro Franceschi: Thresholding for Biomarker Selection in Multivariate Data
using Higher Criticism. Mol. Biosystems (2012). In press. DOI: 10.1039/C2MB25121C

See Also

get.biom for general approaches to obtain biomarkers based on multivariate discriminant methods
and t statistics

Examples

data(spikedApples)
bms <- get.biom(spikedApples$dataMatrix, rep(0:1, each = 10),

type = "coef", fmethod = "studentt")
bms.pvalues <- 2 * (1 - pt(abs(bms[[1]]), 18))
sum(bms.pvalues < .05) ## 15
sum(p.adjust(bms.pvalues, method = "fdr") < .05) ## 4
signif.bms <- HCthresh(bms.pvalues, plotit = TRUE)
length(signif.bms) ## 11

ROC ROC curves

Description

Functions for making, plotting and analysing ROC curves.

Usage

ROC(TestResult, ...)
Default S3 method:
ROC(TestResult, D, take.abs = TRUE, ...)
S3 method for class 'ROC'
plot(x, type = "b", null.line = TRUE,
xlab = "False Pos. Rate", ylab = "True Pos. Rate",
xlim = c(0, 1), ylim = c(0, 1), main = "ROC", ...)
S3 method for class 'ROC'
points(x, ...)
S3 method for class 'ROC'
lines(x, ...)
S3 method for class 'ROC'

ROC 13

identify(x, labels = NULL, ..., digits = 1)
S3 method for class 'ROC'
print(x, ...)
roc.value(found, true, totalN)
AUC(x, max.mspec)

Arguments

TestResult Typically regression coefficients or t statistics. Note that when p values are used
directly, the least significant values would be selected first. In this case one
should use 1/p.

D True, known, differences, either expressed as a vector of 0 and 1 of the same
length as TestResult or as a vector of indices.

take.abs Logical, indicating whether to take absolute values of the test statistic.

x An object of class ROC.
type, xlab, ylab, xlim, ylim, main, labels, digits

Standard arguments to functions like plot and identify.

null.line Logical, whether to draw the line y = x, corresponding to random guessing.

max.mspec Maximal value of the True Positive Rate to consider in AUC calculations. Set-
ting this to a value smaller than one (which is the default) leads to a partial AUC
value, which may in many cases be more useful.

found The indices of the coefficients identified with a biomarker identification method.

true The indices of the true biomarkers.

totalN The total number of variables to choose from.

... Further arguments, especially useful in the plotting functions.

Value

Function ROC returns a list with elements:

1. sensSensitivity, or True Positive Rate (TPR).

2. mspec1 - Specificity, or False Positive Rate (FPR).

3. testlevels of the test statistic.

4. callFunction call.

Function roc.value returns a list with elements sens and mspec, i.e., one point on a ROC curve.

Function AUC returns the area under the curve, measured up to the value of max.mspec - if the latter
is smaller than 1, it is a partial AUC curve.

Author(s)

Ron Wehrens

References

T. Lumley: ROC curves - in Programme’s Niche, R News 4/1, June 2004.

14 scalefun

Examples

data(spikedApples)
apple.coef <- get.biom(X = spikedApples$dataMatrix,

Y = rep(1:2, each = 10),
fmethod = "vip",
ncomp = 3, type = "coef")

ROC curve for all VIP values, ordered according to size
true.biom <- (1:ncol(spikedApples$dataMatrix) %in% spikedApples$biom)
vip.roc <- ROC(apple.coef$vip, true.biom)
plot(vip.roc)

Add stability-based selection point
apple.stab <- get.biom(X = spikedApples$dataMatrix,

Y = rep(1:2, each = 10),
fmethod = "vip",
ncomp = 3, type = "stab")

stab.roc <- roc.value(apple.stab$vip[[1]]$biom.indices,
spikedApples$biom,
totalN = ncol(spikedApples$dataMatrix))

points(stab.roc, col = "red", pch = 19, cex = 1.5)

Not run:
Add HC-based selection point
Attention: takes approx. 2 minutes on my PC
apple.HC <- get.biom(X = spikedApples$dataMatrix,

Y = rep(1:2, each = 10),
fmethod = "vip",
ncomp = 3, type = "HC")

HC.roc <- roc.value(apple.HCvipbiom.indices,
spikedApples$biom,
totalN = ncol(spikedApples$dataMatrix))

points(HC.roc, col = "blue", pch = 19, cex = 1.5)

End(Not run)

scalefun Different forms of scaling

Description

Function providing different forms of scaling in disciminant analysis - the resulting data matrix is
mean-centered after the scaling. Modelled after functions in the st package.

Usage

scalefun(sc.p = c("none", "log", "sqrt", "pareto", "auto"))

selection 15

Arguments

sc.p Type of scaling. A pass-through option, performing only mean-centering, is
provided by argument "none".

Value

A matrix. The function performs the required scaling, and mean-centers the result.

Author(s)

Ron Wehrens

Examples

X <- gen.data(5, nvar = 9, nsimul = 1)
FUN <- scalefun(sc.p = "pareto")
FUN(X$X[,,1])

selection Accessor function to the selected variables of a BioMark object

Description

Convenience function to get the indices of the selection in a BioMark object.

Usage

selection(object, ...)

Arguments

object An object of class BioMark.

... Further arguments, currently ignored.

Value

A vector containing the indices of the selected variables.

See Also

get.biom

16 SpikedApple

Examples

stability-based selection
set.seed(17)
data(spikedApples)
apple.stab <- get.biom(X = spikedApples$dataMatrix,

Y = factor(rep(1:2, each = 10)),
ncomp = 2:3, type = "stab")

selected.variables <- selection(apple.stab)

SpikedApple Spike-in metabolomics data for apple extracts

Description

Data from a spike-in experiment for apple extracts. Twenty apple extracts are divided in two groups,
one control, and one spike-in group. The control group is measured without any spiking - the spike-
in group is spiked with nine chemical compounds in three different combinations of concentrations.
The data provide the experimental data of the forty apple extracts in lists SpikePos and SpikeNeg
for positive and negative ionization, respectively, and in two separate data.frames (pos.markers and
neg.markers) contains information of the features of the standards, i.e., the spike-in compounds.

Usage

data(SpikePos)
data(SpikeNeg)

Format

SpikePos and SpikeNeg are lists with three elements:

data Data matrix, describing for each of the forty injections the intensity of the features (columns).
Column names consist of a combination of retention time (in seconds) and m/z values, and are
sorted on retention time.

classes Class labels for the forty injections (control, or group1, 2 or 3).

annotation Matrix, containing for each of the features XCMS and CAMERA information, such
as mz, rt, number of times a feature is identified in the control or spike-in samples, possible
isotope or adduct annotation, and whether or not the feature is identified in the standards (the
spike-in data).

In addition, pos.markers and neg.markers contain the information of the standards, i.e. the com-
pounds that are spiked in. These data.frames describe in their rows single features identified with
XCMS and CAMERA, using the same settings as the experimental apple data, and have the follow-
ing columns:

comp The (short) name of the spiked-in compound giving rise to this particular feature.

mz, rt, isotope, adduct Feature information, similar to the information in the annotation fields
in SpikePos and SpikeNeg.

SpikedApple 17

feature.nr The number of the corresponding feature in either SpikePos or SpikeNeg.

group1, group2, group3 Approximate spiking levels for the three groups. A value of 1.0 corre-
sponds to an increase that is roughly equal to the naturally occuring concentration in apple. Ex-
ceptions are trans-resveratrol and cyanidin-3-galactoside, both not naturally occuring. These
two compounds have been spiked in at one constant level which gives features of comparable
size.

Details

This is the complete data set, from which spikedApples is a subset, basically presenting the control
and group1 information with hand-picked spike-in features. The data in SpikePos and SpikeNeg use
CAMERA grouping to automatically determine which features are corresponding to which spike-in
compounds. Raw data in CDF format are available from the MetaboLights repository.

Author(s)

Pietro Franceschi

Source

http://www.ebi.ac.uk/metabolights/MTBLS59

P. Franceschi, D. Masuero, U. Vrhovsek, F. Mattivi and R. Wehrens: A benchmark spike-in data set
for biomarker identification in metabolomics. J. Chemom. 26, 16-24 (2012).

See Also

spikedApples

Examples

data(SpikePos)
plot(SpikePos$annotation[,c("rt", "mz")],

xlab = "Time (s)", ylab = "m/z",
main = "Positive ionization mode")

points(pos.markers[!is.na(pos.markers$feature.nr), c("rt", "mz")],
pch = 19, col = 2)

data(SpikeNeg)
plot(SpikeNeg$annotation[,c("rt", "mz")],

xlab = "Time (s)", ylab = "m/z",
main = "Negative ionization mode")

points(neg.markers[!is.na(neg.markers$feature.nr), c("rt", "mz")],
pch = 19, col = 2)

18 spikedApples

spikedApples Metabolomics data on spiked apples

Description

An data set of LC-MS features, obtained from twenty apples. The last ten apples are spiked with
known compounds. This set provides a test case for biomarker selection methods: the task is to
retrieve the true biomarker variables. The raw LC-MS data have been converted to CDF format and
processed with XCMS to obtain the features.

Usage

data(spikedApples)

Format

The format is a list of four elements:

mz the m/z values of the features (rounded)

rt the retention times of the features

dataMatrix the intensities of the features in the individual samples

biom the indices of the "true" biomarkers

Author(s)

Pietro Franceschi

References

P. Franceschi, D. Masuero, U. Vrhovsek, F. Mattivi and R. Wehrens: A benchmark spike-in data set
for biomarker identification in metabolomics. J. Chemom. 26, 16-24 (2012)

R. Wehrens, P. Franceschi, U. Vrhovsek and F. Mattivi. Stability-based biomarker selection. Ana-
lytica Chimica Acta (2011), 705, 15-23. http://dx.doi.org/10.1016/j.aca.2011.01.039.

Examples

data(spikedApples)
show features identified in all apples
plot(spikedApples$rt, spikedApples$mz,

xlab = "Retention time (s)", ylab = "m/z",
main = "Spiked apples - subset")

traceplot 19

traceplot Plot the coefficient or stability trace for the lasso/elastic net biomarker
selection.

Description

The function plots the coefficient or stability traces for the lasso element of a BioMark object.

Usage

traceplot(object, ...)

Arguments

object An object of class BioMark.

... Further plotting arguments.

Author(s)

Ron Wehrens

References

N. Meinshausen and P. Buhlmann: Stability Selection. J. R. Statist. Soc. B 72, 417-473 (2010)

See Also

get.biom

Examples

library(BioMark)
data(spikedApples)

mycols <- rep("gray", ncol(spikedApples$dataMatrix))
mycols[spikedApples$biom] <- "red"
myltys <- rep(2, ncol(spikedApples$dataMatrix))
myltys[spikedApples$biom] <- 1

par(mfrow = c(1,2))
apple.coef <- get.biom(X = spikedApples$dataMatrix,

Y = factor(rep(0:1, each = 10)),
ncomp = 2:3, type = "coef")

traceplot(apple.coef, col = mycols, lty = myltys)

apple.stab <- get.biom(X = spikedApples$dataMatrix,
Y = factor(rep(0:1, each = 10)),
fmethod = c("vip","lasso"), type = "stab")

traceplot(apple.stab, col = mycols, lty = myltys)

Index

∗ classification
biom.options, 3

∗ classif
ROC, 12

∗ datasets
SpikedApple, 16
spikedApples, 18

∗ htest
get.biom, 7
HCthresh, 11

∗ iteration
get.segments, 10

∗ manip
gen.data, 5
get.segments, 10
scalefun, 14

∗ models
aux.biom, 2
get.biom, 7
HCthresh, 11
selection, 15
traceplot, 19

∗ multivariate
aux.biom, 2
biom.options, 3
gen.data, 5
get.biom, 7
scalefun, 14
selection, 15
traceplot, 19

AUC (ROC), 12
aux.biom, 2

biom.options, 3, 8, 9

coef.BMark (get.biom), 7

gen.data, 5
gen.data2 (gen.data), 5

get.biom, 3, 7, 11, 12, 15, 19
get.segments, 9, 10
glmnet, 3, 5

HCthresh, 11

identify.ROC (ROC), 12

lasso.coef (aux.biom), 2
lasso.stab (aux.biom), 2
lines.ROC (ROC), 12

neg.markers (SpikedApple), 16

pcr.coef (aux.biom), 2
pcr.stab (aux.biom), 2
plot.ROC (ROC), 12
pls.coef (aux.biom), 2
pls.options, 5
pls.stab (aux.biom), 2
points.ROC (ROC), 12
pos.markers (SpikedApple), 16
print.BMark (get.biom), 7
print.ROC (ROC), 12
pval.pcr (aux.biom), 2
pval.plsvip (aux.biom), 2

ROC, 12
roc.value (ROC), 12

scalefun, 3, 9, 14
selection, 9, 15
shrinkt.coef (aux.biom), 2
shrinkt.stab (aux.biom), 2
SpikedApple, 16
spikedApples, 18
SpikeNeg (SpikedApple), 16
SpikePos (SpikedApple), 16
studentt.coef (aux.biom), 2
studentt.stab (aux.biom), 2
summary.BMark (get.biom), 7

20

INDEX 21

traceplot, 19

vip.coef (aux.biom), 2
vip.stab (aux.biom), 2

	aux.biom
	biom.options
	gen.data
	get.biom
	get.segments
	HCthresh
	ROC
	scalefun
	selection
	SpikedApple
	spikedApples
	traceplot
	Index

