
Embedding external functions in GGIR
Vincent van Hees

March 7 2023

Contents
1 Introduction 1

2 Example with external R function 2
2.1 Write external function . 2
2.2 Provide external function to GGIR . 2

3 Example with external Python function 3
3.1 Write external function . 3
3.2 Provide external function to GGIR . 4

4 Integration in GGIR output 4
4.1 Part 1 . 4
4.2 Part 2 . 5

5 External functions released by GGIR collaborators: 5

See also complementary vignettes on: General introduction to GGIR, Cut-points, Day segment analyses,
GGIR parameters, and Reading ad-hoc csv file formats.

1 Introduction
If you like GGIR but want to use algorithms for raw data not included in GGIR then the external function
embedding feature can be the solution. For example, you may want to pilot a new machine learned classifiction
algorithm but you do not want to write all the data cleaning and aggregation steps needed for analysis of
real life ‘out of the lab’ acceleormeter data.

How it works:

Internally GGIR loads the raw accelerometer data in memory blocks of about 24 hours. When the data is in
memory, corrected for calibration error, and resampled to the sample rate required by your function, GGIR
applies its own default algorithms as well as the external function provided by you (Python or R). The external
function is expected to take as input: A three-column matrix with the acceleration data corresponding to the
three acceleration axes, and an optional parameters argument which can be of any R format (character, list,
vector, data.frame, etc). As output your external function is expected to produce a matrix or data.frame
with one or multiple columns corresponding to the output of your external function.

1

https://cran.r-project.org/package=GGIR/vignettes/GGIR.html
https://CRAN.R-project.org/package=GGIR/vignettes/CutPoints.html
https://CRAN.R-project.org/package=GGIR/vignettes/TutorialDaySegmentAnalyses.html
https://CRAN.R-project.org/package=GGIR/vignettes/GGIRParameters.html
https://CRAN.R-project.org/package=GGIR/vignettes/readmyacccsv.html

2 Example with external R function
In this example we will apply the function counts() from R package activityCounts to the raw data, which
produces an estimate of Actigraph counts per second.

2.1 Write external function
Create file calculateCounts.R and insert the following code:
calculateCounts = function(data=c(), parameters=c()) {

data: 3 column matrix with acc data
parameters: the sample rate of data
library("activityCounts")
if (ncol(data) == 4) data= data[,2:4]
mycounts = counts(data=data, hertz=parameters,

x_axis=1, y_axis=2, z_axis=3,
start_time = Sys.time())

mycounts = mycounts[,2:4] #Note: do not provide timestamps to GGIR
return(mycounts)

}

2.2 Provide external function to GGIR
Create a new .R file for running the GGIR analysis, e.g. named myscript.R, and insert the following code.
Do not forget to update the filepath on the first line to point to your calculateCounts.R file.
source("~/calculateCounts.R")
myfun = list(FUN=calculateCounts,

parameters= 30,
expected_sample_rate= 30,
expected_unit="g",
colnames = c("countsX","countsY","countsZ"),
outputres = 1,
minlength = 1,
outputtype="numeric",
aggfunction = sum,
timestamp=F,
reporttype="scalar")

The above code creates object myfun of type list which is expected to come with the following elements:

• FUN A character string specifying the location of the external function you want to apply.
• parameters The parameters used by the function, which can be stored in any format (vector, matrix,

list, data.frame). The user should make sure that the external function can handle this object.
• expected_sample_rate Expected sample rate, if the inputdata has a difference sample rate, then the

data will be resampled.
• expected_unit Expected unit of the acceleration by external function: “mg”, “g” or “ms2”. If input

data is different it will be converted.
• colnames Character vector with the names of the columns produced by the external function.
• outputres The resolution (seconds) of the output produced by the external function. Note, that this

needs to be equal to or a multitude of the short epoch size of the g.part1 output (5 seconds) or the
short epoch size should be a multitude of this resolution. In this way GGIR can aggregate or repeat
the external function output to be used inside GGIR.

• minlength The minimum length (seconds) of input data needed, typically the window per which output
is provided.

2

https://CRAN.R-project.org/package=activityCounts

• outputtype Character to indicate the type of external function output. Set to “numeric” if data is
stored in numbers (any numeric format), or “character” if it is a character string.

• aggfunction If the data needs to be aggregated to match the short epoch size of the g.part1 output (5
seconds) then this element specifies what function should be used for the aggregation, e.g. mean, sum,
median.

• timestamp Boolean to indicated whether timestamps (seconds since 1-1-1970) should be passed on to
the external function as first columm of the data matrix..

• reporttype Character to indicate the type of reporting by GGIR: “scalar” if it should be averaged per
day, “event” if it should be summed per day, or “type” if it is categorical variable that can only be
aggregated per day by tabulating it.

Next, add a call to GGIR function GGIR with myfun provided as one of its arguments:
library(GGIR)
GGIR(datadir="~/myaccelerometerdata",

outputdir="~/myresults",
mode=1:2,
epochvalues2csv = TRUE,
do.report=2,
myfun=myfun) #<= this is where object myfun is provided to GGIR

Please see the general GGIR vignette for more information about function GGIR.

3 Example with external Python function
In this example we will use an external Python function to estimate the dominant signal frequency per
acceleration axis. Note this can also be done in R, but it shows that even Python functions can be provided.

3.1 Write external function
Create dominant_frequency.py and insert the code shown below:
import numpy

def dominant_frequency(x, sf):
x: vector with data values
sf: sample frequency
fourier = numpy.fft.fft(x)
frequencies = numpy.fft.fftfreq(len(x), 1/sf)
magnitudes = abs(fourier[numpy.where(frequencies > 0)])
peak_frequency = frequencies[numpy.argmax(magnitudes)]
return peak_frequency

Create dominant_frequency.R that calls the python function and insert the following code:
dominant_frequency = function(data=c(), parameters=c()) {

data: 3 column matrix with acc data
parameters: the sample rate of data
source_python("dominant_frequency.py")
sf=parameters
N = nrow(data)
ws = 5 # windowsize
if (ncol(data) == 4) data= data[,2:4]
data = data.frame(t= floor(seq(0,(N-1)/sf,by=1/sf)/ws),

x=data[,1], y=data[,2], z=data[,3])
df = aggregate(data, by = list(data$t),

3

https://cran.r-project.org/package=GGIR/vignettes/GGIR.html

FUN=function(x) {return(dominant_frequency(x,sf))})
df = df[,-c(1:2)]
return(df)

}
}

3.2 Provide external function to GGIR
Create a new .R file for running the GGIR analysis, e.g. named myscript.R, and insert the following blocks of
code.

Specification of Python environment to use, this can also be a conda environment or docker container (see
documentation R package reticulate for further details). Make sure that that this Python environment has
all the required dependencies for the external function, here we will only need numpy.

library("reticulate")
use_virtualenv("~/myvenv", required = TRUE) # Local Python environment
py_install("numpy", pip = TRUE)

Specify a myfun object as explained in the R example. Do not forget to update the filepath to the
"~/dominant_frequency.R" file.
source("~/dominant_frequency.R")
myfun = list(FUN=dominant_frequency,

parameters= 30,
expected_sample_rate= 30,
expected_unit="g",
colnames = c("domfreqX", "domfreqY", "domfreqZ"),
minlength = 5,
outputres = 5,
outputtype="numeric",
aggfunction = median
timestamp=F,
reporttype="scalar")

Add a call to function GGIR where myfun is provided as argument. Note that, do.parallel is set to FALSE.
Unfortunately Python embedding with R package reticulate and multi-threading with R package foreach as
used in GGIR do not combine well.
library(GGIR)
GGIR(datadir="~/myaccelerometerdata",

outputdir="~/myresults",
mode=1:2,
epochvalues2csv = TRUE,
do.report=2,
myfun=myfun,
do.parallel = FALSE)

4 Integration in GGIR output
4.1 Part 1
The external function output is included in the time series produced by function GGIR function g.part1 and
stored in an RData-file in /output_nameofstudy/meta/basic. The resolution of these output in GGIR is
set by GGIR argument windowsizes, which is c(5,900,3600) by default. Here, the first element 5 specifies

4

https://rstudio.github.io/reticulate/

the short epoch size in seconds. If the output of the external function is less then this resolution it will be
aggregated with the function as specificied by aggfunction in the myfun object. In the count example we used
the sum for this and for the dominant frequency example we used the median.

4.2 Part 2
Next, in part2 GGIR aims to detect non-wear periods and imputes those. The impute time series can be
found in the part 2 milestone data in folder: /output_nameofstudy/meta/ms2.out. If you want these to be
directly stored in a csv file then set argument epochvalues2csv = TRUE.

5 External functions released by GGIR collaborators:
• Wrist-based step detection algorithm: https://github.com/ShimmerEngineering/Verisense-Toolbox/tr

ee/master/Verisense_step_algorithm
• Wrist-based sleep classification as described by Sundararajan et al. 2021 link to paper, and corresponding

code is here: https://github.com/wadpac/SleepStageClassification/tree/master/ggir_ext

5

https://github.com/ShimmerEngineering/Verisense-Toolbox/tree/master/Verisense_step_algorithm
https://github.com/ShimmerEngineering/Verisense-Toolbox/tree/master/Verisense_step_algorithm
https://www.nature.com/articles/s41598-020-79217-x
https://github.com/wadpac/SleepStageClassification/tree/master/ggir_ext

	Introduction
	Example with external R function
	Write external function
	Provide external function to GGIR

	Example with external Python function
	Write external function
	Provide external function to GGIR

	Integration in GGIR output
	Part 1
	Part 2

	External functions released by GGIR collaborators:

