Package ‘1CAOD’

October 12, 2022

Title Optimal Designs for Nonlinear Statistical Models by Imperialist
Competitive Algorithm (ICA)

Version 1.0.1

Description Finds optimal designs for nonlinear models using a metaheuristic algorithm called Impe-
rialist Competitive Algorithm (ICA). See, for details, Ma-
soudi et al. (2017) <doi:10.1016/j.csda.2016.06.014> and Ma-
soudi et al. (2019) <doi:10.1080/10618600.2019.1601097>.

Depends R (>=3.1.3)
License GPL (>=2)
LazyData true

LinkingTo Rcpp, ReppEigen,

Imports Rcpp, nloptr, stats, utils, graphics, grDevices, cubature, sn,
mnormt, methods, mvQuad

Suggests rgl, lattice, R.rsp
RoxygenNote 7.1.1
Encoding UTF-8
Language en-US
NeedsCompilation yes

Author Ehsan Masoudi [aut, cre],
Heinz Holling [aut],
Weng Kee Wong [aut],
Seongho Kim [ctb]

Maintainer Ehsan Masoudi <esn_mud@yahoo.com>
Repository CRAN
Date/Publication 2020-10-11 19:20:02 UTC

R topics documented:

DAYES . . e e e e e 3
bayes.update L 13

https://doi.org/10.1016/j.csda.2016.06.014
https://doi.org/10.1080/10618600.2019.1601097

Index

R topics documented:

bayescomp L e e e e 14
beff . . e 18
crt.bayes.control L. e 24
crt.minimax.control L. e e e e e e e e 25
FIM_ 2par_exp_censorl 27
FIM_ 2par_exp_censor2o v i it i it e e e e 27
FIM_ 3par_exp_censorl e 28
FIM_3par_exp_Censor2 v v v v v i it e e e e et e e e 29
FIM_exp_2par o e e e 29
FIM_ kinetics_alcohol 30
FIM_logistic e e e e e 31
FIM_logistic_2pred e 31
FIM_logistic_4par e 32
FIM_loglin e 33
FIM_mixed_inhibition e 34
FIM_power_logistic. o o o i e e 35
FIM_sig_emax ittt e e 35
ICA.control e e e 36
ICAOD . . . e e e 38
leff . . e 39
locally o e 42
locallycomp e e e e 48
meff . . . e e 53
MINIMAX ot o e e s e e e e e e e e e e 55
multiple e e e 67
normal e e e e 71
plotminimax 73
Print.minimax e e e e e e e e e e 74
Print.SensSmMinimaXx v v v v e e e e e e e e e e e e e e e e 75
TODUSE e e 76
sens.bayes.control oL e 81
SeNS.CONtrol e e e 82
sens.minimax.control L e 83
SENSDAYES e e e e e e e e 84
sensbayescomp e 89
senslocally L e 92
senslocallycomp L 96
SENSMINIMAX v v v e vt e e e e e e e e e e e e e e 99
sensmultiple e e 107
SENSIODUSE e e e e 110
skewnormal e e 113
student L e e e 114
uniform L L e e e e e e e e e e e e 115
update.minimax e e e e e e e 116

118

bayes 3

bayes Bayesian D-Optimal Designs

Description

Finds (pseudo) Bayesian D-optimal designs for linear and nonlinear models. It should be used when
the user assumes a (truncated) prior distribution for the unknown model parameters. If you have a
discrete prior, please use the function robust.

Usage

bayes(
formula,
predvars,
parvars,
family = gaussian(),
prior,
1x,
ux,
iter,
K,
fimfunc = NULL,
ICA.control = list(),
sens.control = list(),
crt.bayes.control = list(),
sens.bayes.control = list(),
initial = NULL,

npar = NULL,
plot_3d = c("lattice”, "rgl"),
x = NULL,

crtfunc = NULL,
sensfunc = NULL

)
Arguments

formula A linear or nonlinear model formula. A symbolic description of the model
consists of predictors and the unknown model parameters. Will be coerced to a
formula if necessary.

predvars A vector of characters. Denotes the predictors in the formula.

parvars A vector of characters. Denotes the unknown parameters in the formula.

family A description of the response distribution and the link function to be used in the

model. This can be a family function, a call to a family function or a character
string naming the family. Every family function has a link argument allowing to
specify the link function to be applied on the response variable. If not specified,
default links are used. For details see family. By default, a linear gaussian
model gaussian() is applied.

prior

Ix

ux

iter

fimfunc

ICA.control

sens.control

bayes

An object of class cprior. User can also use one of the functions uniform,
normal, skewnormal or student to create the prior. See ’Details’ of bayes.

Vector of lower bounds for the predictors. Should be in the same order as
predvars.

Vector of upper bounds for the predictors. Should be in the same order as
predvars.

Maximum number of iterations.

Number of design points. Must be at least equal to the number of model param-
eters to avoid singularity of the FIM.

A function. Returns the FIM as a matrix. Required when formula is missing.
See ’Details’ of minimax.

ICA control parameters. For details, see ICA.control.

Control Parameters for Calculating the ELB. For details, see sens.control.

crt.bayes.control

A list. Control parameters to approximate the integral in the Bayesian criterion
at a given design over the parameter space. For details, see crt.bayes.control.

sens.bayes.control

initial

npar

plot_3d

crtfunc

sensfunc

Details

A list. Control parameters to verify the general equivalence theorem. For details,
see sens.bayes.control.

A matrix of the initial design points and weights that will be inserted into the
initial solutions (countries) of the algorithm. Every row is a design, i.e. a con-
catenation of x and w. Will be coerced to a matrix if necessary. See ’Details’ of
minimax.

Number of model parameters. Used when fimfunc is given instead of formula
to specify the number of model parameters. If not specified correctly, the sensi-
tivity (derivative) plot may be shifted below the y-axis. When NULL (default), it
will be set to length(parvars) or prior$npar when missing(formula).

Which package should be used to plot the sensitivity (derivative) function for
two-dimensional design space. Defaults to "lattice”.

A vector of candidate design (support) points. When is not set to NULL (de-
fault), the algorithm only finds the optimal weights for the candidate points in x.
Should be set when the user has a finite number of candidate design points and
the purpose is to find the optimal weight for each of them (when zero, they will
be excluded from the design). For design points with more than one dimension,
see 'Details’ of sensminimax.

(Optional) a function that specifies an arbitrary criterion. It must have especial
arguments and output. See ’Details’ of bayes.

(Optional) a function that specifies the sensitivity function for crtfunc. See
’Details’ of bayes.

Let = be the space of all approximate designs with k design points (support points) at z1, g, ..., Tk
from design space y with corresponding weights w1, ..., wg. Let M (€, 0) be the Fisher information

bayes 5

matrix (FIM) of a k—point design £ and 7(6) is a user-given prior distribution for the vector of
unknown parameters §. A Bayesian D-optimal design £* minimizes over =

/ ~ log | M(&, 0) | (6)do.
ASS)

An object of class cprior is a list with the following components:

* fn: Prior distribution as an R function with argument param that is the vector of the unknown
parameters. See below.

e npar: Number of unknown parameters and is equal to the length of param.
* lower: Argument lower. It has the same length as param.
e upper: Argument upper. It has the same length as param.

A cprior object will be passed to the argument prior of the function bayes. The argument param
in fn has the same order as the argument parvars when the model is specified by a formula.
Otherwise, it is the same as the argument param in the function fimfunc.

The user can use the implemented priors that are uniform, normal, skewnormal and student to
create a cprior object.

To verify the equivalence theorem of the output design, use plot function or change the value of
the checkfreq in the argument ICA. control.

To increase the speed of the algorithm, change the value of the tuning parameters tol and maxEval
via the argument crt.bayes.control when crt.bayes.control$method = "cubature”. Sim-
ilarly, this applies when crt.bayes.control$method = "quadrature”. In general, if the CPU
time matters, the user should find an appropriate speed-accuracy trade-off for her/his own problem.
See ’Examples’ for more details.

If some of the parameters are known and fixed, they should be set to their values via the argument
paravars when the model is given by formula. In this case, the user must provide the number of
parameters via the argument npar for verifying the general equivalence theorem. See ’Examples’,
Section *Weibull’, "Richards’ and *Exponential’ model.

crtfunc is a function that is used to specify a new criterion. Its arguments are:

* design points x (as a vector).
* design weights w (as a vector).
* model parameters as follows.

— If formula is specified: they should be the same parameter specified by parvars. Note
that crtfunc must be vectorized with respect to the parameters. The parameters enter the
body of crtfunc as a vector with dynamic length.

— If FIM is specified via the argument fimfunc: param that is a matrix where its row is a
vector of parameters values.

e fimfunc is a function that takes the other arguments of crtfunc and returns the computed
Fisher information matrices for each parameter vector. The output is a list of matrices.

The crtfunc function must return a vector of criterion values associated with the vector of pa-
rameter values. The sensfunc is the optional sensitivity function for the criterion crtfunc. It has
one more argument than crtfunc, which is xi_x. It denotes the design point of the degenerate
design and must be a vector with the same length as the number of predictors. For more details, see
’Examples’.

6 bayes

Value
an object of class minimax that is a list including three sub-lists:

arg A list of design and algorithm parameters.

evol A list of length equal to the number of iterations that stores the information about the best
design (design with the minimum criterion value) of each iteration as follows: evol[[iter]]

contains:
iter Iteration number.
X Design points.
w Design weights.
min_cost Value of the criterion for the best imperialist (design).
mean_cost Mean of the criterion values of all the imperialists.
sens An object of class ’sensminimax’. See below.

empires A list of all the empires of the last iteration.

alg A list with following information:

nfeval Number of function evaluations. It does not count the function evaluations from checking the general equi
nlocal Number of successful local searches.

nrevol Number of successful revolutions.

nimprove Number of successful movements toward the imperialists in the assimilation step.

convergence Stopped by "maxiter’ or ’equivalence’?

method A type of optimal designs used.
design Design points and weights at the final iteration.

out A dataframe of design points, weights, value of the criterion for the best imperialist (min_cost),
and Mean of the criterion values of all the imperialistsat each iteration (mean_cost).

The list sens contains information about the design verification by the general equivalence theorem.
See sensbayes for more Details. It is only given every ICA.control$checkfreq iterations and
also the last iteration if ICA.control$checkfreq >= 0. Otherwise, NULL.

References

Atashpaz-Gargari, E, & Lucas, C (2007). Imperialist competitive algorithm: an algorithm for opti-
mization inspired by imperialistic competition. In 2007 IEEE congress on evolutionary computation
(pp. 4661-4667). IEEE.

Masoudi E, Holling H, Duarte BP, Wong Wk (2019). Metaheuristic Adaptive Cubature Based Al-
gorithm to Find Bayesian Optimal Designs for Nonlinear Models. Journal of Computational and
Graphical Statistics. <doi:10.1080/10618600.2019.1601097>

See Also

sensbayes

bayes

Examples

AR AR R

Two parameter logistic model: uniform prior
HHHHEHHHHHAHAEHHHHHEHHH A

set the unfirom prior

uni <- uniform(lower = c(-3, .1), upper = c(3, 2))
set the logistic model with formula

resl <- bayes(formula = ~1/(1 + exp(-b *(x - a))),

predvars = "x", parvars = c("a", "b"),
family = binomial(), 1x = -3, ux = 3,
k = 5, iter = 1, prior = uni,

ICA.control = list(rseed = 1366))

Not run:
res1 <- update(resl, 500)
plot(res1)

End(Not run)
You can also use your Fisher information matrix (FIM) if you think it is faster!
Not run:
bayes(fimfunc = FIM_logistic, 1x = -3, ux = 3, k = 5, iter = 500,
prior = uni, ICA.control = list(rseed = 1366))

End(Not run)

with fixed x

Not run:
res1l.1 <- bayes(formula = ~1/(1 + exp(-b *(x - a))),
predvars = "x", parvars = c("a", "b"),
family = binomial(), 1x = -3, ux = 3,
k = 5, iter = 100, prior = uni,

x =c(-3, -1.5, 9, 1.5, 3),
ICA.control = list(rseed = 1366))
plot(resi.1)
not optimal

End(Not run)

with quadrature formula

Not run:
res1.2 <- bayes(formula = ~1/(1 + exp(-b *(x - a))),
predvars = "x", parvars = c("a", "b"),
family = binomial(), 1x = -3, ux = 3,
k = 5, iter = 1, prior = uni,
crt.bayes.control = list(method = "quadrature"”),

ICA.control = list(rseed = 1366))
res1.2 <- update(resl.2, 500)
plot(res1.2) # not optimal
compare it with res1 that was found by automatic integration
plot(res1)

we increase the number of quadrature nodes

bayes

res1.3 <- bayes(formula = ~1/(1 + exp(-b *(x - a))),

predvars = "x", parvars = c("a", "b"),

family = binomial(), 1x = -3, ux = 3,

k = 5, iter = 1, prior = uni,
crt.bayes.control = list(method = "quadrature”,

quadrature = list(level = 9)),
ICA.control = list(rseed = 1366))
resl1.3 <- update(res1.3, 500)
plot(resi.3)
by automatic integration (method = "cubature"),
we did not need to worry about the number of nodes.

End(Not run)
HHHHHHAAHEEH A A
Two parameter logistic model: normal prior #1
B
defining the normal prior #1
norml <- normal(mu = c(@, 1),
sigma = matrix(c(1, -0.17, -0.17, .5), nrow = 2),
lower = c(-3, .1), upper = c(3, 2))
Not run:
initializing
res2 <- bayes(formula = ~1/(1 + exp(-b *(x - a))), predvars = "x", parvars = c("a", "b"),
family = binomial(), 1x = -3, ux = 3, k = 4, iter = 1, prior = norml,
ICA.control = list(rseed = 1366))
res2 <- update(res2, 500)
plot(res2)

End(Not run)

S HEHHRHRHEHRE A HEHEHRHHHEH R E AR
Two parameter logistic model: normal prior #2
SHHHHHHHHHERE AR AR
defining the normal prior #1
norm2 <- normal(mu = c¢(0, 1),
sigma = matrix(c(1, @, @, .5), nrow = 2),
lower = c¢(-3, .1), upper = c(3, 2))
Not run:
initializing
res3 <- bayes(formula = ~1/(1 + exp(-b *(x - a))), predvars = "x", parvars = c("a", "b"),
family = binomial(), 1x = -3, ux = 3, k = 4, iter = 1, prior = norm2,
ICA.control = list(rseed = 1366))

res3 <- update(res3, 700)

plot(ress,
sens.bayes.control = list(cubature = list(maxEval = 3000, tol = le-4)),
sens.control = list(optslist = list(maxeval = 3000)))

End(Not run)

HHHEHHAEEE AR AR
Two parameter logistic model: skewed normal prior #1

bayes 9

HHHEHHAREER AR R
skewl <- skewnormal(xi = c(0, 1),
Omega = matrix(c(1, -0.17, -0.17, .5), nrow = 2),
alpha = c(1, 0), lower = c(-3, .1), upper = c(3, 2))
Not run:
res4 <- bayes(formula = ~1/(1 + exp(-b *(x - a))), predvars = "x", parvars = c("a", "b"),
family = binomial(), 1x = -3, ux = 3, k = 4, iter = 700, prior = skewl,
ICA.control = list(rseed = 1366, ncount = 60))
plot(res4,
sens.bayes.control = list(cubature = list(maxEval = 3000, tol = le-4)),
sens.control = list(optslist = list(maxeval = 3000)))

End(Not run)

HHHHHHAEEEEE R AR
Two parameter logistic model: skewed normal prior #2
HHHHHHHEEEEE AR AR
skew2 <- skewnormal(xi = c(@, 1),
Omega = matrix(c(1, -0.17, -0.17, .5), nrow = 2),
alpha = c(-1, @), lower = c(-3, .1), upper = c(3, 2))
Not run:
res5 <- bayes(formula = ~1/(1 + exp(-b *(x - a))), predvars = "x", parvars = c("a", "b"),
family = binomial(), 1x = -3, ux = 3, k = 4, iter = 700, prior = skew2,
ICA.control = list(rseed = 1366, ncount = 60))
plot(res5,
sens.bayes.control = list(cubature = list(maxEval = 3000, tol = le-4)),
sens.control = list(optslist = list(maxeval = 3000)))

End(Not run)

S
Two parameter logistic model: t student prior
B
set the prior
stud <- student(mean = c¢(@, 1), S = matrix(c(1, -0.17, -0.17, .5), nrow = 2),
df = 3, lower = c(-3, .1), upper = c(3, 2))
Not run:
res6 <- bayes(formula = ~1/(1 + exp(-b *(x - a))), predvars = "x", parvars = c("a", "b"),
family = binomial(), 1x = -3, ux = 3, k = 5, iter = 500, prior = stud,
ICA.control = list(ncount = 50, rseed = 1366))
plot(res6)

End(Not run)
not bad, but to find a very accurate designs we increase
the ncount to 200 and repeat the optimization
Not run:
res6 <- bayes(formula = ~1/(1 + exp(-b *(x - a))),
predvars = "x", parvars = c("a", "b"),
family = binomial(), 1x = -3, ux = 3, k = 5, iter = 1000, prior = stud,
ICA.control = list(ncount = 200, rseed = 1366))
plot(resé6)

bayes

End(Not run)

HHHEHEAREEEE SRR R
4-parameter sigmoid Emax model: unform prior
HHHHHHHEEEE A
1b <- c(4, 11, 100, 5)
ub <- c(8, 15, 130, 9)
Not run:
res7 <- bayes(formula = ~ thetal + (theta2 - thetal)*(x*theta4)/(x*theta4 + theta3*theta4),
predvars = c("x"), parvars = c("thetal”, "theta2"”, "theta3", "theta4"),
1x = .001, ux = 500, k = 5, iter = 200, prior = uniform(lb, ub),
ICA.control = list(rseed = 1366, ncount = 60))
plot(res7,
sens.bayes.control = list(cubature = list(maxEval = 500, tol = 1e-3)),
sens.control = list(optslist = list(maxeval = 500)))

End(Not run)

HHH A AR A A
2-parameter Cox Proportional-Hazards Model for type one cenosred data
S HHHHHE PP
The Fisher information matrix is available here with name FIM_2par_exp_censor]
However, we should reparameterize the function to match the standard of the argument 'fimfunc'
myfim <- function(x, w, param)
FIM_2par_exp_censor1(x = x, w = w, param = param, tcensor = 30)
Not run:
res8 <- bayes(fimfunc = myfim, 1x = @, ux =1, k = 4,
iter = 1, prior = uniform(c(-11, -11), c(11, 11)),
ICA.control = list(rseed = 1366))

res8 <- update(res8, 200)

plot(ress,
sens.bayes.control = list(cubature = list(maxEval = 500, tol = 1e-3)),
sens.control = list(optslist = list(maxeval = 500)))

End(Not run)

B S S
2-parameter Cox Proportional-Hazards Model for random cenosred data
HEHHHHHHEHEE AR EHERHEREEREH R
The Fisher information matrix is available here with name FIM_2par_exp_censor2
However, we should reparameterize the function to match the standard of the argument 'fimfunc'
myfim <- function(x, w, param)
FIM_2par_exp_censor2(x = x, W = w, param = param, tcensor = 30)
Not run:
res9 <- bayes(fimfunc = myfim, 1x = @, ux =1, k = 2,
iter = 200, prior = uniform(c(-11, -11), c(11, 11)),
ICA.control = list(rseed = 1366))
plot(res9,
sens.bayes.control = list(cubature = list(maxEval = 100, tol = 1e-3)),
sens.control = list(optslist = list(maxeval = 100)))

bayes

End(Not run)

SHEHHHHHHHHEHEEEHEEH R

Weibull model: Uniform prior
HHHHHHEEEE A

see Dette, H., & Pepelyshev, A. (2008).

Efficient experimental designs for sigmoidal growth models.
Journal of statistical planning and inference, 138(1), 2-17.

See how we fixed a some parameters in Bayesian designs
Not run:
res1@ <- bayes(formula = ~a - b x exp(-lambda * t *h),
predvars = c("t"),
parvars = c("a=1", "b=1", "lambda”, "h=1"),
1x = .00001, ux = 20,
prior = uniform(.5, 2.5), k = 5, iter = 400,
ICA.control = list(rseed = 1366))
plot(res10)

End(Not run)

HHHHHHHHHHAHEHHHHHHEHA R
Weibull model: Normal prior
SEEEHHEHHEHEHE PR
norm3 <- normal(mu = 1, sigma = .1, lower = .5, upper = 2.5)
res1l <- bayes(formula = ~a - b * exp(-lambda * t *h),
predvars = c("t"),
parvars = c("a=1", "b=1", "lambda”, "h=1"),
1x = .00001, ux = 20, prior = norm3, k = 4, iter = 1,
ICA.control = list(rseed = 1366))

Not run:
res11 <- update(res11, 400)
plot(resii)

End(Not run)

HEHHHHHHHEEHE AR

Richards model: Normal prior

HHHEHHHEHEE AR

norm4 <- normal(mu = c(1, 1), sigma = matrix(c(.2, 0.1, 0.1, .4), 2, 2),
lower = c(.4, .4), upper = c(1.6, 1.6))

Not run:

res12 <- bayes(formula = ~a/(1 + b * exp(-lambdaxt))*h,

predvars = c("t"),
parvars = c("a=1", "b", "lambda", "h=1"),
1x = .00001, ux = 10,
prior = norm4,
k =5, iter = 400,
ICA.control = list(rseed = 1366))

plot(resi2,
sens.bayes.control = list(cubature = list(maxEval = 1000, tol = 1e-3)),

12

sens.control = list(optslist = list(maxeval = 1000)))
or we can use the quadrature formula to plot the derivative function
plot(resi2,

sens.bayes.control = list(method = "quadrature”),

sens.control = list(optslist = list(maxeval = 1000)))

End(Not run)
B S S R

Exponential model: Uniform prior
AR A

Not run:

res13 <- bayes(formula = ~a + exp(-b*x), predvars = "x",
parvars = c("a = 1", "b"),
Ix = 0.0001, ux =1,
prior = uniform(lower = 1, upper = 20),
iter = 300, k = 3,
ICA.control= list(rseed = 100))

plot(resi3)

End(Not run)

SR A

Power logistic model

HHHHEHHHHHAHEHHHHHHEHA AR

See, Duarte, B. P., & Wong, W. K. (2014).

A Semidefinite Programming based approach for finding

Bayesian optimal designs for nonlinear models

unil <- uniform(lower = c(-.3, 6, .5), upper = c(.3, 8, 1))

Not run:
res14 <- bayes(formula = ~1/(1 + exp(-b *(x - a)))*s, predvars = "x",
parvars = c("a", "b", "s"),
Ix = -1, ux =1, prior = unil, k = 5, iter = 1)
res14 <- update(resli4, 300)
plot(resi4)

End(Not run)

HHHHHHERHEEE A R R
A two-variable generalized linear model with a gamma distributed response
HHHEHHHBEEEEH AR R AR
1b <- c(.5, 0, 0, @, 0, @)
ub <-¢c(2, 1, 1, 1, 1, 1)
myformulal <- ~beta@+betal*x1+beta2xx2+beta3*x1*2+betad*x22+beta5*x1*x2
Not run:
res15 <- bayes(formula = myformulal,
predvars = c("x1", "x2"), parvars = paste("beta”, 0:5, sep = ""),
family = Gamma(),
1x = rep(0, 2), ux = rep(1, 2),
prior = uniform(lower = lb, upper = ub),
k = 7,iter = 1, ICA.control = list(rseed = 1366))
res14 <- update(resli4, 500)

bayes

bayes.update

plot(resi4,
sens.bayes.control = list(cubature = list(maxEval = 5000, tol = le-4)),
sens.control = list(optslist = list(maxeval = 3000)))

End(Not run)

S HHHHHE AR
Three parameter logistic model
HHHHHHHHHHEER AR
Not run:
sigmal <- matrix(-0.1, nrow = 3, ncol = 3)
diag(sigmal) <- c(.5, .4, .1)
norm5 <- normal(mu = c¢(@, 1, .2), sigma = sigmal,
lower = c(-3, .1, @), upper = c(3, 2, .7))
res16 <- bayes(formula = ~ ¢ + (1-¢c)/(1 + exp(-b *(x - a))), predvars = "x",
parvars = c("a", "b", "c"),
family = binomial(), 1x = -3, ux = 3,
k = 4, iter = 500, prior = norm5,
ICA.control = list(rseed = 1366, ncount = 50),

13

crt.bayes.control = list(cubature = list(maxEval = 2500, tol = 1e-4)))

plot(resi6,
sens.bayes.control = list(cubature = list(maxEval = 3000, tol = le-4)),
sens.control = list(optslist = list(maxeval = 3000)))

took 925 second on my system

End(Not run)

bayes.update Updating an Object of Class minimax

Description

Runs the ICA optimization algorithm on an object of class minimax for more number of iterations

and updates the results.

Usage
bayes.update(object, iter, ...)
Arguments
object An object of class minimax.
iter Number of iterations.
An argument of no further use.
See Also

bayes

14 bayescomp

bayescomp Bayesian Compound DP-Optimal Designs

Description

Finds compound Bayesian DP-optimal designs that meet the dual goal of parameter estimation
and increasing the probability of a particular outcome in a binary response model. A compound
Bayesian DP-optimal design maximizes the product of the Bayesian efficiencies of a design ¢ with
respect to D- and average P-optimality, weighted by a pre-defined mixing constant 0 < o < 1.

Usage

bayescomp (
formula,
predvars,
parvars,
family = binomial(),
prior,
alpha,
prob,
1x,
ux,
iter,
k,
fimfunc = NULL,
ICA.control = list(),
sens.control = list(),
crt.bayes.control = list(),
sens.bayes.control = list(),
initial = NULL,

npar = NULL,
plot_3d = c("lattice”, "rgl")
)
Arguments
formula A linear or nonlinear model formula. A symbolic description of the model
consists of predictors and the unknown model parameters. Will be coerced to a
formula if necessary.
predvars A vector of characters. Denotes the predictors in the formula.
parvars A vector of characters. Denotes the unknown parameters in the formula.
family A description of the response distribution and the link function to be used in the

model. This can be a family function, a call to a family function or a character
string naming the family. Every family function has a link argument allowing to
specify the link function to be applied on the response variable. If not specified,
default links are used. For details see family. By default, a linear gaussian
model gaussian() is applied.

bayescomp

prior

alpha

prob

1x

ux

iter

fimfunc

ICA.control

sens.control

15

An object of class cprior. User can also use one of the functions uniform,
normal, skewnormal or student to create the prior. See ’Details’ of bayes.

A value between 0 and 1. Compound or combined DP-criterion is the product
of the efficiencies of a design with respect to D- and average P- optimality,
weighted by alpha.

Either formula or a function. When function, its argument are x and param,
and they are the same as the arguments in fimfunc. prob as a function takes the
design points and vector of parameters and returns the probability of success at
each design points. See 'Examples’.

Vector of lower bounds for the predictors. Should be in the same order as
predvars.

Vector of upper bounds for the predictors. Should be in the same order as
predvars.

Maximum number of iterations.

Number of design points. Must be at least equal to the number of model param-
eters to avoid singularity of the FIM.

A function. Returns the FIM as a matrix. Required when formula is missing.
See ’Details’ of minimax.

ICA control parameters. For details, see ICA.control.

Control Parameters for Calculating the ELB. For details, see sens.control.

crt.bayes.control

A list. Control parameters to approximate the integral in the Bayesian criterion
at a given design over the parameter space. For details, see crt.bayes.control.

sens.bayes.control

initial

npar

plot_3d

Details

A list. Control parameters to verify the general equivalence theorem. For details,
see sens.bayes.control.

A matrix of the initial design points and weights that will be inserted into the
initial solutions (countries) of the algorithm. Every row is a design, i.e. a con-
catenation of x and w. Will be coerced to a matrix if necessary. See ’Details’ of
minimax.

Number of model parameters. Used when fimfunc is given instead of formula
to specify the number of model parameters. If not specified correctly, the sensi-
tivity (derivative) plot may be shifted below the y-axis. When NULL (default), it
will be set to length(parvars) or prior$npar when missing(formula).

Which package should be used to plot the sensitivity (derivative) function for
two-dimensional design space. Defaults to "lattice”.

Let = be the space of all approximate designs with k design points (support points) at z1, T, ..., Tk
from design space y with corresponding weights w1, ..., wg. Let M (€, 0) be the Fisher information
matrix (FIM) of a k—point design £, (8) is a user-given prior distribution for the vector of unknown
parameters 6 and p(x;, 0) is the ith probability of success given by z; in a binary response model.

16 bayescomp

A compound Bayesian DP-optimal design maximizes over =

k
/966 7 0sIM(E O+ (1 - a)log <Z wm(%ﬁ)) m(0)do.

i=1
To verify the equivalence theorem of the output design, use plot function or change the value of
the checkfreq in the argument ICA.control.

To increase the speed of the algorithm, change the value of the tuning parameters tol and maxEval
via the argument crt.bayes.control when its method component is equal to "cubature”. In
general, if the CPU time matters, the user should find an appropriate speed-accuracy trade-off for
her/his own problem. See *Examples’ for more details.

Value
an object of class minimax that is a list including three sub-lists:

arg A list of design and algorithm parameters.

evol A list of length equal to the number of iterations that stores the information about the best
design (design with the minimum criterion value) of each iteration as follows: evol[[iter]]

contains:
iter Iteration number.
X Design points.
w Design weights.
min_cost Value of the criterion for the best imperialist (design).
mean_cost Mean of the criterion values of all the imperialists.
sens An object of class ’sensminimax’. See below.

empires A list of all the empires of the last iteration.

alg A list with following information:

nfeval Number of function evaluations. It does not count the function evaluations from checking the general equi
nlocal Number of successful local searches.

nrevol Number of successful revolutions.

nimprove Number of successful movements toward the imperialists in the assimilation step.

convergence Stopped by "maxiter’ or ’equivalence’?

method A type of optimal designs used.
design Design points and weights at the final iteration.
out A data frame of design points, weights, value of the criterion for the best imperialist (min_cost),

and Mean of the criterion values of all the imperialistsat each iteration (mean_cost).

The list sens contains information about the design verification by the general equivalence theorem.
See sensbayes for more Details. It is only given every ICA.control$checkfreq iterations and
also the last iteration if ICA.control$checkfreq >= 0. Otherwise, NULL.

bayescomp 17

References

McGree, J. M., Eccleston, J. A., and Duffull, S. B. (2008). Compound optimal design criteria for
nonlinear models. Journal of Biopharmaceutical Statistics, 18(4), 646-661.

See Also

senshayescomp

Examples

HHHHHHHAHHERHE AR AR AR
DP-optimal design for a logitic model with two predictors: with formula
HHHHHHHEEEE AR AR
p<-c(1, -2, 1, -1
myprior <- uniform(p -1.5, p + 1.5)
myformulal <- ~exp(b@+b1*x1+b2xx2+b3*x1%x2)/(1+exp(b0+b1*x1+b2*x2+b3*x1%x2))
res1l <- bayescomp(formula = myformulal,
predvars = c("x1", "x2"),
parvars = c("b@", "b1", "b2", "b3"),
family = binomial(),
Ix = c(-1, -1), ux = c(1, 1),
prior = myprior, iter =1, k =7,
prob = ~1-1/(1+exp(b® + b1l * x1 + b2 * x2 + b3 * x1 * x2)),
alpha = .5, ICA.control = list(rseed = 1366),
crt.bayes.control = list(cubature = list(tol = Te-4, maxEval = 1000)))

Not run:
resl <- update(resl, 1000)
plot(resl, sens.bayes.control = list(cubature = list(tol = 1e-3, maxEval = 1000)))
or use quadrature method
plot(resl, sens.bayes.control= list(method = "quadrature"))

End(Not run)

HHHHHHAREEE A AR A
DP-optimal design for a logitic model with two predictors: with fimfunc
B R g g s S i i i iy e S i s i
The function of the Fisher information matrix for this model is 'FIM_logistic_2pred'
We should reparameterize it to match the standard of the argument 'fimfunc'
Not run:
myfim <- function(x, w, param){

npoint <- length(x)/2

x1 <= x[1:npoint]

x2 <= x[(npoint+1): (npoint*2)]

FIM_logistic_2pred(x1 = x1,x2 = x2, w = w, param = param)

The following function is equivalent to the function created

by the formula: ~1-1/(1+exp(b@ + b1l * x1 + b2 * x2 + b3 * x1 * x2))
It returns probability of success given x and param

x = c(x1, x2) and param = c()

18

beff

myprob <- function(x, param){
npoint <- length(x)/2

x1 <= x[1:npoint]
x2 <= x[(npoint+1):(npoint*2)]
bo <- param[1]
b1 <- param[2]
b2 <- param[3]
b3 <- param[4]
out <= 1-1/(1+exp(b@ + b1 * x1 + b2 * x2 + b3 * x1 * x2))
return(out)
3
res2 <- bayescomp(fimfunc = myfim,

Ix = c(-1, -1), ux = c(1, 1),

prior = myprior, iter = 1000, k = 7,
prob = myprob, alpha = .5,
ICA.control = list(rseed = 1366))

plot(res2, sens.bayes.control = list(cubature = list(maxEval = 1000, tol = 1e-4)))
quadrature with 6 nodes (default)
plot(res2, sens.bayes.control= list(method = "quadrature"))

End(Not run)

beff

Calculates Relative Efficiency for Bayesian Optimal Designs

Description

Given a prior distribution for the parameters, this function calculates the Bayesian D-and PA- effi-
ciency of a design &; with respect to a design &;. Usually, &5 is an optimal design. This function is
especially useful for investigating the robustness of Bayesian optimal designs under different prior
distributions (See 'Examples’).

Usage
beff(

formula,

predvars,

parvars,

family = gaussian(),
prior,

fimfunc = NULL,

X2,
w2,
x1,
wl,

beff

19

crt.bayes.control = list(),

npar = NULL,

type = C("D“, ”PA"),

prob = NULL

Arguments

formula

predvars
parvars

family

prior

fimfunc

X2
w2
x1

wi

A linear or nonlinear model formula. A symbolic description of the model
consists of predictors and the unknown model parameters. Will be coerced to a
formula if necessary.

A vector of characters. Denotes the predictors in the formula.
A vector of characters. Denotes the unknown parameters in the formula.

A description of the response distribution and the link function to be used in the
model. This can be a family function, a call to a family function or a character
string naming the family. Every family function has a link argument allowing to
specify the link function to be applied on the response variable. If not specified,
default links are used. For details see family. By default, a linear gaussian
model gaussian() is applied.

An object of class cprior. User can also use one of the functions uniform,
normal, skewnormal or student to create the prior. See ’Details’ of bayes.

A function. Returns the FIM as a matrix. Required when formula is missing.
See ’Details’ of minimax.

Vector of design (support) points of the optimal design (£2). Similar to x1.
Vector of corresponding design weights for x2.
Vector of design (support) points of &;. See ’Details’ of leff.

Vector of corresponding design weights for x1.

crt.bayes.control

npar

type

prob

Details

A list. Control parameters to approximate the integral in the Bayesian criterion
at a given design over the parameter space. For details, see crt.bayes.control.

Number of model parameters. Used when fimfunc is given instead of formula
to specify the number of model parameters. If not given, the sensitivity plot may
be shifted below the y-axis. When NULL, it will be set here to length(inipars).

A character. "D" denotes the D-efficiency and "PA" denotes the average P-
efficiency.

Either formula or a function. When function, its argument are x and param,
and they are the same as the arguments in fimfunc. prob as a function takes the
design points and vector of parameters and returns the probability of success at
each design points. See "Examples’.

See Masoudi et al. (2018) for formula details (the paper is under review and will be updated as soon

as accepted).

20 beff

The argument x1 is the vector of design points. For design points with more than one dimension (the
models with more than one predictors), it is a concatenation of the design points, but dimension-
wise. For example, let the model has three predictors (I, S, Z). Then, a two-point optimal design
has the following points: {pointl = (I, S1, Z1),point2 = (I3, S2, Z2)}. Then, the argument x is
equal to x = c(I1, I2, S1, S2, 71, Z2).

Examples

S HEHHRHRHEHREEEE AR

2PL model

HHHHHHEEEE A

formulad4.1 <- ~ 1/(1 + exp(-b *(x - a)))

predvars4.1 <- "x
parvars4.1 <- c("a”, "b")

des4.1 is a list of Bayesian optimal designs with corresponding priors.

des4.1 <- vector("list”, 6)

des4.1[[1]1$x <- c(-3, -1.20829, 0, 1.20814, 3)

des4.1[[1]1$w <- c(.24701, .18305, .13988, .18309, .24702)
des4.1[[1]11$prior <- uniform(lower = «c(-3, .1), upper = c(3, 2))

des4.1[[2]]$x <- c(-2.41692, -1.16676, .04386, 1.18506, 2.40631)

des4.1[[2]1$w <- c(.26304, .18231, .14205, .16846, .24414)

des4.1[[2]1$prior <- student(mean = c(@, 1), S =matrix(c(1, -0.17, -0.17, .5), nrow = 2),
df = 3, lower = c(-3, .1), upper = c(3, 2))

des4.1[[3]1$x <- c(-2.25540, -.76318, .54628, 2.16045)

des4.1[[3]1]I$w <- c(.31762, .18225, .18159, .31853)

des4.1[[3]]1$prior <- normal(mu = c(@, 1),
sigma = matrix(c(1, -0.17, -0.17, .5), nrow = 2),
lower = c(-3, .1), upper = c(3, 2))

des4.1[[4]1$x <- c(-2.23013, -.66995, .67182, 2.23055)

des4.1[[4]11$w <- c(.31420, .18595, .18581, .31404)

des4.1[[4]1]1$prior <- normal(mu = c(@, 1),
sigma = matrix(c(1, @, @, .5), nrow = 2),
lower = c¢(-3, .1), upper = c(3, 2))

des4.1[[5]1$x <- c(-1.51175, .12043, 1.05272, 2.59691)

des4.1[[5]1$w <- c(.37679, .14078, .12676, .35567)

des4.1[[5]1$prior <- skewnormal(xi = c(@, 1),
Omega = matrix(c(1, -0.17, -0.17, .5), nrow = 2),
alpha = c¢(1, @), lower = c(-3, .1), upper = c(3, 2))

des4.1[[6]1$x <- c(-2.50914, -1.16780, -.36904, 1.29227)

des4.1[[6]11%w <- c(.35767, .11032, .15621, .37580)

des4.1[[6]]$prior <- skewnormal(xi = c(@, 1),
Omega = matrix(c(1, -0.17, -0.17, .5), nrow = 2),
alpha = c(-1, @), lower = c(-3, .1), upper = c(3, 2))

beff 21

now we want to find the relative efficiency of
all Bayesian optimal designs assuming different priors (6 * 6)
eff4.1 <- matrix(NA, 6, 6)

colnames(eff4.1) <- c("uni”, "t", "norm1”, "norm2", "skewl”, "skew2")
rownames (eff4.1) <- colnames(eff4.1)
Not run:

for (i in 1:6)
for(j in 1:6)
eff4.1[i, j] <- beff(formula = formula4.1,
predvars = predvars4.1,
parvars = parvars4.1,
family = binomial(),
prior = des4.1[[i]]$prior,
x2 = des4.1[[i]1]%$x,
w2 = des4.1[[i]1]%w,
x1 = des4.1[[j11$x,
wi des4.1[[j11%w)
For example the first row represents Bayesian D-efficiencies of different
Bayesian optimal design found assuming different priors with respect to
the Bayesian D-optimal design found under uniform prior distribution.
eff4.1

End(Not run)

HHH A

Relative efficiency for the DP-Compund criterion
HHHHHHAREEE

p <-c(1, -2, 1, -1)

prior4.4 <- uniform(p -1.5, p + 1.5)

formula4.4 <- ~exp(b@+b1*x1+b2*x2+b3xx1%x2)/(1+exp(bO+b1#x1+b2*x2+b3*xx1%x2))
probd.4 <- ~1-1/(1+exp(b@ + bl * x1 + b2 * x2 + b3 * x1 * x2))
predvars4.4 <- c("x1", "x2")

parvars4.4 <- c("b@", "b1"”, "b2", "b3")

1b <= c(-1, -1)

ub <- c(1, 1)

des4.4 is a list of DP-optimal designs found using different values for alpha
des4.4 <- vector("list”, 5)

des4.4[[111%$x <- c(-1, 1)

des4.4[[1]11$w <- c(1)

des4.4[[1]]$alpha <- ©

des4.4[[2]1$x <- c(1, -.62534, .11405, -1, 1, .28175, -1, -1, 1, -1, -1, 1, 1, .09359)
des4.4[[2]1$w <- c(.08503, .43128, .01169, .14546, .05945, .08996, .17713)
des4.4[[2]]%alpha <- .25

des4.4[[311$x <- c(-1, .30193, 1, 1, .@7411, -1, -.31952, -.08251, 1, -1, 1, -1, -1, 1)
des4.4[[3]11$w <- c(.09162, .10288, .15615, .13123, .01993, .22366, .27454)

22

des4.

des4.
des4.
des4.

des4.
des4.
des4.

beff

4[[3]1%alpha <- .5

4[[411$x <- c(1, -1, .28274, 1, -1, -.19674, .03288, 1, -1, 1, -1, -.16751, 1, -1)
4[[4]11%w <- c(.19040, .24015, .10011, .20527, .0388, .20075, .02452)
4[[4]1%$alpha <- .75

4[[5]11%$x <- c(1, -1, .26606, -.13370, 1, -.00887, -1, 1, -.2052, 1, 1, -1, -1, -1)
4[[511$w <- c(.23020, .01612, .09546, .16197, .23675, .02701, .2325)
4[[5]1%alpha <- 1

D-efficiency of the DP-optimal designs:
des4.4[[5]11$x and des4.4[[5]1$w is the D-optimal design

beff(formula = formula4.4,

predvars = predvars4.4,
parvars = parvars4.4,
family = binomial(),
prior = prior4.4,

x2 = des4.4[[5]]1%x,
w2 = des4.4[[5]1]%w,
x1 = des4.4[[2]]1$x,
wl = des4.4[[2]]%w)

beff(formula = formula4.4,

predvars = predvars4.4,
parvars = parvars4.4,
family = binomial(),
prior = prior4.4,

x2 = des4.4[[5]11%x,
w2 = des4.4[[5]]1%w,
x1 = des4.4[[3]]%x,
wl = des4.4[[3]1]$w)

beff(formula = formula4.4,

predvars = predvars4.4,
parvars = parvars4.4,
family = binomial(),
prior = prior4.4,

x2 = des4.4[[5]1%$x,

w2 = des4.4[[5]]1%w,
x1 = des4.4[[4]1]$x,
wl = des4.4[[4]1]1%w)

must be one!
beff(formula = formula4.4,

predvars = predvars4.4,
parvars = parvars4.4,
family = binomial(),
prior = prior4.4,

prob = prob4.4,

type = "PA",

x2 = des4.4[[5]]1%x,

w2 = des4.4[[5]1]$w,

beff

x1 = des4.4[[5]]%x,
wl = des4.4[[5]1]%w)

P-efficiency
reported in Table 4 as eff_P
des4.4[[1]11$x and des4.4[[1]1$w is the P-optimal design
beff(formula = formula4.4,
predvars = predvars4.4,
parvars = parvars4.4,
family = binomial(),
prior = prior4.4,
prob = prob4.4,
type = "PA",
x2 = des4.4[[111%x,

w2 = des4.4[[1]1]1%w,
x1 = des4.4[[2]]%x,
wl = des4.4[[2]]$w)

beff(formula = formula4.4,
predvars = predvars4.4,
parvars = parvars4.4,
family = binomial(),
prior = prior4.4,
prob = prob4.4,
type = "PA",

x2 = des4.4[[111%x,
w2 = des4.4[[1]1]1%w,
x1 = des4.4[[3]]%x,
wl = des4.4[[3]1]$w)

beff(formula = formula4.4,
predvars = predvars4.4,
parvars = parvars4.4,
family = binomial(),
prior = prior4.4,
prob = prob4.4,
type = "PA",
x2 = des4.4[[111%x,
w2 = des4.4[[1]1]1%w,
x1 = des4.4[[4]]%x,
wl = des4.4[[4]1]$w)

beff(formula = formula4.4,
predvars = predvars4.4,
parvars = parvars4.4,
family = binomial(),
prior = prior4.4,
prob = prob4.4,
type = "PA",
x2 = des4.4[[1]1]$x,
w2 = des4.4[[1]1]1%w,
X1 des4.4[[5]11%x,
wl = des4.4[[5]1]$w)

24 crt.bayes.control

crt.bayes.control Returns Control Parameters for Approximating Bayesian Criteria

Description

This function returns two lists each corresponds to an implemented integration method for ap-
proximating the integrals in Bayesian criteria. The first list is named cubature and contains the
hcubature control parameters to approximate the integrals with an adaptive multivariate integration
method over hypercubes. The second list is named quadrature and contains the createNIGrid
tuning parameters to approximate the integrals with the quadrature methods.

Usage

crt.bayes.control(
method = c("cubature”, "quadrature"),
cubature = list(tol = 1e-05, maxEval = 50000, absError = 0),
quadrature = list(type = c("GLe", "GHe"), level = 6, ndConstruction = "product”,
level.trans = FALSE)

)
Arguments
method A character denotes which method to be used to approximate the integrals in
Bayesian criteria. "cubature” corresponds to the adaptive multivariate inte-
gration method using the hcubature algorithm (default). "quadrature” corre-
sponds the traditional quadrature formulas and calls the function createNIGrid.
cubature A list that will be passed to the arguments of the function hcubature for the
adaptive multivariate integration. It is required and used when crt.bayes.control$method
= "cubature” in the parent function, e.g. bayes. See ’Details’.
quadrature A list that will be passed to the arguments of the function createNIGrid for the
quadrature-based integration. It is required and used when crt.bayes.control$method
= "quadrature” in the parent function, e.g. bayes. See ’Details’.
Details

cubature is a list that its components will be passed to the function hcubature and they are:

tol The maximum tolerance. Defaults to 1e-5.

maxEval The maximum number of function evaluations needed. Note that the actual number of
function evaluations performed is only approximately guaranteed not to exceed this number.
Defaults to 5000.

crt.minimax.control 25

absError The maximum absolute error tolerated. Defaults to 0.

One can specify a maximum number of function evaluations. Otherwise, the integration stops when
the estimated error is less than the absolute error requested, or when the estimated error is less than
tol times the absolute value of the integral, or when the maximum number of iterations is reached,
whichever is earlier. cubature is activated when crt.bayes.control$method = "cubature” in
any of the parent functions (for example, bayes).

quadrature is a list that its components will be passed to the function createNIGrid and they are:

type Quadrature rule (see Details of createNIGrid) Defaults to "GLe".

level Accuracy level (typically number of grid points for the underlying 1D quadrature rule).
Defaults to 6.

ndConstruction Character vector which denotes the construction rule for multidimensional grids.
"product” for product rule, returns a full grid (default). "sparse” for combination technique,
leads to a regular sparse grid.

level. trans Logical variable denotes either to take the levels as number of grid points (FALSE =
default) or to transform in that manner that number of grid points = 2*(levels-1) (TRUE). See,
codecreateNIGrid, for details.

quadrature is activated when crt.bayes.control$method = "quadrature” in any of the parent
functions (for example, bayes).

Value
A list of two lists each contains the control parameters for hcubature and createNIGrid, respec-
tively.

Examples

crt.bayes.control()
crt.bayes.control(cubature = list(tol = 1e-4))
crt.bayes.control(quadrature = list(level = 4))

crt.minimax.control Returns Control Parameters for Optimizing Minimax Criteria Over
The Parameter Space

Description

The function crt.minimax.control returns a list of nloptr control parameters for optimizing the
minimax criterion over the parameter space.

The key tuning parameter for our application is maxeval. Its value should be increased when either
the dimension or the size of the parameter space becomes larger to avoid pre-mature convergence in
the inner optimization problem over the parameter space. If the CPU time matters, the user should
find an appropriate speed-accuracy trade-off for her/his own design problem.

26 crt.minimax.control

Usage

crt.minimax.control(
x@ = NULL,
optslist = list(stopval = -Inf, algorithm = "NLOPT_GN_DIRECT_L", xtol_rel = 1e-06,
ftol_rel = 0, maxeval = 1000),

)
Arguments
X0 Vector of the starting values for the optimization problem (must be from the
parameter space).
optslist A list. It will be passed to the argument opts of the function nloptr. See
"Details’.
Further arguments will be passed to n1.opts from package nloptr.
Details

Argument optslist will be passed to the argument opts of the function nloptr:
stopval Stop minimization when an objective value <= stopval is found. Setting stopval to
-Inf disables this stopping criterion (default).

algorithm Defaults to NLOPT_GN_DIRECT_L. DIRECT-L is a deterministic-search algorithm based
on systematic division of the search domain into smaller and smaller hyperrectangles.

xtol_rel Stop when an optimization step (or an estimate of the optimum) changes every parameter
by less than xtol_rel multiplied by the absolute value of the parameter. Criterion is disabled
if xtol_rel is non-positive. Defaults to 1e-5.

ftol_rel Stop when an optimization step (or an estimate of the optimum) changes the objective
function value by less than ftol_rel multiplied by the absolute value of the function value.
Criterion is disabled if ftol_rel is non-positive. Defaults to Te-8.

maxeval Stop when the number of function evaluations exceeds maxeval. Criterion is disabled if
maxeval is non-positive. Defaults to 1000. See below.

A detailed explanation of all the options is shown by nloptr.print.options() in package nloptr.

Value

A list of control parameters for the function nloptr.

Examples

crt.minimax.control (optslist = list(maxeval = 2000))

FIM_2par_exp_censorl 27

FIM_2par_exp_censor1 Fisher Information Matrix for a 2-Parameter Cox Proportional-
Hazards Model for Type One Censored Data

Description

It provides the cpp function for the FIM introduced in Eq. (3.1) of Schmidt and Schwabe (2015) for
type one censored data.

Usage

FIM_2par_exp_censor1(x, w, param, tcensor)

Arguments
X Vector of design points.
w Vector of design weight. Its length must be equal to the length of x and sum(w)
=1.
param Vector of values for the model parameters ¢(f5o, 51).
tcensor The experiment is terminated at the fixed time point tcensor.
Value

Fisher information matrix.

References

Schmidt, D., & Schwabe, R. (2015). On optimal designs for censored data. Metrika, 78(3), 237-
257.

FIM_2par_exp_censor2 Fisher Information Matrix for a 2-Parameter Cox Proportional-
Hazards Model for Random Censored Data

Description

It provides the cpp function for the FIM introduced in Eq. (3.1) of Schmidt and Schwabe (2015) for
random censored data (type two censored data).

Usage

FIM_2par_exp_censor2(x, w, param, tcensor)

28 FIM_3par_exp_censorl

Arguments
X Vector of design points.
w Vector of design weight. Its length must be equal to the length of x and sum(w)
=1.
param Vector of values for the model parameters ¢Sy, 81).
tcensor The experiment is terminated at the fixed time point tcensor.
Value

Fisher information matrix.

References

Schmidt, D., & Schwabe, R. (2015). On optimal designs for censored data. Metrika, 78(3), 237-
257.

FIM_3par_exp_censor1 Fisher Information Matrix for a 3-Parameter Cox Proportional-
Hazards Model for Type One Censored Data

Description
It provides the cpp function for the FIM introduced in Page 247 of Schmidt and Schwabe (2015)
for type one censored data.

Usage

FIM_3par_exp_censorl1(x, w, param, tcensor)

Arguments
X Vector of design points.
w Vector of design weight. Its length must be equal to the length of x and sum(w)
=1.
param Vector of values for the model parameters ¢Sy, 81, B2).
tcensor The experiment is terminated at the fixed time point tcensor.
Value

Fisher information matrix.

References

Schmidt, D., & Schwabe, R. (2015). On optimal designs for censored data. Metrika, 78(3), 237-
257.

FIM_3par_exp_censor2 29

FIM_3par_exp_censor2 Fisher Information Matrix for a 3-Parameter Cox Proportional-
Hazards Model for Random Censored Data

Description

It provides the cpp function for the FIM introduced in Page 247 of Schmidt and Schwabe (2015)
for random censored data (type two censored data).

Usage

FIM_3par_exp_censor2(x, w, param, tcensor)

Arguments
X Vector of design points.
w Vector of design weight. Its length must be equal to the length of x and sum(w)
=1.
param Vector of values for the model parameters (5o, 51, 52)-
tcensor The experiment is terminated at the fixed time point tcensor.
Value

Fisher information matrix.

References

Schmidt, D., & Schwabe, R. (2015). On optimal designs for censored data. Metrika, 78(3), 237-
257.

FIM_exp_2par Fisher Information Matrix for the 2-Parameter Exponential Model

Description

It provides the cpp function for FIM for the model ~a + exp(-b*x).

Usage

FIM_exp_2par(x, w, param)

30 FIM_kinetics_alcohol

Arguments
X Vector of design points.
w Vector of design weight. Its length must be equal to the length of x and sum(w)
=1.
param Vector of values for the model parameters c(a, b).
Details

The FIM does not depend on the value of a.

Value

Fisher information matrix.

References
Dette, H., & Neugebauer, H. M. (1997). Bayesian D-optimal designs for exponential regression
models. Journal of Statistical Planning and Inference, 60(2), 331-349.

Examples

FIM_exp_2par(x = c(1, 2), w = c(.5, .5), param = c(3, 4))

FIM_kinetics_alcohol Fisher Information Matrix for the Alcohol-Kinetics Model

Description

It provides the cpp function for FIM for the model ~(b3 * x1)/(1 + b1 * x1 + b2 * x2)

Usage

FIM_kinetics_alcohol(x1, x2, w, param)

Arguments
x1 Vector of design points (first dimension).
X2 Vector of design points (second dimension).
w Vector of design weight. Its length must be equal to the length of x and sum(w)
=1.
param Vector of values for the model parameters c(b1, b2, b3).
Value

Fisher information matrix.

FIM_logistic 31

FIM_logistic Fisher Information Matrix for the 2-Parameter Logistic (2PL) Model

Description

It provides the cpp function for FIM for the model ~1/(1 + exp(-b *(x - a))). In item response
theory (IRT), a is the item difficulty parameter, b is the item discrimination parameter and x is the
person ability parameter.

Usage

FIM_logistic(x, w, param)

Arguments
X Vector of design points.
w Vector of design weight. Its length must be equal to the length of x and sum(w)
=1.
param Vector of values for the model parameters c(a, b).
Details

It can be shown that minimax and standardized D-optimal designs for the 2PL model is symmetric
around point ay; = (a* + a¥)/2 where a” and aV are the lower bound and upper bound for
parameter a, respectively. In ICA.control, arguments sym and sym_point can be used to specify
aps and find accurate symmetric optimal designs.

Value

Fisher information matrix.

Examples

FIM_logistic(x = c(1, 2), w = c(.5, .5), param = c(2, 1))

FIM_logistic_2pred Fisher Information Matrix for the Logistic Model with Two Predictors

Description

It provides the cpp function for FIM for the following model:

~exp(b0+ bl * x1 +b2 *x x2 + b3 * x1 * x2)/(1 +exp(bd +bl x x1 +b2 *x2 +b3 * x1 *x2)).
Usage

FIM_logistic_2pred(x1, x2, w, param)

32 FIM_logistic_4par

Arguments
x1 Vector of design points (for first predictor).
X2 Vector of design points (for second predictor).
w Vector of design weight. Its length must be equal to the length of x and sum(w)
=1.
param Vector of values for the model parameters c(b@, b1, b2, b3).
Value

Fisher information matrix.

FIM_logistic_4par Fisher Information Matrix for the 4-Parameter Logistic Model

Description

It provides the cpp function for the FIM for the model ~thetal/(1+exp(theta2*x+theta3))+theta4.
This model is another re-parameterization of the 4-parameter Hill model. For more details, see Eq.
(1) and (2) in Hyun and Wong (2015).

Usage

FIM_logistic_4par(x, w, param)

Arguments
X Vector of design points.
w Vector of design weight. Its length must be equal to the length of x and sum(w)
=1.
param Vector of values for the model parameters c(thetal, theta2, theta3, theta4).
Details

The fisher information matrix does not depend on theta4.

Value

Fisher information matrix.

References

Hyun, S. W., & Wong, W. K. (2015). Multiple-Objective Optimal Designs for Studying the Dose
Response Function and Interesting Dose Levels. The international journal of biostatistics, 11(2),
253-271.

FIM_loglin 33

See Also

multiple

Examples

FIM_logistic_4par(x = c(-6.9, -4.6, -3.9, 6.7),
w = c(0.489, 0.40, 0.061, 0.050),
param = c(1.563, 1.790, 8.442, 0.137))

FIM_loglin Fisher Information Matrix for the Mixed Inhibition Model

Description

It provides the cpp function for the FIM for the model ~theta®@ + thetal* log(x + theta2).

Usage

FIM_loglin(x, w, param)

Arguments
X Vector of design points.
w Vector of design weight. Its length must be equal to the length of x and sum(w)
=1.
param Vector of values for the model parameters c(theta®@, thetal, theta2).
Details

The FIM of this model does not depend on the parameter theta®.

Value

Fisher information matrix.

References

Dette, H., Kiss, C., Bevanda, M., & Bretz, F. (2010). Optimal designs for the EMAX, log-linear
and exponential models. Biometrika, 97(2), 513-518.

34 FIM_mixed_inhibition

FIM_mixed_inhibition Fisher Information Matrix for the Mixed Inhibition Model.

Description

It provides the cpp function for FIM for the model ~ V*S/(Km * (1 + I/Kic)+ S * (1 + I/Kiu))

Usage

FIM_mixed_inhibition(S, I, w, param)

Arguments
S Vector of S component of design points. S is the substrate concentration.
I Vector of I component of design points. I is the inhibitor concentration.
w Vector of design weight. Its length must be equal to the length of S and I, besides
sum(w) =1.
param Vector of values for the model parameters c(V, Km, Kic, Kiu).
Details

The optimal design does not depend on parameter V.

Value

Fisher information matrix of design.

References

Bogacka, B., Patan, M., Johnson, P. J., Youdim, K., & Atkinson, A. C. (2011). Optimum design of
experiments for enzyme inhibition kinetic models. Journal of biopharmaceutical statistics, 21(3),
555-572.

Examples

FIM_mixed_inhibition(S = c(30, 3.86, 30, 4.60),
I =c(0, 0, 5.11, 4.16), w = rep(.25, 4),
param = c(1.5, 5.2, 3.4, 5.6))

FIM_power_logistic 35

FIM_power_logistic Fisher Information Matrix for the Power Logistic Model

Description

It provides the cpp function for FIM for the model ~1/(1 + exp(-b *(x - a)))"s, but when s is
fixed (a two by two matrix).

Usage

FIM_power_logistic(x, w, param, s)

Arguments
X Vector of design points.
w Vector of design weight. Its length must be equal to the length of x and sum(w)
=1.
param Vector of values for the model parameters c(a, b).
s parameter s.
Value

Fisher information matrix.

Note

This matrix is a two by two matrix and not equal to the Fisher information matrix for the power
logistic model when the derivative is taken with respect to all the three parameters. This matrix is
only given to be used in some illustrative examples.

FIM_sig_emax Fisher Information Matrix for the Sigmoid Emax Model

Description

It provides the cpp function for FIM for the model ~b1+(b2-b1)*(x"*b4)/(x"b4+b3*b4)

Usage

FIM_sig_emax(x, w, param)

36

Arguments
X Vector of design points.
w Vector of design weight. Its length must be equal to the length of x and sum(w)
=1.
param Vector of values for the model parameters c(b1, b2, b3, b4). The mean of
response variable is .
Value

Fisher information matrix.

ICA.control Returns ICA Control Optimization Parameters

Description

The function ICA. control returns a list of ICA control parameters.

Usage

ICA.control(
ncount = 40,
nimp = ncount/10,
assim_coeff = 4,
revol_rate = 0.3,
damp = 0.99,
uniting_threshold = 0.02,
equal_weight = FALSE,

sym = FALSE,

sym_point = NULL,

stop_rule = c("maxiter"”, "equivalence"),
stoptol = 0.99,

checkfreq = 0,

plot_cost = TRUE,

plot_sens = TRUE,
plot_3d = c("lattice"”, "rgl"),

trace = TRUE,
rseed = NULL
)
Arguments
ncount Number of countries. Defaults to 40.
nimp Number of imperialists. Defaults to 10 percent of ncount.

assim_coeff Assimilation coefficient. Defaults to 4.

ICA.control 37

revol_rate Revolution rate. Defaults to 0. 3.

damp Damp ratio for revolution rate. revol_rate is decreased in every iteration by a
factor of damp (revol_rate * damp). Defaults to @.99.

uniting_threshold
If the distance between two imperialists is less than the product of the uniting
threshold by the largest distance in the search space, ICA unites the empires.
Defaults to 0. 02.

equal_weight Should the weights of design points assumed to be equal? Defaults to FALSE. If
TRUE, it reduces the dimension of the search space and produces a design that
gives equal weight to all of its support points.

sym Should the design points be symmetric around sym_point? Defaults to FALSE.
When TRUE, sym_point must be given.

sym_point If sym = TRUE, the design points will be symmetric around sym_point. See 'De-
tails’.

stop_rule Either 'maxiter' or 'equivalence'. Denotes the type of stopping rule. See

’Details’. Defaults to 'maxiter'.

stoptol If stop_rule = 'equivalence', algorithm stops when ELB is larger than stoptol.
Defaults to 0. 99.

checkfreq The algorithm verifies the general equivalence theorem in every checkfreq it-
erations. When checkfreq = 0, no verification will be done. When checkfreq
= Inf, only the output design will be verified. Defaults to .

plot_cost Plot the iterations (evolution) of algorithm? Defaults to TRUE.
plot_sens Plot the sensitivity (derivative) function at every checkfreq. Defaults to TRUE.
plot_3d Character. Which package should be used to plot the sensitivity plot for models
with two explanatory variables?
trace Print the information in every iteration? Defaults to TRUE.
rseed Random seed. Defaults to NULL.
Details

If stop_rule = 'maxiter', the algorithm iterates until maximum number of iterations.

If stope_rule = 'equivalence’, the algorithm stops when either ELB is greater than stoptol
or it reaches maxiter. In this case, you must specify the check frequency by checkfreq. Note
that checking equivalence theorem is a very time consuming process, especially for Bayesian and
minimax design problems. We advise using this option only for locally, multiple objective and
robust optimal designs.

What to follows shows how sym_point and sym may be useful?

Assume the 2PL model of the form P(Y = 1) = m and let the parameters a and b
belong to [ar,, ay] and [br, by], respectively. It can be shown that the optimal design for this model
is symmetric around a s = % For this model, to find accurate symmetric designs, one can set
sym = TRUE and provide the value of the ay; via sym_point. In this case, the output design will be
symmetric around the point sym_point. The length of sym_point must be equal to the number of

model predictors, here, is equal to 1.

38 ICAOD

Value

A list of ICA control parameters.

Examples

ICA.control(ncount = 100)

ICAOD ICAOD: Finding Optimal Designs for Nonlinear Models Using Impe-
rialist Competitive Algorithm

Description

Different functions are available to find optimal designs for linear and nonlinear models using the
imperialist competitive algorithm (ICA). Because the optimality criteria for linear and nonlinear
models depend on the unknown parameters, one should choose on of the following method to deal
with the parameter-dependency based on the available information for the unknown parameters:

* locally: finds locally optimal designs. A vector of initial estimates or guess is available for
the vector of model parameters from a pilot or similar study.

* bayes: finds Bayesian optimal designs. A continuous prior is available for the vector of
unknown model parameters.

* robust: finds robust or optimum-in-average designs. It is similar to bayes, but uses a discrete
prior.

* minimax: finds minimax and standardized maximin optimal designs. Each of the unknown
parameters belongs to a user-specified interval. The purpose is to find a design that protects
the user against the worst scenario over the parameter space. Standardized designs should be
used when locally optimal design of the model of interest has an analytical solution.

Some functions are also available to find optimal designs for special applications:

* multiple: finds locally multiple objective optimal designs for the 4-parameter Hill model
with application in dose-response stuides. It uses the same strategy as locally to deal with
the unknown model parameters.

* bayescomp: finds a design that meets the dual goal of the parameter estimation and increasing
the probability of a particular outcome in a binary response model. It uses the same strategy
as the function bayes to deal with the unknown mode parameters and applicable in medicine
studies.

Details

The functions locally and robust are very easy to be applied and they are usually fast. The speed
of the functions bayes and minimax considerably depends on the value of the tuning parameters.
The following functions may also be used to verify the optimality of an output design for each of
the above criterion:

* senslocally

leff 39

* sensrobust

* sensbhayes

* sensminimax
* sensmultiple

* senshayescomp

For more details see Masoudi et al. (2017, 2019).

References

Masoudi E, Holling H, Wong WK (2017). Application of Imperialist Competitive Algorithm to
Find Minimax and Standardized Maximin Optimal Designs. Computational Statistics and Data
Analysis, 113, 330-345. <do0i:10.1016/j.csda.2016.06.014>

Masoudi E, Holling H, Duarte BP, Wong Wk (2019). Metaheuristic Adaptive Cubature Based
Algorithm to Find Bayesian Optimal Designs for Nonlinear Models. Journal of Computational and
Graphical Statistics. <doi:10.1080/10618600.2019.1601097>

leff Calculates Relative Efficiency for Locally Optimal Designs

Description

Given a vector of initial estimates for the parameters, this function calculates the D-and PA- effi-
ciency of a design &; with respect to a design &;. Usually, &5 is an optimal design.

Usage

leff(
formula,
predvars,
parvars,
family = gaussian(),
inipars,
type = c("D", "PA"),
fimfunc = NULL,
X2,
w2,
x1,
wl,
npar
prob

length(inipars),
NULL

40

Arguments

formula

predvars
parvars

family

inipars

type

fimfunc

X2
w2
x1
wl

npar

prob

Details

leff

A linear or nonlinear model formula. A symbolic description of the model
consists of predictors and the unknown model parameters. Will be coerced to a
formula if necessary.

A vector of characters. Denotes the predictors in the formula.
A vector of characters. Denotes the unknown parameters in the formula.

A description of the response distribution and the link function to be used in the
model. This can be a family function, a call to a family function or a character
string naming the family. Every family function has a link argument allowing to
specify the link function to be applied on the response variable. If not specified,
default links are used. For details see family. By default, a linear gaussian
model gaussian() is applied.

Vector. Initial values for the unknown parameters. It will be passed to the infor-
mation matrix and also probability function.

A character. "D" denotes the D-efficiency and "PA" denotes the average P-
efficiency.

A function. Returns the FIM as a matrix. Required when formula is missing.
See ’Details’ of minimax.

Vector of design (support) points of the optimal design (£2). Similar to x1.
Vector of corresponding design weights for x2.

Vector of design (support) points of &;. See ’Details’ of leff.

Vector of corresponding design weights for x1.

Number of model parameters. Used when fimfunc is given instead of formula
to specify the number of model parameters. If not given, the sensitivity plot may
be shifted below the y-axis. When NULL, it will be set here to length(inipars).

Either formula or a function. When function, its argument are x and param,
and they are the same as the arguments in fimfunc. prob as a function takes the
design points and vector of parameters and returns the probability of success at
each design points. See ’Examples’.

For a known 6, relative D-efficiency is

log|M (&1,60)| — log|M (&2, 60)|
npar

)

exp(

The relative P-efficiency is

k k

exp(log(z U)h'p(l’h;, 90) — IOg(Z inp(in, 90))

=1 i=1

where x4 and wo are usually the support points and the corresponding weights of the optimal design,

respectively.

leff 41

The argument x1 is the vector of design points. For design points with more than one dimension (the
models with more than one predictors), it is a concatenation of the design points, but dimension-
wise. For example, let the model has three predictors (I, S, Z). Then, a two-point optimal design
has the following points: {pointl = (I1, S1, Z1), point2 = (I2, S2, Z2)}. Then, the argument x1 is
equal to x = c(I1, I2, S1, S2, 71, Z2).

Value

A value between 0 and 1.

References

McGree, J. M., Eccleston, J. A., and Duffull, S. B. (2008). Compound optimal design criteria for
nonlinear models. Journal of Biopharmaceutical Statistics, 18(4), 646-661.

Examples

p <= c(1, -2, 1, -1)

prior4.4 <- uniform(p -1.5, p + 1.5)

formula4.4 <- ~exp(b@+b1*x1+b2*x2+b3xx1*x2)/(1+exp(b@+b1*x1+b2*x2+b3xx1%*x2))
prob4.4 <- ~1-1/(1+exp(b@ + b1 * x1 + b2 * x2 + b3 * x1 * x2))

predvars4.4 <- c("x1", "x2")

parvars4.4 <- c("b@", "b1", "b2", "b3")

Locally D-optimal design is as follows:

weight and point of D-optimal design

Point1 Point2 Point3 Point4

/1.00000 \ /-1.00000\ /0.06801 \ /1.00000 \
\-1.00000/ \-1.00000/ \1.00000 / \1.00000 /
Weightl Weight2 Weight3 Weight4
0.250 0.250 0.250 0.250

xopt_D <- c(1, -1, .0680, 1, -1, -1, 1, 1)
wopt_D <- rep(.25, 4)

Let see if we use only three of the design points, what is the relative efficiency.
leff(formula = formula4.4, predvars = predvars4.4, parvars = parvars4.4, family = binomial(),
x1 = c(1, -1, .0680, -1, -1, 1), wl = c(.33, .33, .33),
inipars = p,
x2 = xopt_D, w2 = wopt_D)
Wow, it heavily drops!

Locally P-optimal design has only one support point and is -1 and 1
xopt_P <- c(-1, 1)
wopt_P <- 1

What is the relative P-efficiency of the D-optimal design with respect to P-optimal design?
leff(formula = formula4.4, predvars = predvars4.4, parvars = parvars4.4, family = binomial(),
x1 = xopt_D, wl = wopt_D,
inipars = p,

42

type = "PA",
prob = prob4.4,

X2 = xopt_P, w2 = wopt_P)

.535

locally

locally

Locally D-Optimal Designs

Description

Finds locally D-optimal designs for linear and nonlinear models. It should be used when a vector of
initial estimates is available for the unknown model parameters. Locally optimal designs may not

be efficient when the initial estimates are far away from the true values of the parameters.

Usage

locally(
formula,
predvars,
parvars,

family = gaussian(),

1x,

ux,

iter,

K,

inipars,
fimfunc = NULL,

ICA.control = list(),
sens.control = list(),
initial = NULL,

npar = length(inipars),

plot_3d = c("lattice”, "rgl"),

x = NULL,
crtfunc = NULL,
sensfunc = NULL

Arguments
formula A linear or nonlinear model formula. A symbolic description of the model
consists of predictors and the unknown model parameters. Will be coerced to a
formula if necessary.
predvars A vector of characters. Denotes the predictors in the formula.

parvars A vector of characters. Denotes the unknown parameters in the formula.

locally

family

1x

ux

iter

inipars

fimfunc

ICA.control
sens.control

initial

npar

plot_3d

crtfunc

sensfunc

Details

43

A description of the response distribution and the link function to be used in the
model. This can be a family function, a call to a family function or a character
string naming the family. Every family function has a link argument allowing to
specify the link function to be applied on the response variable. If not specified,
default links are used. For details see family. By default, a linear gaussian
model gaussian() is applied.

Vector of lower bounds for the predictors. Should be in the same order as
predvars.

Vector of upper bounds for the predictors. Should be in the same order as
predvars.

Maximum number of iterations.

Number of design points. Must be at least equal to the number of model param-
eters to avoid singularity of the FIM.

A vector of initial estimates for the unknown parameters. It must match parvars
or the argument param of the function fimfunc, when provided.

A function. Returns the FIM as a matrix. Required when formula is missing.
See ’Details’ of minimax.

ICA control parameters. For details, see ICA.control.
Control Parameters for Calculating the ELB. For details, see sens.control.

A matrix of the initial design points and weights that will be inserted into the
initial solutions (countries) of the algorithm. Every row is a design, i.e. a con-
catenation of x and w. Will be coerced to a matrix if necessary. See ’Details’ of
minimax.

Number of model parameters. Used when fimfunc is given instead of formula
to specify the number of model parameters. If not given, the sensitivity plot may
be shifted below the y-axis. When NULL, it is set to length(inipars).

Which package should be used to plot the sensitivity (derivative) function for
two-dimensional design space. Defaults to "lattice”.

A vector of candidate design (support) points. When is not set to NULL (de-
fault), the algorithm only finds the optimal weights for the candidate points in x.
Should be set when the user has a finite number of candidate design points and
the purpose is to find the optimal weight for each of them (when zero, they will
be excluded from the design). For design points with more than one dimension,
see 'Details’ of sensminimax.

(Optional) a function that specifies an arbitrary criterion. It must have especial
arguments and output. See ’Details’ of minimax.

(Optional) a function that specifies the sensitivity function for crtfunc. See
’Details’ of minimax.

Let M (&, 6p) be the Fisher information matrix (FIM) of a k—point design £ and 6, be the vector of
the initial estimates for the unknown parameters. A locally D-optimal design £* minimizes over =

- log |M(£7 00)|

44 locally

One can adjust the tuning parameters in ICA.control to set a stopping rule based on the general
equivalence theorem. See "Examples” below.

Value
an object of class minimax that is a list including three sub-lists:

arg A list of design and algorithm parameters.

evol A list of length equal to the number of iterations that stores the information about the best
design (design with least criterion value) of each iteration. evol[[iter]] contains:

iter Iteration number.

X Design points.

w Design weights.

min_cost Value of the criterion for the best imperialist (design).
mean_cost Mean of the criterion values of all the imperialists.
sens An object of class ’sensminimax’. See below.

param Vector of parameters.

empires A list of all the empires of the last iteration.

alg A list with following information:

nfeval Number of function evaluations. It does not count the function evaluations from checking the general equi
nlocal Number of successful local searches.

nrevol Number of successful revolutions.

nimprove Number of successful movements toward the imperialists in the assimilation step.

convergence Stopped by ’maxiter’ or equivalence’?

method A type of optimal designs used.
design Design points and weights at the final iteration.
out A data frame of design points, weights, value of the criterion for the best imperialist (min_cost),

and Mean of the criterion values of all the imperialistsat each iteration (mean_cost).

The list sens contains information about the design verification by the general equivalence theorem.
See sensminimax for more details. It is given every ICA.control$checkfreq iterations and also
the last iteration if ICA.control$checkfreq >= 0. Otherwise, NULL.

param is a vector of parameters that is the global minimum of the minimax criterion or the global
maximum of the standardized maximin criterion over the parameter space, given the current x, w.

References

Masoudi E, Holling H, Wong W.K. (2017). Application of Imperialist Competitive Algorithm to
Find Minimax and Standardized Maximin Optimal Designs. Computational Statistics and Data
Analysis, 113, 330-345.

locally

See Also

senslocally

Examples

S HEHHRHEHEHREHEEH R R
Exponential growth model
HHHHHHEEEEEE A

See how we set stopping rule by adjusting 'stop_rule', 'checkfreq' and 'stoptol'

It calls the 'senslocally' function every checkfreq = 50 iterations to

calculate the ELB. if ELB is greater than stoptol = .95, then the algoithm stops.

initializing by one iteration

nyn nan

resl <- locally(formula = ~a + exp(-b*x), predvars = "x", parvars = c("a", "b"),

1x =0, ux =1, inipars = c(1, 10),
iter =1, k = 2,
ICA.control= ICA.control(rseed = 100,
stop_rule = "equivalence”,
checkfreq = 20, stoptol = .95))
Not run:
update the algorithm
resl <- update(resl, 150)
#stops at iteration 21 because ELB is greater than .95

End(Not run)

fixed x, 1x and ux are only required for equivalence theorem
Not run:

nyn nan

res1.1 <- locally(formula = ~a + exp(-b*x), predvars = "x", parvars = c("a",

Ix =0, ux =1, inipars = c(1, 10),
iter = 100,
x = c(.25, .5, .75),
ICA.control= ICA.control(rseed = 100))
plot(resi.1)
we can not have an optimal design using this x

End(Not run)

HHHHHHAREE A
two parameter logistic model
HHHEHHAEEEEE AR
res2 <- locally(formula = ~1/(1 + exp(-b *(x - a))),
predvars = "x", parvars = c("a", "b"),
family = binomial(), 1x = -3, ux = 3,
inipars = c(1, 3), iter =1, k = 2,
ICA.control= list(rseed = 100, stop_rule = "equivalence”,
checkfreq = 50, stoptol = .95))
Not run:
res2 <- update(res2, 100)
stops at iteration 51

End(Not run)

"By,

45

46

HHHHHHAEEE R
A model with two predictors

fi
mixed inhibition model

Not run:
res3 <- locally(formula = ~ VxS/(Km x (1 + I/Kic)+ S x (1 + I/Kiu)),
predvars = c("S", "I"),
parvars = c("V", "Km", "Kic", "Kiu"),

family = gaussian(),
Ix = c(@, @), ux = c(30, 60),

k = 4,

iter = 300,

inipars = c(1.5, 5.2, 3.4, 5.6),

ICA.control= list(rseed = 100, stop_rule = "equivalence”,

checkfreq = 50, stoptol = .95))
stops at iteration 100

End(Not run)

Not run:
fixed x
res3.1 <- locally(formula = ~ VxS/(Km x (1 + I/Kic)+ S x (1 + I/Kiu)),
predvars = c("S", "I"),
parvars = c("V", "Km", "Kic"”, "Kiu"),

family = gaussian(),

1x = c(@, @), ux = c(30, 60),

iter = 100,

x = c(20, 4, 20, 4, 10, 0, 0, 30, 3, 2),
inipars = ¢(1.5, 5.2, 3.4, 5.6),
ICA.control= list(rseed = 100))

End(Not run)

HHHHHHERHEEE A
user-defined optimality criterion
HHHEHHAEEERE R
When the model is defined by the formula interface
A-optimal design for the 2PL model.
the criterion function must have argument x, w fimfunc and the parameters defined in
use 'fimfunc' as a function of the design points x, design weights w and
the 'parvars' parameters whenever needed.
Aopt <-function(x, w, a, b, fimfunc){
sum(diag(solve(fimfunc(x = x, w = w, a = a, b = b))))
3

the sensitivtiy function

locally

'parvars’'.

xi_x is a design that put all its mass on x in the definition of the sensitivity function

x is a vector of design points

locally 47

Aopt_sens <- function(xi_x, x, w, a, b, fimfunc){
fim <- fimfunc(x = x, w=w, a =a, b =b)
M_inv <- solve(fim)
M_x <- fimfunc(x = xi_x, w=1, a =a, b =0b)
sum(diag(M_inv %*% M_x %*x% M_inv)) - sum(diag(M_inv))
3

res4 <- locally(formula = ~1/(1 + exp(-b * (x-a))), predvars = "x",
parvars = c("a", "b"), family = "binomial”,
1x = -3, ux = 3, inipars = c(1, 1.25),
iter =1, k = 2,
crtfunc = Aopt,
sensfunc = Aopt_sens,
ICA.control = list(checkfreq = Inf))

Not run:
res4 <- update(res4, 50)

End(Not run)

When the FIM of the model is defined directly via the argument 'fimfunc'
the criterion function must have argument x, w fimfunc and param.
use 'fimfunc' as a function of the design points x, design weights w
and param whenever needed.
Aopt2 <-function(x, w, param, fimfunc){
sum(diag(solve(fimfunc(x = x, w = w, param = param))))
3
the sensitivtiy function
xi_x is a design that put all its mass on x in the definition of the sensitivity function
x is a vector of design points
Aopt_sens2 <- function(xi_x, x, w, param, fimfunc){
fim <- fimfunc(x = x, w = w, param = param)
M_inv <- solve(fim)
M_x <- fimfunc(x = xi_x, w = 1, param = param)
sum(diag(M_inv %*% M_x %*% M_inv)) - sum(diag(M_inv))
3

res4.1 <- locally(fimfunc = FIM_logistic,
1x = -3, ux = 3, inipars = c(1, 1.25),
iter = 1, k = 2,
crtfunc = Aopt2,
sensfunc = Aopt_sens2,
ICA.control = list(checkfreq = Inf))
Not run:
res4.1 <- update(res4.1, 50)
plot(res4.1)

End(Not run)

locally c-optimal design
example from Chaloner and Larntz (1989) Figure 3
c_opt <-function(x, w, a, b, fimfunc){

gam <- log(.95/(1-.95))

48 locallycomp

M <- fimfunc(x = x, w=w, a =a, b =bhb)
c <- matrix(c(1, -gam * b*(-2)), nrow = 1)
B <- t(c) %*% c
sum(diag(B %*% solve(M)))
3

c_sens <- function(xi_x, x, w, a, b, fimfunc){

gam <- log(.95/(1-.95))

M <- fimfunc(x = x, w=w, a =a, b =0b)

M_inv <- solve(M)

M_x <- fimfunc(x = xi_x, w =1, a =a, b =Db)

c <- matrix(c(1, -gam * b*(-2)), nrow = 1)

B <- t(c) %*% c

sum(diag(B %*% M_inv %*% M_x %*% M_inv)) - sum(diag(B %*% M_inv))
3

nyn

res4.2 <- locally(formula = ~1/(1 + exp(-b * (x-a))), predvars = "x",
parvars = c("a", "b"), family = "binomial”,
Ix = -1, ux = 1, inipars = c(0, 7),
iter =1, k = 2,
crtfunc = c_opt, sensfunc = c_sens,
ICA.control = list(rseed = 1, checkfreq = Inf))

Not run:
res4.2 <- update(res4.2, 100)

End(Not run)

locallycomp Locally DP-Optimal Designs

Description

Finds compound locally DP-optimal designs that meet the dual goal of parameter estimation and
increasing the probability of a particular outcome in a binary response model. A compound locally
DP-optimal design maximizes the product of the efficiencies of a design £ with respect to D- and
average P-optimality, weighted by a pre-defined mixing constant 0 < o < 1.

Usage

locallycomp(
formula,
predvars,
parvars,
family = gaussian(),
1x,
ux,
alpha,

locallycomp

prob,
iter,

k,
inipars,

49

fimfunc = NULL,

ICA.control = list(),
sens.control = list(),
initial = NULL,

npar = length(inipars),
plot_3d = c("lattice”, "rgl")

Arguments

formula

predvars
parvars

family

1x

ux

alpha

prob

iter

inipars

fimfunc

ICA.control

sens.control

A linear or nonlinear model formula. A symbolic description of the model
consists of predictors and the unknown model parameters. Will be coerced to a
formula if necessary.

A vector of characters. Denotes the predictors in the formula.
A vector of characters. Denotes the unknown parameters in the formula.

A description of the response distribution and the link function to be used in the
model. This can be a family function, a call to a family function or a character
string naming the family. Every family function has a link argument allowing to
specify the link function to be applied on the response variable. If not specified,
default links are used. For details see family. By default, a linear gaussian
model gaussian() is applied.

Vector of lower bounds for the predictors. Should be in the same order as
predvars.

Vector of upper bounds for the predictors. Should be in the same order as
predvars.

A value between 0 and 1. Compound or combined DP-criterion is the product
of the efficiencies of a design with respect to D- and average P- optimality,
weighted by alpha.

Either formula or a function. When function, its argument are x and param,
and they are the same as the arguments in fimfunc. prob as a function takes the
design points and vector of parameters and returns the probability of success at
each design points. See "Examples’.

Maximum number of iterations.

Number of design points. When alpha = @, then k can be less than the number
of parameters.

Vector. Initial values for the unknown parameters. It will be passed to the infor-
mation matrix and also probability function.

A function. Returns the FIM as a matrix. Required when formula is missing.
See ’Details’ of minimax.

ICA control parameters. For details, see ICA.control.

Control Parameters for Calculating the ELB. For details, see sens.control.

50 locallycomp

initial A matrix of the initial design points and weights that will be inserted into the
initial solutions (countries) of the algorithm. Every row is a design, i.e. a con-
catenation of x and w. Will be coerced to a matrix if necessary. See ’Details’ of
minimax.

npar Number of model parameters. Used when fimfunc is given instead of formula
to specify the number of model parameters. If not given, the sensitivity plot may
be shifted below the y-axis. When NULL, it will be set here to length(inipars).

plot_3d Which package should be used to plot the sensitivity (derivative) function for
two-dimensional design space. Defaults to "lattice”.

Details

Let = be the space of all approximate designs with k design points (support points) at 1, Ta, ..., Tk
from design space y with corresponding weights w1, ..., wg. Let M (€, 8) be the Fisher information
matrix (FIM) of a k—point design &, 6y is a user-given vector of initial estimates for the unknown
parameters 6 and p(z;,) is the ith probability of success given by z; in a binary response model.
A compound locally DP-optimal design maximizes over =

k
%log |IM(£,60)] + (1 — @) log (Z wip(xi,00)> .

i=1

Use plot function to verify the general equivalence theorem for the output design or change
checkfreqin ICA.control.

One can adjust the tuning parameters in ICA.control to set a stopping rule based on the general
equivalence theorem. See "Examples” in locally.

Value
an object of class minimax that is a list including three sub-lists:

arg A list of design and algorithm parameters.

evol A list of length equal to the number of iterations that stores the information about the best
design (design with least criterion value) of each iteration. evol[[iter]] contains:

iter Iteration number.

X Design points.

w Design weights.

min_cost Value of the criterion for the best imperialist (design).
mean_cost Mean of the criterion values of all the imperialists.
sens An object of class ’sensminimax’. See below.
param Vector of parameters.

empires A list of all the empires of the last iteration.

alg A list with following information:

nfeval Number of function evaluations. It does not count the function evaluations from checking the general equi

locallycomp 51

nlocal Number of successful local searches.

nrevol Number of successful revolutions.

nimprove Number of successful movements toward the imperialists in the assimilation step.
convergence Stopped by "maxiter’ or equivalence’?

method A type of optimal designs used.
design Design points and weights at the final iteration.

out A data frame of design points, weights, value of the criterion for the best imperialist (min_cost),
and Mean of the criterion values of all the imperialistsat each iteration (mean_cost).

The list sens contains information about the design verification by the general equivalence theorem.
See sensminimax for more details. It is given every ICA.control$checkfreq iterations and also
the last iteration if ICA.control$checkfreq >= 0. Otherwise, NULL.

param is a vector of parameters that is the global minimum of the minimax criterion or the global
maximum of the standardized maximin criterion over the parameter space, given the current x, w.

References

McGree, J. M., Eccleston, J. A., and Duffull, S. B. (2008). Compound optimal design criteria for
nonlinear models. Journal of Biopharmaceutical Statistics, 18(4), 646-661.

Examples

Here we produce the results of Table 2 in in McGree and Eccleston (2008)
For D- and P-efficiency see, ?leff and ?peff

p <= c(1, -2, 1, -1)

prior4.4 <- uniform(p -1.5, p + 1.5)

formulad.4 <- ~exp(b@+b1*x1+b2*x2+b3xx1*x2)/(1+exp(bO+b1*x1+b2*x2+b3xx1%*x2))
prob4.4 <- ~1-1/(1+exp(b@ + b1 *x x1 + b2 * x2 + b3 * x1 * x2))

predvars4.4 <- c("x1", "x2")

parvars4.4 <- c("b@", "b1", "b2", "b3")

1b <= c(-1, -1)

ub <= c(1, 1)

set checkfreq = Inf to ask for equivalence theorem at final step.

res.® <- locallycomp(formula = formula4.4, predvars = predvars4.4, parvars = parvars4.4,
family = binomial(), prob = prob4.4, 1x = lb, ux = ub,
alpha = @, k = 1, inipars = p, iter = 10,
ICA.control = ICA.control(checkfreq = Inf))

Not run:

res.25 <- locallycomp(formula = formula4.4, predvars = predvars4.4, parvars = parvars4.4,
family = binomial(), prob = prob4.4, 1x = 1lb, ux = ub,
alpha = .25, k = 4, inipars = p, iter = 350,
ICA.control = ICA.control(checkfreq = Inf))

res.5 <- locallycomp(formula = formula4.4, predvars = predvars4.4, parvars = parvars4.4,

52

locallycomp

family = binomial(), prob = prob4.4, 1x = lb, ux = ub,
alpha = .5, k = 4, inipars = p, iter = 350,
ICA.control = ICA.control(checkfreq = Inf))
res.75 <- locallycomp(formula = formula4.4, predvars = predvars4.4, parvars = parvars4.4,
family = binomial(), prob = prob4.4, 1x = 1lb, ux = ub,
alpha = .75, k = 4, inipars = p, iter = 350,
ICA.control = ICA.control(checkfreq = Inf))

res.1 <- locallycomp(formula = formula4.4, predvars = predvars4.4, parvars = parvars4.4,
family = binomial(), prob = prob4.4, 1x = lb, ux = ub,
alpha = 1, k = 4, inipars = p, iter = 350,
ICA.control = ICA.control(checkfreq = Inf))

computing the D-efficiency
locally D-optimal design is locally DP-optimal design when alpha = 1.

leff(formula = formula4.4, predvars = predvars4.4, parvars = parvars4.4, family = binomial(),
x1 = res.0%evol[[10]]1$x, w1 = res.0%$evol[[10]1]3w,
inipars = p,
x2 = res.1%evol[[350]1%$x, w2 = res.1%$evol[[350]]%w)

leff(formula = formula4.4, predvars = predvars4.4, parvars = parvars4.4, family = binomial(),
x1 = res.25%evol[[350]]1$x, w1l = res.25%$evol[[350]]%$w,
inipars = p,
x2 = res.1$evol[[350]]1%x, w2 = res.1%evol[[350]]%w)

leff(formula = formula4.4, predvars = predvars4.4, parvars = parvars4.4, family = binomial(),
x1 = res.5%evol[[350]]1%x, wl = res.5%evol[[350]]%w,
inipars = p,
x2 = res.1$evol[[350]1%$x, w2 = res.1$evol[[350]]1%$w)

leff(formula = formula4.4, predvars = predvars4.4, parvars = parvars4.4, family = binomial(),
x1 = res.75%evol[[350]1]%$x, wl = res.75%evol[[350]]%w,
inipars = p,
x2 = res.1$evol[[350]1%$x, w2 = res.1$evol[[350]]1%$w)

computing the P-efficiency
locally p-optimal design is locally DP-optimal design when alpha = 0.

leff(formula = formula4.4, predvars = predvars4.4, parvars = parvars4.4, family = binomial(),
x2 = res.0$evol[[10]11$x, w2 = res.0$evol[[10]]$w,
prob = prob4.4,
type = "PA",
inipars = p,
x1 = res.25%$evol[[350]1]1%$x, wl = res.25%evol[[350]1]1%w)

leff(formula = formula4.4, predvars = predvars4.4, parvars = parvars4.4, family = binomial(),
x2 = res.0$evol[[10]11$x, w2 = res.0$evol[[10]]$w,
prob = prob4.4,
inipars = p,

meff

type = "PA",
x1 = res.5%evol[[350]11%$x, wl = res.5%$evol[[350]]%w)

53

leff(formula = formula4.4, predvars = predvars4.4, parvars = parvars4.4, family = binomial(),

x2 = res.0%evol[[10]11$x, w2 = res.0$evol[[10]]$w,
prob = prob4.4,

inipars = p,

type = "PA",

x1 = res.75%evol[[350]1]1$x, wl = res.75%evol[[350]1%w)

leff(formula = formula4.4, predvars = predvars4.4, parvars = parvars4.4, family = binomial(),

X2 = res.0%$evol[[10]1$x, w2 = res.1%evol[[10]]%w,
prob = prob4.4,

type = "PA",

inipars = p,

x1 = res.1%evol[[350]1%$x, wl = res.1%evol[[350]1%w)

End(Not run)

meff Calculates Relative Efficiency for Minimax Optimal Designs

Description

Given a parameter space for the unknown parameters, this function calculates the D-efficiency of a

design £; with respect to a design £3. Usually, &5 is an optimal design.

Usage

meff(
formula,
predvars,
parvars,
family = gaussian(),
1p,
up,
fimfunc = NULL,
X2,
w2,
x1,
wl,
standardized = FALSE,
localdes = NULL,
crt.minimax.control = list(),
npar = length(lp)

54 meff

Arguments

formula A linear or nonlinear model formula. A symbolic description of the model
consists of predictors and the unknown model parameters. Will be coerced to a
formula if necessary.

predvars A vector of characters. Denotes the predictors in the formula.

parvars A vector of characters. Denotes the unknown parameters in the formula.

family A description of the response distribution and the link function to be used in the
model. This can be a family function, a call to a family function or a character
string naming the family. Every family function has a link argument allowing to
specify the link function to be applied on the response variable. If not specified,
default links are used. For details see family. By default, a linear gaussian
model gaussian() is applied.

1p Vector of lower bounds for the model parameters. Should be in the same order
as parvars or param in the argument fimfunc.

up Vector of upper bounds for the model parameters. Should be in the same order
as parvars or param in the argument fimfunc. When a parameter is known
(has a fixed value), its associated lower and upper bound values in 1p and up
must be set equal.

fimfunc A function. Returns the FIM as a matrix. Required when formula is missing.
See ’Details’ of minimax.

X2 Vector of design (support) points of the optimal design (£2). Similar to x.

w2 Vector of corresponding design weights for x2.

x1 Vector of design (support) points of &;. See ’Details’ of leff.

wi Vector of corresponding design weights for x.

standardized = Maximin standardized design? When standardized = TRUE, the argument localdes
must be given. Defaults to FALSE. See ’Details’ of minimax.

localdes A function that takes the parameter values as inputs and returns the design points
and weights of the locally optimal design. Required when standardized =

"TRUE". See ’Details’ of minimax.
crt.minimax.control

Control parameters to optimize the minimax or standardized maximin criterion
at a given design over a continuous parameter space (when n.grid =). For
details, see the function crt.minimax.control.

npar Number of model parameters. Used when fimfunc is given instead of formula
to specify the number of model parameters. If not specified truly, the sensitivity
(derivative) plot may be shifted below the y-axis. When NULL (default), it is set
to length(1lp).

Details

See Masoudi et al. (2017) for formula details.

The argument x1 is the vector of design points. For design points with more than one dimension (the
models with more than one predictors), it is a concatenation of the design points, but dimension-
wise. For example, let the model has three predictors (I, S, Z). Then, a two-point optimal design
has the following points: {pointl = (I, S1, Z1),point2 = (I3, S2, Z2)}. Then, the argument x is
equal to x = c(I1, I2, S1, S2, 71, Z2).

minimax 55

Value

A value between 0 and 1.

Examples

Relative D-efficiency with respect to the minimax criterion
meff(formula = ~1/(1 + exp(-b * (x-a))), predvars = "x",

parvars = c("a", "b"), family = "binomial”,

1p = c(-3, .5), up = c(3, 2),

x2 = c(-3, -1.608782, 0, 1.608782, 3),

w2 = c(0.22291601, 0.26438449, 0.02539899, 0.26438449, 0.22291601),

x1 c(-1, 1), wl = c(.5, .5))

A function to calculate the locally D-optimal design for the 2PL model
Dopt_2pl <- function(a, b){
x <= c(a + (1/b) * 1.5434046, a - (1/b) * 1.5434046)
return(list(x = x, w = c(.5, .5)))
3
Relative D-efficiency with respect to the standardized maximin criterion
meff (formula = ~1/(1 + exp(-b * (x-a))), predvars = "x",
parvars = c("a", "b"), family = "binomial”,
1p = c¢(-3, .5), up = c(3, 2),
x2 = c(-3, -1.611255, @, 1.611255, 3),
w2 = c(0.22167034, 0.26592974, 0.02479984, 0.26592974, 0.22167034),
x1 = c(0, -1), wl = c(.5, .5),
standardized = TRUE,
localdes = Dopt_2pl)

minimax Minimax and Standardized Maximin D-Optimal Designs

Description

Finds minimax and standardized maximin D-optimal designs for linear and nonlinear models. It
should be used when the user assumes the unknown parameters belong to a parameter region ©,
which is called “region of uncertainty”, and the purpose is to protect the experiment from the worst
case scenario over ©.

Usage

minimax (
formula,
predvars,
parvars,
family = gaussian(),

56

1x,

ux,

1p,

up,

iter,

k,

n.grid = 0,

fimfunc = NULL,

ICA.control = list(),
sens.control = list(),
sens.minimax.control = list(),
crt.minimax.control = list(),
standardized = FALSE,

initial = NULL,

localdes = NULL,

npar = length(lp),

plot_3d = c("lattice”, "rgl"),

minimax

x = NULL,
crtfunc = NULL,
sensfunc = NULL
)
Arguments
formula A linear or nonlinear model formula. A symbolic description of the model
consists of predictors and the unknown model parameters. Will be coerced to a
formula if necessary.
predvars A vector of characters. Denotes the predictors in the formula.
parvars A vector of characters. Denotes the unknown parameters in the formula.
family A description of the response distribution and the link function to be used in the
model. This can be a family function, a call to a family function or a character
string naming the family. Every family function has a link argument allowing to
specify the link function to be applied on the response variable. If not specified,
default links are used. For details see family. By default, a linear gaussian
model gaussian() is applied.
1x Vector of lower bounds for the predictors. Should be in the same order as
predvars.
ux Vector of upper bounds for the predictors. Should be in the same order as
predvars.
1p Vector of lower bounds for the model parameters. Should be in the same order
as parvars or param in the argument fimfunc.
up Vector of upper bounds for the model parameters. Should be in the same order

iter

as parvars or param in the argument fimfunc. When a parameter is known
(has a fixed value), its associated lower and upper bound values in 1p and up
must be set equal.

Maximum number of iterations.

minimax 57

k Number of design points. Must be at least equal to the number of model param-
eters to avoid singularity of the FIM.

n.grid Only required when the parameter space is going to be discretized. The total
number of grid points from the parameter space is n.grid*p. When n.grid >
0, optimal design protects the experimenter against the worst case scenario only
over the grid points, and not over the continuous parameter space. The resulting
designs may not be globally optimal. In some literature, this type of designs
has been used as a compromise to the minimax type designs to avoid continuous
optimization problem over the parameter space and simplify the minimax design
problems. Especially when the design criterion is convex with respect to the
given parameter space at every given design from the design space, the obtained
design may also be globally optimal (because the maximum of a convex function
is attained on the bounds, and here, are included in the grid points). See ’Details’
of minimax.

fimfunc A function. Returns the FIM as a matrix. Required when formula is missing.
See ’Details’ of minimax.

ICA.control ICA control parameters. For details, see ICA.control.

sens.control Control Parameters for Calculating the ELB. For details, see sens.control.

sens.minimax.control
Control parameters to construct the answering set required for verify the gen-
eral equivalence theorem and calculating the ELB. For details, see the function
sens.minimax.control.

crt.minimax.control
Control parameters to optimize the minimax or standardized maximin criterion
at a given design over a continuous parameter space (when n.grid =). For
details, see the function crt.minimax.control.

standardized Maximin standardized design? When standardized = TRUE, the argument localdes
must be given. Defaults to FALSE. See ’Details’ of minimax.

initial A matrix of the initial design points and weights that will be inserted into the
initial solutions (countries) of the algorithm. Every row is a design, i.e. a con-
catenation of x and w. Will be coerced to a matrix if necessary. See ’Details’ of
minimax.

localdes A function that takes the parameter values as inputs and returns the design points
and weights of the locally optimal design. Required when standardized =
"TRUE". See ’Details’ of minimax.

npar Number of model parameters. Used when fimfunc is given instead of formula
to specify the number of model parameters. If not specified truly, the sensitivity
(derivative) plot may be shifted below the y-axis. When NULL (default), it is set
to length(1lp).

plot_3d Which package should be used to plot the sensitivity (derivative) function for
two-dimensional design space. Defaults to "lattice”.

X A vector of candidate design (support) points. When is not set to NULL (de-
fault), the algorithm only finds the optimal weights for the candidate points in x.
Should be set when the user has a finite number of candidate design points and
the purpose is to find the optimal weight for each of them (when zero, they will

58

minimax

be excluded from the design). For design points with more than one dimension,
see 'Details’ of sensminimax.

crtfunc (Optional) a function that specifies an arbitrary criterion. It must have especial
arguments and output. See ’Details’ of minimax.

sensfunc (Optional) a function that specifies the sensitivity function for crtfunc. See
’Details’ of minimax.

Details

Let = be the space of all approximate designs with &k design points (support points) at x1, Zg, ..., Tk
from the design space x with corresponding weights wy, ..., wg. Let M (€, 0) be the Fisher infor-
mation matrix (FIM) of a k—point design ¢ and 6 be the vector of unknown parameters. A minimax
D-optimal design £* minimizes over =

max —log [M(€, 6)].

A standardized maximin D-optimal design £* maximizes over =

M v
. (M 0)]) |
6€0 | \ |M (&, 0)]
where p is the number of model parameters and &y is the locally D-optimal design with respect to
6.

A minimax criterion (cost function or objective function) is evaluated at each design (decision
variables) by maximizing the criterion over the parameter space. We call the optimization problem
over the parameter space as inner optimization problem. Two different strategies may be applied to
solve the inner problem at a given design (design points and weights):

1. Continuous inner problem: we optimize the criterion over a continuous parameter space us-
ing the function nloptr. In this case, the tuning parameters can be regulated via the argument
crt.minimax.control, when the most influential one is maxeval.

2. Discrete inner problem: we map the parameter space to the grid points and optimize the
criterion over a discrete parameter space. In this case, the number of grid points can be regu-
lated via n.grid. This strategy is quite efficient (ans fast) when the maxima most likely attain
the vertices of the continuous parameter space at any given design. The output design here
protects the experiment from the worst scenario over the grid points.

The formula is used to automatically create the Fisher information matrix (FIM) for a linear or
nonlinear model provided that the distribution of the response variable belongs to the natural ex-
ponential family. Function minimax also provides an option to assign a user-defined FIM directly
via the argument fimfunc. In this case, the argument fimfunc takes a function that has three
arguments as follows:

1. x a vector of design points. For design points with more than one dimension, it is a concate-
nation of the design points, but dimension-wise. For example, let the model has three pre-
dictors (I, S, Z). Then, a two-point design is of the format {pointl = (I, S1, Z1), point2 =
(12, S2, Z2)}. and the argument x is equivalent to x = c(I1, 12, S1, S2, Z1, Z2).

minimax 59

2. w a vector that includes the design weights associated with x.

3. param a vector of parameter values associated with 1p and up.

The output must be the Fisher information matrix with number of rows equal to length(param).
See ’Examples’.

Minimax optimal designs can have very different criterion values depending on the nominal set of
parameter values. Accordingly, it is desirable to standardize the criterion and control for the poten-
tially widely varying magnitude of the criterion (Dette, 1997). Evaluating a standardized maximin
criterion requires knowing locally optimal designs. We strongly advise setting standardized =
'TRUE' only when analytical solutions for the locally D-optimal designs is available. In this case,
for any initial estimate of the unknown parameters, an analytical solution for the locally optimal de-
sign, i.e, the support points x and the corresponding weights w, must be provided via the argument
localdes. Therefore, depending on how the model is specified, localdes is a function with the
following arguments (input).

e If formula is given (!missing(formula)):
— The parameter names given by parvars in the same order.
 If FIM is given via the argument fimfunc (missing(formula)):

— param: A vector of the parameters equal to the argument param in fimfunc.

This function must return a list with the components x and w (they match the same arguments in the
function fimfunc). See ’Examples’.

The standardized D-criterion is equal to the D-efficiency and it must be between 0 and 1. However,
in practice, when running the algorithm, it may be the case that the criterion takes a value larger
than one. This may happen because the user-function that is given via localdes does not return
the true (accurate) locally optimal designs for some requested initial estimates of the parameters
from ©. In this case, the function minimax throw an error where the error message helps the user to
debug her/his function.

Each row of initial is one design, i.e. a concatenation of values for design (support) points and
the associated design weights. Let x@ and w@ be the vector of initial values with exactly the same
length and order as x and w (the arguments of fimfunc). As an example, the first row of the matrix
initial is equal to initial[1,] =c(x@, w@). For models with more than one predictors, x0 is
a concatenation of the initial values for design points, but dimension-wise. See the details of the
argument fimfunc, above.

To verify the optimality of the output design by the general equivalence theorem, the user can either
plot the results or set checkfreqin ICA.control to Inf. In either way, the function sensminimax
is called for verification. Note that the function sensminimax always verifies the optimality of a
design assuming a continues parameter space. See 'Examples’.

crtfunc is a function that is used to specify a new criterion. Its arguments are:

* design points x (as a vector).
* design weights w (as a vector).
* model parameters as follows.

— If formula is specified: they should be the same parameter specified by parvars.

60

minimax
— If FIM is specified via the argument fimfunc: param that is a vector of the parameters in

fimfunc.

e fimfunc is a function that takes the other arguments of crtfunc and returns the computed
Fisher information matrix as amatrix.

The crtfunc function must return the criterion value. crtfunc. It has one more argument than
crtfunc, which is xi_x. It denotes the design point of the degenerate design and must be a vector
with the same length as the number of predictors. For more details, see ’Examples’.

Value
an object of class minimax that is a list including three sub-lists:

arg A list of design and algorithm parameters.

evol A list of length equal to the number of iterations that stores the information about the best
design (design with least criterion value) of each iteration. evol[[iter]] contains:

iter Iteration number.

X Design points.

w Design weights.

min_cost Value of the criterion for the best imperialist (design).
mean_cost Mean of the criterion values of all the imperialists.
sens An object of class ’sensminimax’. See below.

param Vector of parameters.

empires A list of all the empires of the last iteration.

alg A list with following information:

nfeval Number of function evaluations. It does not count the function evaluations from checking the general equi
nlocal Number of successful local searches.

nrevol Number of successful revolutions.

nimprove Number of successful movements toward the imperialists in the assimilation step.

convergence Stopped by "maxiter’ or equivalence’?

method A type of optimal designs used.
design Design points and weights at the final iteration.
out A data frame of design points, weights, value of the criterion for the best imperialist (min_cost),

and Mean of the criterion values of all the imperialistsat each iteration (mean_cost).

The list sens contains information about the design verification by the general equivalence theorem.
See sensminimax for more details. It is given every ICA.control$checkfreq iterations and also
the last iteration if ICA.control$checkfreq >= 0. Otherwise, NULL.

param is a vector of parameters that is the global minimum of the minimax criterion or the global
maximum of the standardized maximin criterion over the parameter space, given the current x, w.

minimax 61

Note

For larger parameter space or model with more number of unknown parameters, it is always impor-
tant to increase the value of ncount in ICA.control and optslist$maxeval incrt.minimax.control
to produce very accurate designs.

Although standardized criteria have been preferred theoretically, in practice, they should be applied
only when an analytical solution for the locally D-optimal designs is available for the model of
interest. Otherwise, we encounter a three-level nested-optimization algorithm, which is very slow.

References

Atashpaz-Gargari, E, & Lucas, C (2007). Imperialist competitive algorithm: an algorithm for opti-
mization inspired by imperialistic competition. In 2007 IEEE congress on evolutionary computation
(pp. 4661-4667). IEEE.

Dette, H. (1997). Designing experiments with respect to ’standardized’ optimality criteria. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 59(1), 97-110.

Masoudi E, Holling H, Wong WK (2017). Application of Imperialist Competitive Algorithm to
Find Minimax and Standardized Maximin Optimal Designs. Computational Statistics and Data
Analysis, 113, 330-345. <doi:10.1016/j.csda.2016.06.014>

See Also

sensminimax

Examples

B
Two-parameter exponential growth model
HHHHHHHEEE AR
resl <- minimax (formula = ~a + exp(-b*x), predvars = "x", parvars = c("a", "b"),
Ix =0, ux =1, 1p = c(1, 1), up = c(1, 10),
iter = 1, k = 4,
ICA.control= ICA.control(rseed = 100),
crt.minimax.control = list(optslist = list(maxeval = 100)))
The optimal design has 3 points, but we set k = 4 for illustration purpose to
show how the algorithm modifies the design by adjusting the weights
The value of maxeval is changed to reduce the CPU time
Not run:
res1 <- update(res1, 150)
iterating the algorithm up to 150 more iterations

End(Not run)

resl # print method
plot(resl1) # Veryfying the general equivalence theorem

Not run:
fixed x
res1.1 <- minimax (formula = ~a + exp(-b*x), predvars = "x", parvars = c("a", "b"),
Ix =0, ux =1, 1p = c(1, 1), up = c(1, 10),

62

x =c(o, .5, 1),

iter = 150, k = 3, ICA.control= ICA.control(rseed = 100))

not optimal
End(Not run)

HHHEHHAEHEE AR

Two-parameter logistic model.
HHHHHHHEEEE A

A little playing with the tuning parameters

The value of maxeval is reduced to 200 to increase the speed
contl <- crt.minimax.control(optslist = list(maxeval = 200))
cont2 <- ICA.control(rseed = 100, checkfreq = Inf, ncount = 60)

Not run:

res2 <- minimax (formula = ~1/(1 + exp(-b *(x - a))), predvars = "x",
parvars = c("a", "b"),
family = binomial(), 1x = -3, ux = 3,
lp = c(@, 1), up = c(1, 2.5), iter = 200, k = 3,
ICA.control= cont2, crt.minimax.control = contl)

print(res2)

plot(res2)

End(Not run)

HHHHEHHH A
An example of a model with two predictors
S HHHEHEHEEHEEE AR RE AR R
Mixed inhibition model

lower <- c(1, 4, 2, 4)

upper <- c(1, 5, 3, 5)

cont <- crt.minimax.control(optslist = list(maxeval = 100)) # to be faster

Not run:
res3 <- minimax(formula = ~ VxS/(Km * (1 + I/Kic)+ S * (1 + I/Kiu)),
predvars = c("S", "I"),
parvars = c("V", "Km", "Kic", "Kiu"),

1x = c(0, @), ux = c(30, 60), k = 4,
iter = 100, 1lp = lower, up = upper,
ICA.control= list(rseed = 100),
crt.minimax.control = cont)

res3 <- update(res3, 100)
print(res3)

plot(res3) # sensitivity plot
res3argtime

End(Not run)

Now consider grid points instead of assuming continuous parameter space

set n.grid to 5
Not run:
res4 <- minimax(formula = ~ VxS/(Km * (1 + I/Kic)+ S * (1 + I/Kiu)),
predvars = c("S", "I"),

minimax

minimax
parvars = c("V", "Km", "Kic", "Kiu"),
1x = c(@, @), ux = c(30, 60),
k =4, iter = 130, n.grid = 5, 1p = lower, up = upper,
ICA.control= list(rseed = 100, checkfreq = Inf),
crt.minimax.control = cont)
print(res4)

plot(res4) # sensitivity plot
End(Not run)

HHHHHHAEEE AR
Standardized maximin D-optimal designs
B
Assume the purpose is finding STANDARDIZED designs
We know from literature that the locally D-optimal design (LDOD)
for this model has an analytical solution.
The follwoing function takes the parameter as input and returns
the design points and weights of LDOD.
x and w are exactly similar to the arguments of 'fimfunc'.
x is a vector and returns the design points 'dimension-wise'.
see explanation of the arguments of 'fimfunc' in 'Details’.
LDOD <- function(V, Km, Kic, Kiu){

#first dimention is for S and the second one is for I.

S_min <- 0
S_max <- 30
I_min <- 0

I_max <- 60

s2 <- max(S_min, S_max*KmxKiux(Kic+I_min)/
(S_max*KicxI_min+S_max*KicxKiu+2*Km*Kiu*I_min+2*KmxKiuxKic))

i3 <= min((2*S_max*KicxI_min + S_max*KicxKiu+2*Km*KiuxI_min+Km*KiuxKic)/
(KmxKiu+S_max*Kic), I_max)

i4 <- min(I_min + (sqrt((Kict+I_min)*(KmxKicxKiu+Km*Kiu*I_min+

S_max*Kic*Kiu+S_max*Kic*I_min)/
(KmxKiu+S_max*Kic))), I_max)

s4 <- max(-KmxKiu*(Kic+2*I_min-i4)/(Kicx(Kiu+2*I_min-i4)), S_min)

x <= c(S_max, s2, S_max, s4, I_min, I_min, i3, i4)

return(list(x = x, w =rep(1/4, 4)))

3
formalArgs(LDOD)
Not run:
minimax(formula = ~ VxS/(Km x (1 + I/Kic)+ S x (1 + I/Kiu)),
predvars = c("S", "I"),
parvars = c("V", "Km", "Kic"”, "Kiu"),

1x = c(@, 0), ux = c(30, 60),

k = 4, iter = 300,

lp = lower, up = upper,

ICA.control= list(rseed = 100, checkfreq = Inf),
crt.minimax.control = cont,

standardized = TRUE,

localdes = LDOD)

63

64

minimax

End(Not run)

B R

Not necessary!

The rest of the examples here are only for professional uses.
B S R

Imagine you have written your own FIM, say in Rcpp that is faster than
the FIM created by the formula interface above.

WA

An example of a model with two predictors
B s

For example, th cpp FIM function for the mixed inhibition model is named:
formalArgs(FIM_mixed_inhibition)

We should reparamterize the arguments to match the standard of the
argument 'fimfunc' (see 'Details').
myfim <- function(x, w, param){
npoint <- length(x)/2
S <- x[1:npoint]
I <= x[(npoint+1): (npoint*x2)]
out <- FIM_mixed_inhibition(S =S, I =1, w = w, param = param)
return(out)
}
formalArgs(myfim)

Finds minimax optimal design, exactly as before, but NOT using the
formula interface.
Not run:
res5 <- minimax(fimfunc = myfim,
1x = c(@, 0), ux = c(30, 60), k = 4,
iter = 100, lp = lower, up = upper,
ICA.control= list(rseed = 100),
crt.minimax.control = cont)
print(res5)
plot(res5) # sensitivity plot

End(Not run)
HHHHHHARHEEEH AR
Standardized maximin D-optimal designs
HEHHHHHHHEHHS AR A
To match the argument 'localdes' when no formula inteface is used,
we should reparameterize LDOD.
The input must be 'param' same as the argument of 'fimfunc'
LDOD2 <- function(param)
LDOD(V = param[1], Km = param[2], Kic = param[3], Kiu = param[4])

compare these two:
formalArgs(LDOD)
formalArgs(LDOD2)
Not run:
res6 <- minimax(fimfunc = myfim,

minimax 65

1x = c(0, @), ux = c(30, 60), k = 4,
iter = 300, 1lp = lower, up = upper,
ICA.control= list(rseed = 100, checkfreq = Inf),
crt.minimax.control = cont,
standardized = TRUE,
localdes = LDOD2)
res6
plot(res6)

End(Not run)

AR AR
user-defined optimality criterion
HHHHHHAAEEE R
When the model is defined by the formula interface
A-optimal design for the 2PL model.
the criterion function must have argument x, w fimfunc and the parameters defined in 'parvars'.
use 'fimfunc' as a function of the design points x, design weights w and
the 'parvars' parameters whenever needed.
Aopt <-function(x, w, a, b, fimfunc){
sum(diag(solve(fimfunc(x = x, w = w, a = a, b = b))))
}
the sensitivtiy function
xi_x is a design that put all its mass on x in the definition of the sensitivity function
x is a vector of design points
Aopt_sens <- function(xi_x, x, w, a, b, fimfunc){
fim <- fimfunc(x = x, w=w, a =a, b =b)
M_inv <- solve(fim)

M_x <- fimfunc(x = xi_x, w =1, a =a, b =Db)
sum(diag(M_inv %*% M_x %*% M_inv)) - sum(diag(M_inv))
3
Not run:

n

res7 <- minimax(formula = ~1/(1 + exp(-b * (x-a))), predvars = "x",
parvars = c("a", "b"), family = "binomial”,
Ix = -2, ux = 2,
1p = ¢(-2, 1), up = c(2, 1.5),
iter = 400, k = 3,
crtfunc = Aopt,
sensfunc = Aopt_sens,
crt.minimax.control = list(optslist = list(maxeval = 200)),
ICA.control = list(rseed = 1))

plot(res7)

End(Not run)
with grid points
res7.1 <- minimax(formula = ~1/(1 + exp(-b * (x-a))), predvars = "x",
parvars = c("a", "b"), family = "binomial”,
Ix = -2, ux = 2,
1Ip = c(-2, 1), up = c(2, 1.5),
iter = 1, k = 3,
crtfunc = Aopt,
sensfunc = Aopt_sens,
n.grid = 9,

66

minimax

ICA.control = list(rseed = 1))
Not run:
res7.1 <- update(res7.1, 400)
plot(res7.1)

End(Not run)

When the FIM of the model is defined directly via the argument 'fimfunc'
the criterion function must have argument x, w fimfunc and param.
use 'fimfunc' as a function of the design points x, design weights w and
the 'parvars' parameters whenever needed.
Aopt2 <-function(x, w, param, fimfunc){
sum(diag(solve(fimfunc(x = x, w = w, param = param))))
3
the sensitivtiy function
xi_x is a design that put all its mass on x in the definition of the sensitivity function
x is a vector of design points
Aopt_sens2 <- function(xi_x, x, w, param, fimfunc){
fim <- fimfunc(x = x, w = w, param = param)
M_inv <- solve(fim)
M_x <- fimfunc(x = xi_x, w = 1, param = param)
sum(diag(M_inv %*% M_x %*% M_inv)) - sum(diag(M_inv))
3
Not run:
res7.2 <- minimax(fimfunc = FIM_logistic,
Ix = -2, ux = 2,
Ip = c(-2, 1), up = c(2, 1.5),
iter =1, k = 3,
crtfunc = Aopt2,
sensfunc = Aopt_sens2,
crt.minimax.control = list(optslist = list(maxeval = 200)),
ICA.control = list(rseed = 1))
res7.2 <- update(res7.2, 200)
plot(res7.2)

End(Not run)
with grid points
res7.3 <- minimax(fimfunc = FIM_logistic,
Ix = -2, ux = 2,
1p = c(-2, 1), up = c(2, 1.5),
iter = 1, k = 3,
crtfunc = Aopt2,
sensfunc = Aopt_sens2,
n.grid = 9,
ICA.control = list(rseed = 1))
Not run:
res7.3 <- update(res7.2, 200)
plot(res7.3)

End(Not run)

robust c-optimal design

multiple

67

example from Chaloner and Larntz (1989), Figure 3, but robust design

Cc_

}

Cc_

}

opt <-function(x, w, a, b, fimfunc){
gam <- log(.95/(1-.95))

M <- fimfunc(x = x, w=w, a=a, b
c <- matrix(c(1, -gam * b*(-2)), nrow
B <- t(c) %*% c

sum(diag(B %*% solve(M)))

b)

D

sens <- function(xi_x, x, w, a, b, fimfunc){
gam <- log(.95/(1-.95))
M <- fimfunc(x = x, w =
M_inv <- solve(M)

M_x <- fimfunc(x = xi_x, w =1, a =a, b =Db)
c <- matrix(c(1, -gam * b*(-2)), nrow = 1)

B <- t(c) %*% c

sum(diag(B %*% M_inv %*% M_x %*%

Not run:

res8 <- minimax(formula

parvars
1x
1p
iter

c("a", "b"), family =
-1, ux 1,
c(-.3, 6), up = c(.3, 8),

= 500, k = 3,

~1/(1 + exp(-b * (x-a))), predvars = "x",

M_inv)) - sum(diag(B %x% M_inv))

n

"binomial”,

crtfunc = c_opt, sensfunc = c_sens,

ICA.control = list(rseed = 1, ncount

n.grid = 12)
plot(res8)

End(Not run)

100),

multiple

Model

Locally Multiple Objective Optimal Designs for the 4-Parameter Hill

Description

The 4-parameter Hill model is of the form

where € ~ N(0,0?), D is the dose level and the predictor, a is the ED50, d is the upper limit of
response, c is the lower limit of response and b denotes the Hill constant that control the flexibility

68 multiple

in the slope of the response curve.
Sometimes, the Hill model is re-parameterized and written as

1+ exp(foz + 03)

f(il') + 047

where 01 = d — ¢, 02 = —b, 3 = blog(a), 04 = ¢, 01 > 0, 03 # 0, and —oco0 < ED50 < oo,
where x = log(D) € [—M, M] for some sufficiently large value of M. The new form is sometimes
called 4-parameter logistic model.

The function multiple finds locally multiple-objective optimal designs for estimating the model
parameters, the ED50, and the MED, simultaneously. For more details, see Hyun and Wong (2015).

Usage

multiple(
minDose,
maxDose,
iter,
K,
inipars,
Hill_par = TRUE,
delta,
lambda,
fimfunc = NULL,
ICA.control = list(),
sens.control = list(),
initial = NULL,
tol = sqrt(.Machine$double.xmin),

x = NULL
)
Arguments

minDose Minimum dose D. For the 4-parameter logistic model, i.e. when Hill_par =
FALSE, it is the minimum of log(D).

maxDose Maximum dose D. For the 4-parameter logistic model, i.e. when Hill_par =
FALSE, it is the maximum of log(D).

iter Maximum number of iterations.

k Number of design points. Must be at least equal to the number of model param-
eters to avoid singularity of the FIM.

inipars A vector of initial estimates for the vector of parameters (a, b, ¢, d). For the 4-
parameter logistic model, i.e. when Hill_par = FALSE, it is a vector of initial
estimates for (01, 02, 63, 0,).

Hill_par Hill model parameterization? Defaults to TRUE.

delta Predetermined meaningful value of the minimum effective dose MED. When
6 < 0, then 5 > 0 or when § > 0, then 05 < 0.

lambda A vector of relative importance of each of the three criteria, i.e. A = (A1, A2, A3).

Here 0 < \; < landsd \; =1.

multiple 69

fimfunc A function. Returns the FIM as a matrix. Required when formula is missing.
See ’Details’ of minimax.

ICA.control ICA control parameters. For details, see ICA.control.
sens.control Control Parameters for Calculating the ELB. For details, see sens.control.

initial A matrix of the initial design points and weights that will be inserted into the
initial solutions (countries) of the algorithm. Every row is a design, i.e. a con-
catenation of x and w. Will be coerced to a matrix if necessary. See ’Details’ of
minimax.

tol Tolerance for finding the general inverse of the Fisher information matrix. De-
faults to .Machine$double. xmin.

X A vector of candidate design (support) points. When is not set to NULL (de-
fault), the algorithm only finds the optimal weights for the candidate points in x.
Should be set when the user has a finite number of candidate design points and
the purpose is to find the optimal weight for each of them (when zero, they will
be excluded from the design). For design points with more than one dimension,
see ’Details’ of sensminimax.

Details

When A; > 0, then the number of support points k must at least be four to avoid singularity of the
Fisher information matrix.

One can adjust the tuning parameters in ICA.control to set a stopping rule based on the general
equivalence theorem. See ’Examples’ below.

Value
an object of class minimax that is a list including three sub-lists:

arg A list of design and algorithm parameters.

evol A list of length equal to the number of iterations that stores the information about the best
design (design with least criterion value) of each iteration. evol[[iter]] contains:

iter Iteration number.

X Design points.

w Design weights.

min_cost Value of the criterion for the best imperialist (design).
mean_cost Mean of the criterion values of all the imperialists.
sens An object of class ’sensminimax’. See below.
param Vector of parameters.

empires A list of all the empires of the last iteration.

alg A list with following information:

nfeval Number of function evaluations. It does not count the function evaluations from checking the general equi
nlocal Number of successful local searches.
nrevol Number of successful revolutions.

70 multiple

nimprove Number of successful movements toward the imperialists in the assimilation step.
convergence Stopped by "maxiter’ or equivalence’?

method A type of optimal designs used.
design Design points and weights at the final iteration.

out A data frame of design points, weights, value of the criterion for the best imperialist (min_cost),
and Mean of the criterion values of all the imperialistsat each iteration (mean_cost).

The list sens contains information about the design verification by the general equivalence theorem.
See sensminimax for more details. It is given every ICA.control$checkfreq iterations and also
the last iteration if ICA.control$checkfreq >= 0. Otherwise, NULL.

param is a vector of parameters that is the global minimum of the minimax criterion or the global
maximum of the standardized maximin criterion over the parameter space, given the current x, w.

Note

This function is NOT appropriate for finding c-optimal designs for estimating "MED’ or ’ED50’
(single objective optimal designs) and the results may not be stable. The reason is that for the c-
optimal criterion the generalized inverse of the Fisher information matrix is not stable and depends
on the tolerance value (tol).

References

Hyun, S. W., and Wong, W. K. (2015). Multiple-Objective Optimal Designs for Studying the Dose
Response Function and Interesting Dose Levels. The international journal of biostatistics, 11(2),
253-271.

See Also

sensmultiple

Examples

All the examples are available in Hyun and Wong (2015)

HHHHHHARHE A
4-parameter logistic model
Example 1, Table 3
HHHHHHARHEEH R
lam <- c(0.05, 0.05, .90)
Initial estimates are derived from Table 1
See how the stopping rules are set via 'stop_rul', checkfreq' and 'stoptol’
Thetal <- c(1.563, 1.790, 8.442, 0.137)
resl <- multiple(minDose = log(.001), maxDose = log(1000),
inipars = Thetal, k = 4, lambda = lam, delta = -1,
Hill_par = FALSE,
iter = 1,
ICA.control = list(rseed = 1366, ncount = 100,
stop_rule = "equivalence”,

normal 71

checkfreq = 100, stoptol = .95))
Not run:
resl <- update(resl, 1000)
stops at iteration 101

End(Not run)

HHHHHHARHEE
4-parameter Hill model
B S R
initial estimates for the parameters of Hill model:
a <- 0.008949 # ED50
b <- -1.79 # Hill constant
c <- 0.137 # lower limit
d <= 1.7 # upper limit
D belongs to c(.001, 1000) ## dose in mg
the vector of Hill parameters are now c(a, b, c, d)
Not run:
res2 <- multiple(minDose = .001, maxDose = 1000,
inipars c(a, b, c, d,
Hill_par = TRUE, k = 4, lambda = lam,
delta = -1, iter = 1000,
ICA.control = list(rseed = 1366, ncount = 100,
stop_rule = "equivalence”,
checkfreq = 100, stoptol = .95))

stops at iteration 100

End(Not run)

use x argument to provide fix number of dose levels.
In this case, the optimization is only over weights
Not run:
res3 <- multiple(minDose = log(.001), maxDose = log(1000),
inipars = Thetal, k = 4, lambda = lam, delta = -1,
iter = 300,
Hill_par = FALSE,
x = c(-6.90, -4.66, -3.93, 3.61),
ICA.control = list(rseed = 1366))
res3$evol[[300]1]$w
if the user provide the desugn points via x, there is no guarantee
that the resulted design is optimal. It only provides the optimal weights given
the x points of the design.
plot(res3)

End(Not run)

normal Assumes A Multivariate Normal Prior Distribution for The Model Pa-
rameters

72 normal

Description

Creates a multivariate normal prior distribution for the unknown parameters as an object of class
cprior.

Usage

normal(mu, sigma, lower, upper)

Arguments
mu A vector representing the mean values.
sigma A symmetric positive-definite matrix representing the variance-covariance ma-
trix of the distribution.
lower A vector of lower bounds for the model parameters.
upper A vector of upper bounds for the model parameters.
Value

An object of class cprior that is a list with the following components:
 fn: prior distribution as an R function with argument param that is the vector of the unknown
parameters. See below.
* npar: Number of unknown parameters and is equal to the length of param.
* lower: Argument lower. It has the same length as param.

* upper: Argument lower. It has the same length as param.

The list will be passed to the argument prior of the function bayes. The order of the argument
paramin fn has the same order as the argument parvars when the model is specified by a formula.
Otherwise, it is equal to the argument param in the function fimfunc.

See Also

bayes sensbayes

Examples

normal(mu = c¢(@, 1), sigma = matrix(c(1, -0.17, -0.17, .5), nrow = 2),
lower = c(-3, .1), upper = c(3, 2))

plot.minimax 73

plot.minimax Plotting minimax Objects

Description

This function plots the evolution of the ICA algorithm (iteration vs the best (minimum) criterion
value at each iteration) and also verifies the optimality of the last obtained design using the general
equivalence theorem. It plots the sensitivity function and calculates the ELB for the best design
generated at iteration number iter.

Usage
S3 method for class 'minimax'
plot(
X,
iter = NULL,

sensitivity = TRUE,
calculate_criterion = FALSE,
sens.minimax.control = list(),
crt.minimax.control = list(),
sens.bayes.control = list(),
crt.bayes.control = list(),
sens.control = list(),

silent = TRUE,

plot_3d = c("lattice”, "rgl"),
evolution = FALSE,

)
Arguments
X An object of class minimax.
iter Iteration number. if NULL (default), it will be set to the last iteration.
sensitivity Logical. If TRUE (default), the general equivalence theorem is used to check the
optimality if the best design in iteration number iter and the sensitivity function
will be plotted.

calculate_criterion
Logical. Re-calculate the criterion value (maybe with a set of new tuning param-
eters to be sure of the globality of the maximum over the parameter space given
the design)? It only assumes a continuous parameter space for the minimax and
standardized maximin designs. Defaults to FALSE. See "Details’.

sens.minimax.control
Control parameters to verify general equivalence theorem. For details, see sens.minimax.control.
If NULL (default), it will be set to the tuning parameters used to create object x.

74 print.minimax

crt.minimax.control
Control parameters to optimize the minimax or standardized maximin crite-
rion at a given design over a continuous parameter space. For details, see
crt.minimax.control.

sens.bayes.control
Control parameters to verify general equivalence theorem for the Bayesian opti-
mal designs. For details, see sens.bayes.control. If NULL (default), it will be
set to the tuning parameters used to create object Xx.

crt.bayes.control
Control parameters to optimize the integration in the Bayesian criterion at a
given design over a continuous parameter space. For details, see crt.bayes. control.
If NULL (default), it will be set to the tuning parameters used to create object x.
If NULL (default), it will be set to the tuning parameters used to create object x.

sens.control Control Parameters for Calculating the ELB. For details, see the function sens. control.

silent Do not print anything? Defaults to TRUE.

plot_3d Which package should be used to plot the sensitivity function for two-dimensional
design space. Defaults to plot_3d = "lattice”. Only applicable when sensitivity
= TRUE.

evolution Plot Evolution? Defaults to FALSE.

Argument with no further use.

Details

In addition to verifying the general equivalence theorem, this function makes it possible to re-
calculated the criterion value for the output designs using a new set of tuning parameters, especially,
a large value for maxeval in the function crt.minimax.control. This is useful for minimax and
standardized maximin optimal designs to assess the robustness of the criterion value with respect
to different values of maxeval. To put it simple, for these designs, the user can re-calculate the
criterion value (finds the global maximum over the parameter space given an output design in a
minimax problem) with larger values for maxeval in crt.minimax.control to be sure that the
function nloptr finds global optima of the inner optimization problem over the parameter space
using the default value (or the user-given value) of maxeval. If increasing the value of maxeval
returns different criterion values, then the results can not be trusted and the algorithm should be
repeated with a higher value for maxeval.

See Also

minimax, locally, robust

print.minimax Printing minimax Objects

Description

Print method for an object of class minimax.

print.sensminimax

Usage
S3 method for class 'minimax'
print(x, ...)
Arguments
X An object of class minimax.
Argument with no further use.
See Also

minimax, locally, robust, bayes

75

print.sensminimax Printing sensminimax Objects

Description

Print method for an object of class sensminimax.

Usage

S3 method for class 'sensminimax'
print(x, ...)

Arguments
X An object of class sensminimax.
Argument with no further use.
See Also

sensminimax, senslocally, sensrobust

76

robust

robust

Robust D-Optimal Designs

Description

Finds Robust designs or optimal in-average designs for linear and nonlinear models. It is useful
when a set of different vectors of initial estimates along with a discrete probability measure are

available for the unknown model parameters. It is a discrete version of bayes.

Usage

robust(

formula,

predvars,

parvars,

family = gaussian(),
1x,

ux,

iter,

K,

prob,

parset,

fimfunc = NULL,
ICA.control = list(),
sens.control = list(),
initial = NULL,

npar = dim(parset)[2],

plot_3d = c("lattice”, "rgl"),

x = NULL,
crtfunc = NULL,
sensfunc = NULL

Arguments

formula

predvars
parvars

family

A linear or nonlinear model formula. A symbolic description of the model

consists of predictors and the unknown model parameters. Will be coerced to a

formula if necessary.

A vector of characters. Denotes the predictors in the formula.

A vector of characters. Denotes the unknown parameters in the formula.

A description of the response distribution and the link function to be used in the

model. This can be a family function, a call to a family function or a character
string naming the family. Every family function has a link argument allowing to
specify the link function to be applied on the response variable. If not specified,
default links are used. For details see family. By default, a linear gaussian

model gaussian() is applied.

robust

Ix

ux

iter

prob
parset

fimfunc

ICA.control
sens.control
initial

npar

plot_3d

crtfunc

sensfunc

Details

77

Vector of lower bounds for the predictors. Should be in the same order as

predvars.

Vector of upper bounds for the predictors. Should be in the same order as
predvars.

Maximum number of iterations.

Number of design points. Must be at least equal to the number of model param-
eters to avoid singularity of the FIM.

A vector of the probability measure 7 associated with each row of parset.

A matrix that provides the vector of initial estimates for the model parameters,
i.e. support of 7. Every row is one vector (nrow(parset) == length(prob)).
See ’Details’.

A function. Returns the FIM as a matrix. Required when formula is missing.
See ’Details’ of minimax.

ICA control parameters. For details, see ICA.control.

Control Parameters for Calculating the ELB. For details, see sens.control.

A matrix of the initial design points and weights that will be inserted into the
initial solutions (countries) of the algorithm. Every row is a design, i.e. a con-
catenation of x and w. Will be coerced to a matrix if necessary. See ’Details’ of
minimax.

Number of model parameters. Used when fimfunc is given instead of formula
to specify the number of model parameters. If not given, the sensitivity plot may
be shifted below the y-axis. When NULL, it is set to dim(parset)[2].

Which package should be used to plot the sensitivity (derivative) function for
models with two predictors. Either "rgl” or "lattice"” (default).

Vector of the design (support) points. See *Details’ of sensminimax for models
with more than one predictors.

(Optional) a function that specifies an arbitrary criterion. It must have especial
arguments and output. See ’Details’ of minimax.

(Optional) a function that specifies the sensitivity function for crtfunc. See
"Details’ of minimax.

Let © be a set of initial estimates for the unknown parameters. A robust criterion is evaluated at the
elements of © weighted by a probability measure 7 as follows:

B(¢.m) = /@ M (€, 6)[x(6)d6.

A robust design £* maximizes B(§, w) over the space of all designs.

When the model is given via formula, columns of parset must match the parameters introduced
in parvars. Otherwise, when the model is introduced via fimfunc, columns of parset must match
the argument param in fimfunc.

To verify the optimality of the output design by the general equivalence theorem, the user can either
plot the results or set checkfreqin ICA.control to Inf. In either way, the function sensrobust is
called for verification. One can also adjust the tuning parameters in ICA.control to set a stopping
rule based on the general equivalence theorem. See ’Examples’ below.

78 robust

Value
an object of class minimax that is a list including three sub-lists:

arg A list of design and algorithm parameters.

evol A list of length equal to the number of iterations that stores the information about the best
design (design with least criterion value) of each iteration. evol[[iter]] contains:

iter Iteration number.

X Design points.

w Design weights.

min_cost Value of the criterion for the best imperialist (design).
mean_cost Mean of the criterion values of all the imperialists.
sens An object of class ’sensminimax’. See below.

param Vector of parameters.

empires A list of all the empires of the last iteration.

alg A list with following information:

nfeval Number of function evaluations. It does not count the function evaluations from checking the general equi
nlocal Number of successful local searches.

nrevol Number of successful revolutions.

nimprove Number of successful movements toward the imperialists in the assimilation step.

convergence Stopped by "maxiter’ or ’equivalence’?

method A type of optimal designs used.
design Design points and weights at the final iteration.

out A data frame of design points, weights, value of the criterion for the best imperialist (min_cost),
and Mean of the criterion values of all the imperialistsat each iteration (mean_cost).

The list sens contains information about the design verification by the general equivalence theorem.
See sensminimax for more details. It is given every ICA.control$checkfreq iterations and also
the last iteration if ICA. control$checkfreq >= 0. Otherwise, NULL.

param is a vector of parameters that is the global minimum of the minimax criterion or the global
maximum of the standardized maximin criterion over the parameter space, given the current x, w.

Note
When a continuous prior distribution for the unknown model parameters is available, use bayes.

When only one initial estimates of the unknown model parameters is available (© has only one
element), use locally.

See Also

bayes sensrobust

robust 79

Examples

Finding a robust design for the two-parameter logistic model
See how we set a stopping rule.
The ELB is computed every checkfreq = 30 iterations
The optimization stops when the ELB is larger than stoptol = .95
res1 <- robust(formula = ~1/(1 + exp(-b *(x - a))),
predvars = c("x"), parvars = c("a", "b"),
family = binomial(),
Ix = -5, ux = 5, prob = rep(1/4, 4),
parset = matrix(c(0.5, 1.5, 0.5, 1.5, 4.0, 4.0, 5.0, 5.0), 4, 2),
iter = 1, k =3,
ICA.control = list(stop_rule = "equivalence”,
stoptol = .95, checkfreq = 30))

Not run:
resl <- update(resl, 100)
stops at iteration 51

End(Not run)

Not run:

res1.1 <- robust(formula = ~1/(1 + exp(-b *(x - a))),
predvars = c("x"), parvars = c("a", "b"),
family = binomial(),
Ix = -5, ux = 5, prob = rep(1/4, 4),
parset = matrix(c(0.5, 1.5, 0.5, 1.5, 4.0, 4.0, 5.0, 5.0), 4, 2),
x = c(-3, 0, 3),
iter = 150, k =3)

plot(resi.1)

not optimal

End(Not run)

HHHHHHARHEE A
user-defined optimality criterion
HHHEHHEEEE AR
When the model is defined by the formula interface
A-optimal design for the 2PL model.
the criterion function must have argument x, w fimfunc and the parameters defined in 'parvars'.
use 'fimfunc' as a function of the design points x, design weights w and
the 'parvars' parameters whenever needed.
Aopt <-function(x, w, a, b, fimfunc){
sum(diag(solve(fimfunc(x = x, w = w, a = a, b = b))))
3
the sensitivtiy function
xi_x is a design that put all its mass on x in the definition of the sensitivity function
x is a vector of design points
Aopt_sens <- function(xi_x, x, w, a, b, fimfunc){
fim <- fimfunc(x = x, w=w, a =a, b =b)
M_inv <- solve(fim)

80

M_x <- fimfunc(x = xi_x, w=1, a =a, b =0b)
sum(diag(M_inv %*x% M_x %*x% M_inv)) - sum(diag(M_inv))
3

res2 <- robust(formula = ~1/(1 + exp(-b * (x-a))), predvars = "x",
parvars = c("a", "b"), family = "binomial”,
Ix = -3, ux = 3,
iter =1, k = 4,
crtfunc = Aopt,
sensfunc = Aopt_sens,
prob = c(.25, .5, .25),
parset = matrix(c(-2, @, 2, 1.25, 1.25, 1.25), 3, 2),
ICA.control = list(checkfreq = 50, stoptol = .999,
stop_rule = "equivalence”,
rseed = 1))
Not run:
res2 <- update(res2, 500)

End(Not run)

robust c-optimal design
example from Chaloner and Larntz (1989), Figure 3, but robust design
c_opt <-function(x, w, a, b, fimfunc){
gam <- log(.95/(1-.95))
M <- fimfunc(x = x, w=w, a =a, b =0b)
c <- matrix(c(1, -gam * b*(-2)), nrow = 1)
B <- t(c) %*% c
sum(diag(B %*% solve(M)))
3

c_sens <- function(xi_x, x, w, a, b, fimfunc){

gam <- log(.95/(1-.95))

M <- fimfunc(x = x, w=w, a=a, b=D>b)

M_inv <- solve(M)

M_x <- fimfunc(x = xi_x, w =1, a =a, b =b)

c <- matrix(c(1, -gam * b*(-2)), nrow = 1)

B <- t(c) %*% c

sum(diag(B %*% M_inv %*% M_x %*% M_inv)) - sum(diag(B %*% M_inv))
3

n

res3 <- robust(formula = ~1/(1 + exp(-b * (x-a))), predvars = "x",
parvars = c("a", "b"), family = "binomial"”,
Ix = -1, ux =1,
parset = matrix(c(@, 7, .2, 6.5), 2, 2, byrow = TRUE),
prob = c(.5, .5),
iter = 1, k = 3,
crtfunc = c_opt, sensfunc = c_sens,
ICA.control = list(rseed = 1, checkfreq = Inf))

robust

sens.bayes.control 81

Not run:
res3 <- update(res3, 300)

End(Not run)

sens.bayes.control Returns Control Parameters for Approximating The Integrals In The
Bayesian Sensitivity Functions

Description

This function returns two lists each corresponds to an implemented integration method for approx-
imating the integrals in the sensitivity (derivative) functions for the Bayesian optimality criteria.

Usage

sens.bayes.control(
method = c("cubature”, "quadrature"),
cubature = list(tol = 1e-05, maxEval = 50000, absError = 0),
quadrature = list(type = c("GLe", "GHe"), level = 6, ndConstruction = "product”,
level.trans = FALSE)

)
Arguments
method A character denotes which method to be used to approximate the integrals in
Bayesian criteria. "cubature” corresponds to the adaptive multivariate inte-
gration method using the hcubature algorithm (default). "quadrature” corre-
sponds the traditional quadrature formulas and calls the function createNIGrid.
The tuning parameters are adjusted by crt.bayes.control. Default is set to
"cubature”.
cubature A list that will be passed to the arguments of the hcubature function. See
’Details’ of crt.bayes.control.
quadrature A list that will be passed to the arguments of the createNIGrid function. See
’Details’ of crt.bayes.control.
Value

A list of control parameters for approximating the integrals.

Examples

sens.bayes.control()
sens.bayes.control(cubature = list(maxEval = 50000))
sens.bayes.control(quadrature = list(level = 4))

82 sens.control

sens.control Returns Control Parameters To Find Maximum of The Sensitivity
(Derivative) Function Over The Design Space

Description

It returns some arguments of the nloptr function including the list of control parameters. This
function is used to find the maximum of the sensitivity (derivative) function over the design space
in order to calculate the efficiency lower bound (ELB).

Usage

sens.control(
x0 = NULL,
optslist = list(stopval = -Inf, algorithm = "NLOPT_GN_DIRECT_L", xtol_rel = 1e-08,
ftol_rel = 1e-08, maxeval = 1000),

)
Arguments
x0 Vector of starting values for maximizing the sensitivity (derivative) function over
the design space x. It will be passed to the optimization function nloptr.
optslist A list. It will be passed to the argument opts of the function nloptr to find the
maximum of the sensitivity function over the design space. See ’Details’.
Further arguments will be passed to nl.opts from package nloptr.
Details

ELB is a measure of proximity of a design to the optimal design without knowing the latter. Given
a design, let € be the global maximum of the sensitivity (derivative) function with respect the vector
of the model predictors x over the design space. ELB is given by

ELB =p/(p+e),

where p is the number of model parameters. Obviously, calculating ELB requires finding e and
therefore, a maximization problem to be solved. The function nloptr is used here to solve this
maximization problem. The arguments x@ and optslist will be passed to this function as follows:

Argument x@ provides the user initial values for this maximization problem and will be passed to
the argument with the same name in the function nloptr.

Argument optslist will be passed to the argument opts of the function nloptr. optslistisa
list and the most important components are listed as follows:

stopval Stop minimization when an objective value <= stopval is found. Setting stopval to
-Inf disables this stopping criterion (default).

algorithm Defaults to NLOPT_GN_DIRECT_L. DIRECT-L is a deterministic-search algorithm based
on systematic division of the search domain into smaller and smaller hyperrectangles.

sens.minimax.control 83

xtol_rel Stop when an optimization step (or an estimate of the optimum) changes every parameter
by less than xtol_rel multiplied by the absolute value of the parameter. Criterion is disabled
if xtol_rel is non-positive.

ftol_rel Stop when an optimization step (or an estimate of the optimum) changes the objective
function value by less than ftol_rel multiplied by the absolute value of the function value.
Criterion is disabled if ftol_rel is non-positive.

maxeval Stop when the number of function evaluations exceeds maxeval. Criterion is disabled if
maxeval is non-positive.

For more details, see ?nloptr: :nloptr.print.options.

Note

ELB must be @ <=ELB <= 1. When the computed ELB is larger than one (equivalently ¢ is negative),
it may be a signal that the obtained € is not the global maximum. To overcome this issue, please
increase the value of the parameter maxeval to allow the optimization algorithm to find the global
maximum of the sensitivity (derivative) function over the design space.

Examples

sens.control()
sens.control(optslist = list(maxeval = 1000))

sens.minimax.control Returns Control Parameters for Verifying General Equivalence Theo-
rem For Minimax Optimal Designs

Description

This function returns a list of control parameters that are used to find the “answering set” for min-
imax and standardized maximin designs. The answering set is required to obtain the sensitivity
(derivative) function in order to verify the optimality of a given design.

Usage

sens.minimax.control(n_seg = 6, merge_tol = 0.005)

Arguments
n_seg For a given design, the number of starting points in the local search to find all
the local maxima of the minimax criterion over the parameter space is equal
to (n_seg + 1)*p. Defaults to 6. Please increase its value when the parame-
ter space is large. It is also applicable for standardized maximin designs. See
’Details’ of sens.minimax.control.
merge_tol Merging tolerance. It is used to specify the elements of the answering set by

choosing only the local maxima (found by the local search) that are nearer to
the global maximum. See ’Details’ of sens.minimax.control. Defaults to @.005.
We advise to not change its default value because it has been successfully tested
on many optimal design problems.

84 sensbayes

Details

Given a design, an “answering set” is a subset of all the local optima of the optimality criterion
over the parameter space. Answering set is used to obtain the sensitivity function of a minimax or
standardized maximin criterion. Therefore, an invalid answering set may result in a false sensitivity
plot and ELB. Unfortunately, there is no theoretical rule on how to choose the number of elements
of the answering set; and they have to be found by trial and error. Given a design, the answering set
for a minimax criterion is obtained as follows:

» Step 1: Find all the local maxima of the optimality criterion (minimax) over the parameter
space. For this purpose, the parameter space is divided into (n_seg + 1) *p segments, where
p is the number of unknown model parameters. Then, each boundary point of the resulted
segments (intervals) is assigned to the argument par of the function optim in order to start a
local search using the "L-BFGS-B" method.

 Step 2: Pick the ones nearest to the global minimum subject to a merging tolerance merge_tol
(default 0.005).

Obviously, the answering set is a subset of all the local maxima over the parameter space (or local
minima in case of standardized maximin criteria) Therefore, it is very important to be able to find
all the local maxima to create the true answering set with no missing elements. Otherwise, even
when the design is optimal, the sensitivity (derivative) plot may not reveal its optimality.

Note that the minimax criterion (or standardized maximin criterion) is a multimodel function espe-
cially near the optimal design and this makes the job of finding all the locall maxima (minima) over
the parameter space very complicated.

Value
A list of control parameters for verifying the general equivalence theorem for minimax and stan-
dardized maximin optimal designs.

Examples

sens.minimax.control()
sens.minimax.control(n_seg = 4)

sensbayes Verifying Optimality of Bayesian D-optimal Designs

Description

Plots the sensitivity (derivative) function and calculates the efficiency lower bound (ELB) for a
given Bayesian design. Let o belongs to x that denotes the design space. Based on the general
equivalence theorem, a design £* is optimal if and only if the value of the sensitivity (derivative)
function is non-positive for all in x and zero when x belongs to the support of £* (be equal to the
one of the design points).

For an approximate (continuous) design, when the design space is one or two-dimensional, the user
can visually verify the optimality of the design by observing the sensitivity plot. Furthermore, the
proximity of the design to the optimal design can be measured by the ELB without knowing the
latter.

sensbayes

Usage

sensbayes(
formula,
predvars,
parvars,
family = gaussian(),

85

X7
W’
1x,
ux,

fimfunc = NULL,

prior

list(),

sens.control = list(),
sens.bayes.control = list(),
crt.bayes.control = list(),
plot_3d = c("lattice”, "rgl"),
plot_sens = TRUE,

npar = NULL,

calculate_criterion = TRUE,
silent = FALSE,

crtfunc

NULL,

sensfunc = NULL
)
Arguments

formula A linear or nonlinear model formula. A symbolic description of the model
consists of predictors and the unknown model parameters. Will be coerced to a
formula if necessary.

predvars A vector of characters. Denotes the predictors in the formula.

parvars A vector of characters. Denotes the unknown parameters in the formula.

family A description of the response distribution and the link function to be used in the
model. This can be a family function, a call to a family function or a character
string naming the family. Every family function has a link argument allowing to
specify the link function to be applied on the response variable. If not specified,
default links are used. For details see family. By default, a linear gaussian
model gaussian() is applied.

X A vector of candidate design (support) points. When is not set to NULL (de-
fault), the algorithm only finds the optimal weights for the candidate points in x.
Should be set when the user has a finite number of candidate design points and
the purpose is to find the optimal weight for each of them (when zero, they will
be excluded from the design). For design points with more than one dimension,
see 'Details’ of sensminimax.

w Vector of the corresponding design weights for x.

1x Vector of lower bounds for the predictors. Should be in the same order as

predvars.

86

sensbayes
ux Vector of upper bounds for the predictors. Should be in the same order as
predvars.
fimfunc A function. Returns the FIM as a matrix. Required when formula is missing.
See ’Details’ of minimax.
prior An object of class cprior. User can also use one of the functions uniform,

normal, skewnormal or student to create the prior. See 'Details’ of bayes.

sens.control Control Parameters for Calculating the ELB. For details, see sens.control.
sens.bayes.control
A list. Control parameters to verify the general equivalence theorem. For details,
see sens.bayes.control.
crt.bayes.control
A list. Control parameters to approximate the integral in the Bayesian criterion
at a given design over the parameter space. For details, see crt.bayes.control.

plot_3d Which package should be used to plot the sensitivity (derivative) function for
two-dimensional design space. Defaults to "lattice”.

plot_sens Plot the sensitivity (derivative) function? Defaults to TRUE.

npar Number of model parameters. Used when fimfunc is given instead of formula

to specify the number of model parameters. If not specified correctly, the sensi-

tivity (derivative) plot may be shifted below the y-axis. When NULL (default), it

will be set to length(parvars) or prior$npar when missing(formula).
calculate_criterion

Calculate the optimality criterion? See ’Details’ of sensminimax.

silent Do not print anything? Defaults to FALSE.

crtfunc (Optional) a function that specifies an arbitrary criterion. It must have especial
arguments and output. See ’Details’ of bayes.

sensfunc (Optional) a function that specifies the sensitivity function for crtfunc. See
’Details’ of bayes.

Details

Let = be the space of all approximate designs with k design points (support points) at 1, Ta, ..., Tk
from design space y with corresponding weights w1, ..., wg. Let M (&, 0) be the Fisher information
matrix (FIM) of a k—point design £ and 7 () is a user-given prior distribution for the vector of
unknown parameters 6. A design £* is Bayesian D-optimal among all designs on if and only if
the following inequality holds for all = € x

o(w, &) = / trM (€5, 0)1(z,0) — pr(0)df < 0,
6T heta

with equality at all support points of £*. Here, p is the number of model parameters. c(x,£*) is
called sensitivity or derivative function.

Depending on the complexity of the problem at hand, sometimes, the CPU time can be considerably
reduced by choosing a set of less conservative values for the tuning parameters tol and maxEval in
the function sens.bayes.control when sens.bayes.control$method = "cubature”. Similarly,
this applies when sens.bayes.control$method = "quadrature”. In general, if the CPU time
matters, the user should find an appropriate speed-accuracy trade-off for her/his own problem. See
’Examples’ for more details.

sensbayes

Note

87

The default values of the tuning parameters in sens.bayes.control are set in a way that having
accurate plots for the sensitivity (derivative) function and calculating the ELB to a high precision
to be the primary goals, although the process may take too long. The user should choose a set of
less conservative values via the argument sens.bayes. control when the CPU-time is too long or

matters.

Examples

HHHHHHHH AR A
Checking the Bayesian D-optimality of a design for the 2Pl model
B s S R
skew2 <- skewnormal(xi = c(@, 1), Omega = matrix(c(1, -0.17, -0.17, .5), nrow = 2),

alpha = c(-1, @), lower = c(-3, .1), upper = c(3, 2))

Not run:
sensbayes(formula = ~1/(1 + exp(-b *(x - a))),

nyn

predvars = "x", parvars = c("a", "b"),
family = binomial(),

x= c(-2.50914, -1.16780, -0.36904, 1.29227),
w =c(0.35767, 0.11032, 0.15621, 0.37580),

Ix = -3, ux = 3,

prior = skew2)

took 29 seconds on my system!

End(Not run)

It took very long.
We re-adjust the tuning parameters in sens.bayes.control to be faster
See how we drastically reduce the maxEval and increase the tolerance
Not run:

sensbayes(formula = ~1/(1 + exp(-b *(x - a))),

nyn

predvars = "x", parvars = c("a", "b"),

family = binomial(),

x= c(-2.50914, -1.16780, -0.36904, 1.29227),

w =c(0.35767, 0.11032, 0.15621, 0.37580),

1x = -3, ux = 3,prior = skew2,

sens.bayes.control = list(cubature = list(tol = le-4, maxEval = 300)))

took 5 Seconds on my system!

End(Not run)

Compare it with the following:
sensbayes(formula = ~1/(1 + exp(-b *(x - a))),

nyn

predvars = "x", parvars = c("a", "b"),

family = binomial(),

x= c(-2.50914, -1.16780, -0.36904, 1.29227),

w =c(0.35767, 0.11032, 0.15621, 0.37580),

1x = -3, ux = 3,prior = skew2,

sens.bayes.control = list(cubature = list(tol = Te-4, maxEval = 200)))

Look at the plot!

88

sensbayes

took 3 seconds on my system

HEHHHHHHHHEHHEEHEEHEHEHEHREEEEHEEHHEEEHHHHEHEEEEEEEEE RS HHHHREEEEHEEEEEHHHEHE BB
Checking the Bayesian D-optimality of a design for the 4-parameter sigmoid emax model
AR AR AR AR R
1b <- c(4, 11, 100, 5)
ub <- ¢(9, 17, 140, 10)
Not run:
sensbayes(formula = ~ thetal + (theta2 - thetal)x(x*thetad)/(x*theta4 + theta3*theta4),
predvars = c("x"), parvars = c("thetal”, "theta2", "theta3”, "theta4"),
x = c(0.78990, 95.66297, 118.42964,147.55809, 500),
w = c(0.23426, 0.17071, 0.17684, 0.1827, 0.23549),
Ix = .001, ux = 500, prior = uniform(lb, ub))
took 200 seconds on my system

End(Not run)

Re-adjust the tuning parameters to have it faster
Not run:
sensbayes(formula = ~ thetal + (theta2 - thetal)*(x*theta4)/(x*theta4 + theta3*theta4),
predvars = c("x"), parvars = c("thetal”, "theta2", "theta3”, "theta4"),
x = c(0.78990, 95.66297, 118.42964,147.55809, 500),
w = c(0.23426, 0.17071, 0.17684, 0.1827, 0.23549),
1x = .001, ux = 500, prior = uniform(lb, ub),
sens.bayes.control = list(cubature = list(tol = 1e-3, maxEval = 300)))
took 4 seconds on my system. See how much it makes difference

End(Not run)

Not run:
Now we try it with quadrature. Default is 6 nodes
sensbayes(formula = ~ thetal + (theta2 - thetal)*(x*theta4)/(x*theta4 + theta3*theta4),
predvars = c("x"), parvars = c("thetal”, "theta2", "theta3”, "theta4"),
x = c(0.78990, 95.66297, 118.42964,147.55809, 500),
w = c(0.23426, 0.17071, 0.17684, 0.1827, 0.23549),

sens.bayes.control = list(method = "quadrature”),
Ix = .001, ux = 500, prior = uniform(lb, ub))
166.519 s

use less number of nodes to see if we can reduce the CPU time
sensbayes(formula = ~ thetal + (theta2 - thetal)*(x*theta4)/(x*theta4 + theta3”theta4),
predvars = c("x"), parvars = c("thetal”, "theta2", "theta3”, "theta4"),
x = c(0.78990, 95.66297, 118.42964,147.55809, 500),
w = c(0.23426, ©0.17071, 0.17684, 0.1827, 0.23549),
sens.bayes.control = list(method = "quadrature”,
quadrature = list(level = 3)),
1x = .001, ux = 500, prior = uniform(lb, ub))
we don't have an accurate plot

use less number of levels: use 4 nodes
sensbayes(formula = ~ thetal + (theta2 - thetal)x(x*thetad)/(x*theta4 + theta3*theta4),
predvars = c(”"x"), parvars = c("thetal”, "theta2", "theta3", "theta4"),

sensbayescomp 89

x = c(0.78990, 95.66297, 118.42964,147.55809, 500),

w = c(0.23426, 0.17071, 0.17684, 0.1827, 0.23549),

sens.bayes.control = list(method = "quadrature”,
quadrature = list(level = 4)),

Ix = .001, ux = 500, prior = uniform(lb, ub))

End(Not run)

sensbayescomp Verifying Optimality of Bayesian Compound DP-optimal Designs

Description

This function plot the sensitivity (derivative) function given an approximate (continuous) design
and calculate the efficiency lower bound (ELB) for Bayesian DP-optimal designs. Let « belongs to
X that denotes the design space. Based on the general equivalence theorem, generally, a design £*
is optimal if and only if the value of its sensitivity (derivative) function be non-positive for all x in
x and it only reaches zero when a belong to the support of £* (be equal to one of the design point).
Therefore, the user can look at the sensitivity plot and the ELB and decide whether the design is
optimal or close enough to the true optimal design (ELB tells us that without knowing the latter).

Usage

sensbayescomp (
formula,
predvars,
parvars,
family = gaussian(),
X,
w,
1x,
ux,
fimfunc = NULL,
prior = list(),
prob,
alpha,
sens.control = list(),
sens.bayes.control = list(),
crt.bayes.control = list(),
plot_3d = c("lattice”, "rgl"),
plot_sens = TRUE,
npar = NULL,
calculate_criterion = TRUE,
silent = FALSE

90

Arguments

formula

predvars
parvars

family

1x

ux

fimfunc

prior

prob

alpha

sens.control

sensbayescomp

A linear or nonlinear model formula. A symbolic description of the model
consists of predictors and the unknown model parameters. Will be coerced to a
formula if necessary.

A vector of characters. Denotes the predictors in the formula.
A vector of characters. Denotes the unknown parameters in the formula.

A description of the response distribution and the link function to be used in the
model. This can be a family function, a call to a family function or a character
string naming the family. Every family function has a link argument allowing to
specify the link function to be applied on the response variable. If not specified,
default links are used. For details see family. By default, a linear gaussian
model gaussian() is applied.

A vector of candidate design (support) points. When is not set to NULL (de-
fault), the algorithm only finds the optimal weights for the candidate points in x.
Should be set when the user has a finite number of candidate design points and
the purpose is to find the optimal weight for each of them (when zero, they will
be excluded from the design). For design points with more than one dimension,
see ’Details’ of sensminimax.

Vector of the corresponding design weights for x.

Vector of lower bounds for the predictors. Should be in the same order as
predvars.

Vector of upper bounds for the predictors. Should be in the same order as
predvars.

A function. Returns the FIM as a matrix. Required when formula is missing.
See ’Details’ of minimax.

An object of class cprior. User can also use one of the functions uniform,
normal, skewnormal or student to create the prior. See ’Details’ of bayes.

Either formula or a function. When function, its argument are x and param,
and they are the same as the arguments in fimfunc. prob as a function takes the
design points and vector of parameters and returns the probability of success at
each design points. See 'Examples’.

A value between 0 and 1. Compound or combined DP-criterion is the product
of the efficiencies of a design with respect to D- and average P- optimality,
weighted by alpha.

Control Parameters for Calculating the ELB. For details, see sens.control.

sens.bayes.control

A list. Control parameters to verify the general equivalence theorem. For details,
see sens.bayes.control.

crt.bayes.control

plot_3d

A list. Control parameters to approximate the integral in the Bayesian criterion
at a given design over the parameter space. For details, see crt.bayes.control.

Which package should be used to plot the sensitivity (derivative) function for
two-dimensional design space. Defaults to "lattice”.

sensbayescomp 91

plot_sens Plot the sensitivity (derivative) function? Defaults to TRUE.

npar Number of model parameters. Used when fimfunc is given instead of formula
to specify the number of model parameters. If not specified correctly, the sensi-
tivity (derivative) plot may be shifted below the y-axis. When NULL (default), it
will be set to length(parvars) or prior$npar when missing(formula).
calculate_criterion
Calculate the optimality criterion? See ’Details’ of sensminimax.

silent Do not print anything? Defaults to FALSE.

Details

Depending on the complexity of the problem at hand, sometimes, the CPU time can be considerably
reduced by choosing a set of less conservative values for the tuning parameters tol and maxEval in
the function sens.bayes.control when its method component is equal to "cubature”. Similarly,
this applies when sens.bayes.control$method = "quadrature”. In general, if the CPU time
matters, the user should find an appropriate speed-accuracy trade-off for her/his own problem. See
’Examples’ for more details.

Note

The default values of the tuning parameters in sens.bayes.control are set in a way that having
accurate plots for the sensitivity (derivative) function and calculating the ELB to a high precision
to be the primary goals, although the process may take too long. The user should choose a set of
less conservative values via the argument sens.bayes. control when the CPU-time is too long or
matters.

See Also

bayescomp

Examples

B S S
Verifing the DP-optimality of a design
The logistic model with two predictors
B S S

The design points and corresponding weights are as follows:

Pointl Point2 Point3 Point4 Point5 Point6 Point7
0.07410 -0.31953 -1.00000 1.00000 -1.00000 1.00000 0.30193
-1.00000 1.00000 -1.00000 1.00000 -0.08251 -1.00000 1.00000
Weightl Weight2 Weight3 Weight4 Weight5 Weight6 Weight7
0.020 0.275 0.224 0.131 0.092 0.156 0.103

It should be given to the function as two seperate vectors:
x1 <- c(0.07409639, -0.3195265, -1, 1, -1, 1, 0.3019317, -1, 1, -1, 1, -0.08251169, -1, 1)
wl <- c(0.01992863, 0.2745394, 0.2236575, 0.1312331, 0.09161503, 0.1561454, 0.1028811)

p<-c(, -2,1,-1)

92

Not run:

senslocally

sensbayescomp(formula = ~exp(b@+b1xx1+b2*x2+b3*x1*x2)/(1+exp(b@+b1*x1+b2*xx2+b3*x1%x2)),

predvars = c("x1", "x2"),

parvars = c("b@", "b1", "b2", "b3"),

family = binomial(),

x =x1, w=wl,

Ix = c¢(-1, -1), ux = c(1, 1),

prior = uniform(p -1.5, p + 1.5),

prob = ~1-1/(1+exp(b@ + b1 * x1 + b2 * x2 + b3 * x1 * x2)),
alpha = .5, plot_3d = "rgl”,

sens.bayes.control = list(cubature = list(tol = 1e-3, maxEval =

End(Not run)

1000)))

senslocally

Verifying Optimality of The Locally D-optimal Designs

Description

It plots the sensitivity (derivative) function of the locally D-optimal criterion at a given approxi-
mate (continuous) design and also calculates its efficiency lower bound (ELB) with respect to the
optimality criterion. For an approximate (continuous) design, when the design space is one or two-
dimensional, the user can visually verify the optimality of the design by observing the sensitivity
plot. Furthermore, the proximity of the design to the optimal design can be measured by the ELB
without knowing the latter. See, for more details, Masoudi et al. (2017).

Usage

senslocally(

formula,

predvars,

parvars,

family = gaussian(),

X,

w,

1x,

ux,
inipars,
fimfunc

NULL,

sens.control = list(),
calculate_criterion = TRUE,
plot_3d = c("lattice”, "rgl"),

senslocally

93

plot_sens = TRUE,
npar = length(inipars),
silent = FALSE,

crtfunc =

NULL,

sensfunc = NULL

Arguments

formula

predvars
parvars
family

1x
ux
inipars
fimfunc

sens.control

A linear or nonlinear model formula. A symbolic description of the model
consists of predictors and the unknown model parameters. Will be coerced to a
formula if necessary.

A vector of characters. Denotes the predictors in the formula.
A vector of characters. Denotes the unknown parameters in the formula.

A description of the response distribution and the link function to be used in the
model. This can be a family function, a call to a family function or a character
string naming the family. Every family function has a link argument allowing to
specify the link function to be applied on the response variable. If not specified,
default links are used. For details see family. By default, a linear gaussian
model gaussian() is applied.

Vector of the design (support) points. See *Details’ of sensminimax for models
with more than one predictors.

Vector of the corresponding design weights for x.

Vector of lower bounds for the predictors. Should be in the same order as
predvars.

Vector of upper bounds for the predictors. Should be in the same order as
predvars.

A vector of initial estimates for the unknown parameters. It must match parvars
or the argument param of the function fimfunc, when provided.

A function. Returns the FIM as a matrix. Required when formula is missing.
See ’Details’ of minimax.

Control Parameters for Calculating the ELB. For details, see sens.control.

calculate_criterion

plot_3d
plot_sens
npar
silent

crtfunc

sensfunc

Calculate the optimality criterion? See ’Details’ of sensminimax.

Which package should be used to plot the sensitivity (derivative) function for
models with two predictors. Either "rgl” or "lattice"” (default).

Plot the sensitivity (derivative) function? Defaults to TRUE.

Number of model parameters. Used when fimfunc is given instead of formula
to specify the number of model parameters. If not given, the sensitivity plot may
be shifted below the y-axis. When NULL, it is set to length(inipars).

Do not print anything? Defaults to FALSE.

(Optional) a function that specifies an arbitrary criterion. It must have especial
arguments and output. See ’Details’ of minimax.

(Optional) a function that specifies the sensitivity function for crtfunc. See
"Details’ of minimax.

94 senslocally

Details

Let 6y denotes the vector of initial estimates for the unknown parameters. A design £* is locally
D-optimal among all designs on Y if and only if the following inequality holds for all € x

o(®,&",60p) = trM =1 (€",60)I (2, 00) —p < 0,
with equality at all support points of £*. Here, p is the number of model parameters. c(x, £*, 0) is

called sensitivity or derivative function.

ELB is a measure of proximity of a design to the optimal design without knowing the latter. Given
a design, let € be the global maximum of the sensitivity (derivative) function over x € x. ELB is
given by

ELB =p/(p+e),

where p is the number of model parameters. Obviously, calculating ELB requires finding e and
another optimization problem to be solved. The tuning parameters of this optimization can be
regulated via the argument sens.minimax.control. See, for more details, Masoudi et al. (2017).

Value
an object of class sensminimax that is a list with the following elements:

type Argument type that is required for print methods.

optima A matrix that stores all the local optima over the parameter space. The cost (criterion)
values are stored in a column named Criterion_Value. The last column (Answering_Set)
shows if the optimum belongs to the answering set (1) or not (0). See ’Details’ of sens.minimax.control.
Only applicable for minimax or standardized maximin designs.

mu Probability measure on the answering set. Corresponds to the rows of optima for which the
associated row in column Answering_Set is equal to 1. Only applicable for minimax or
standardized maximin designs.

max_deriv Global maximum of the sensitivity (derivative) function (e in ’Details’).

ELB D-efficiency lower bound. Can not be larger than 1. If negative, see ’Note’ in sensminimax or
sens.minimax.control.

merge_tol Merging tolerance to create the answering set from the set of all local optima. See
"Details’ in sens.minimax.control. Only applicable for minimax or standardized maximin
designs.

crtval Criterion value. Compare it with the column Crtiterion_Value in optima for minimax
and standardized maximin designs.

time Used CPU time (rough approximation).

Note
Theoretically, ELB can not be larger than 1. But if so, it may have one of the following reasons:
* max_deriv is not a GLOBAL maximum. Please increase the value of the parameter maxeval
in sens.minimax.control to find the global maximum.

» The sensitivity function is shifted below the y-axis because the number of model parameters
has not been specified correctly (less value given). Please specify the correct number of model
parameters via the argument npar.

senslocally 95

References

Masoudi E, Holling H, Wong W.K. (2017). Application of Imperialist Competitive Algorithm to
Find Minimax and Standardized Maximin Optimal Designs. Computational Statistics and Data
Analysis, 113, 330-345.

Examples

SRR
Exponential growth model
HHHHHHEEEE A
Verifying optimailty of a locally D-optimal design
senslocally(formula = ~a + exp(-b*x),
predvars = "x", parvars = c("a", "b"),
x =c(.1, 1), w=-c(.5, .5,
Ix = 0, ux = 1, inipars = c(1, 10))

HHHEHHEEEE A

A model with two predictors

HHHHHHARE A

X0 <- c(30, 3.861406, 30, 4.600633, @, @, 5.111376, 4.168798)
wo <- rep(.25, 4)

senslocally(formula = ~ VxS/(Km * (1 + I/Kic)+ S * (1 + I/Kiu)),
predvars = c("S", "I"),
parvars = c("V", "Km", "Kic", "Kiu"),

X = X0, w = wo,

1x = c(@, @), ux = c(30, 60),
inipars = ¢(1.5, 5.2, 3.4, 5.6))
Not run:
using package rgl for 3d plot:
res<- senslocally(formula = ~ VxS/(Km x (1 + I/Kic)+ S x (1 + I/Kiu)),
predvars = c("S", "I"),
parvars = c("V", "Km", "Kic"”, "Kiu"),

X = X0, w = w0,

1x = c(@, @), ux = c(30, 60),
inipars = ¢c(1.5, 5.2, 3.4, 5.6),
plot_3d = "rgl")

End(Not run)

AR AR
user-defined optimality criterion
B S S
When the model is defined by the formula interface
Checking the A-optimality for the 2PL model.
the criterion function must have argument x, w fimfunc and the parameters defined in 'parvars'.
use 'fimfunc' as a function of the design points x, design weights w and
the 'parvars' parameters whenever needed.
Aopt <-function(x, w, a, b, fimfunc){
sum(diag(solve(fimfunc(x = x, w =w, a = a, b =b))))

96 senslocallycomp

}
the sensitivtiy function
xi_x is a design that put all its mass on x in the definition of the sensitivity function
x is a vector of design points
Aopt_sens <- function(xi_x, x, w, a, b, fimfunc){
fim <- fimfunc(x = x, w=w, a = a, b =b)
M_inv <- solve(fim)
M_x <- fimfunc(x = xi_x, w =1, a =a, b =Db)
sum(diag(M_inv %*% M_x %*x% M_inv)) - sum(diag(M_inv))
}
senslocally(formula = ~1/(1 + exp(-b * (x-a))), predvars = "x",
parvars = c("a", "b"), family = "binomial”,
inipars = c(0, 1.5),
crtfunc = Aopt,
Ix = -2, ux = 2,
sensfunc = Aopt_sens,
x =c(-1, 1), w=c(.5, .5)
not optimal

senslocallycomp Verifying Optimality of The Locally DP-optimal Designs

Description

This function plot the sensitivity (derivative) function given an approximate (continuous) design
and calculate the efficiency lower bound (ELB) for locally DP-optimal designs. Let x belongs to
x that denotes the design space. Based on the general equivalence theorem, generally, a design £*
is optimal if and only if the value of its sensitivity (derivative) function be non-positive for all =
in y and it only reaches zero when x belong to the support of £* (be equal to one of the design
point). Therefore, the user can look at the sensitivity plot and the ELB to decide whether the design
is optimal or close enough to the true optimal design.

Usage

senslocallycomp(
formula,
predvars,
parvars,
alpha,
prob,
family = gaussian(),
X,
w,
1x,
ux,
inipars,
fimfunc = NULL,

senslocallycomp 97

sens.control = list(),
calculate_criterion = TRUE,
plot_3d = c("lattice”, "rgl"),
plot_sens = TRUE,

npar = length(inipars),

silent = FALSE

)
Arguments

formula A linear or nonlinear model formula. A symbolic description of the model
consists of predictors and the unknown model parameters. Will be coerced to a
formula if necessary.

predvars A vector of characters. Denotes the predictors in the formula.

parvars A vector of characters. Denotes the unknown parameters in the formula.

alpha A value between 0 and 1. Compound or combined DP-criterion is the product
of the efficiencies of a design with respect to D- and average P- optimality,
weighted by alpha.

prob Either formula or a function. When function, its argument are x and param,
and they are the same as the arguments in fimfunc. prob as a function takes the
design points and vector of parameters and returns the probability of success at
each design points. See 'Examples’.

family A description of the response distribution and the link function to be used in the
model. This can be a family function, a call to a family function or a character
string naming the family. Every family function has a link argument allowing to
specify the link function to be applied on the response variable. If not specified,
default links are used. For details see family. By default, a linear gaussian
model gaussian() is applied.

X Vector of the design (support) points. See ’Details’ of sensminimax for models
with more than one predictors.

w Vector of the corresponding design weights for x.

1x Vector of lower bounds for the predictors. Should be in the same order as
predvars.

ux Vector of upper bounds for the predictors. Should be in the same order as
predvars.

inipars Vector of initial estimates for the unknown parameters. It must match parvars
or argument param of the function provided in fimfunc.

fimfunc A function. Returns the FIM as a matrix. Required when formula is missing.

See ’Details’ of minimax.

sens.control Control Parameters for Calculating the ELB. For details, see sens.control.
calculate_criterion
Calculate the optimality criterion? See ’Details’ of sensminimax.

plot_3d Which package should be used to plot the sensitivity (derivative) function for
models with two predictors. Either "rgl” or "lattice"” (default).

98 senslocallycomp

plot_sens Plot the sensitivity (derivative) function? Defaults to TRUE.

npar Number of model parameters. Used when fimfunc is given instead of formula
to specify the number of model parameters. If not given, the sensitivity plot may
be shifted below the y-axis. When NULL, it is set to length(inipars).

silent Do not print anything? Defaults to FALSE.

Value

an object of class sensminimax that is a list with the following elements:

type Argument type that is required for print methods.

optima A matrix that stores all the local optima over the parameter space. The cost (criterion)
values are stored in a column named Criterion_Value. The last column (Answering_Set)
shows if the optimum belongs to the answering set (1) or not (0). See ’Details’ of sens.minimax.control.
Only applicable for minimax or standardized maximin designs.

mu Probability measure on the answering set. Corresponds to the rows of optima for which the
associated row in column Answering_Set is equal to 1. Only applicable for minimax or
standardized maximin designs.

max_deriv Global maximum of the sensitivity (derivative) function (e in ’Details’).

ELB D-efficiency lower bound. Can not be larger than 1. If negative, see ’Note’ in sensminimax or
sens.minimax.control.

merge_tol Merging tolerance to create the answering set from the set of all local optima. See
"Details’ in sens.minimax.control. Only applicable for minimax or standardized maximin
designs.

crtval Criterion value. Compare it with the column Crtiterion_Value in optima for minimax
and standardized maximin designs.

time Used CPU time (rough approximation).

References

McGree, J. M., Eccleston, J. A., and Duffull, S. B. (2008). Compound optimal design criteria for
nonlinear models. Journal of Biopharmaceutical Statistics, 18(4), 646-661.

Examples

p <-c(1, -2, 1, -1)

prior4.4 <- uniform(p -1.5, p + 1.5)

formula4.4 <- ~exp(b@+b1xx1+b2*x2+b3*x1xx2)/(1+exp(b@+b1*x1+b2xx2+b3*x1%x2))
prob4.4 <- ~1-1/(1+exp(b@ + b1 * x1 + b2 * x2 + b3 * x1 * x2))

predvars4.4 <- c("x1", "x2")

parvars4.4 <- c("b@", "b1", "b2", "b3")

1b <~ c(-1, -1)

ub <- c(1, 1)

That is the optimal design when alpha = .25, see ?locallycomp on how to find it
xopt <- c(-1, -0.389, 1, 0.802, -1, 1, -1, 1)
wopt <- c(0.198, 0.618, 0.084, 0.1)

sensminimax 99

We want to verfiy the optimality of the optimal design by the general equivalence theorem.

senslocallycomp(formula = formula4.4, predvars = predvars4.4, parvars = parvars4.4,
family = binomial(), prob = prob4.4, 1x = 1lb, ux = ub,
alpha = .25, inipars = p, x = xopt, w = wopt)

Not run:
is this design also optimal when alpha = .3

senslocallycomp(formula = formula4.4, predvars = predvars4.4, parvars = parvars4.4,
family = binomial(), prob = prob4.4, 1x = lb, ux = ub,
alpha = .3, inipars = p, x = xopt, w = wopt)

when alpha = .3

senslocallycomp(formula = formula4.4, predvars = predvars4.4, parvars = parvars4.4,
family = binomial(), prob = prob4.4, 1x = 1lb, ux = ub,
alpha = .5, inipars = p, x = xopt, w = wopt)

when alpha = .8

senslocallycomp(formula = formula4.4, predvars = predvars4.4, parvars = parvars4.4,
family = binomial(), prob = prob4.4, 1x = 1lb, ux = ub,
alpha = .8, inipars = p, x = xopt, w = wopt)

when alpha = .9

senslocallycomp(formula = formula4.4, predvars = predvars4.4, parvars = parvars4.4,
family = binomial(), prob = prob4.4, 1x = 1lb, ux = ub,
alpha = .9, inipars = p, x = xopt, w = wopt)

As can be seen, the design looses efficiency as alpha increases.

End(Not run)

sensminimax Verifying Optimality of The Minimax and Standardized maximin D-
optimal Designs

Description

It plots the sensitivity (derivative) function of the minimax or standardized maximin D-optimal
criterion at a given approximate (continuous) design and also calculates its efficiency lower bound
(ELB) with respect to the optimality criterion. For an approximate (continuous) design, when the
design space is one or two-dimensional, the user can visually verify the optimality of the design by
observing the sensitivity plot. Furthermore, the proximity of the design to the optimal design can
be measured by the ELB without knowing the latter. See, for more details, Masoudi et al. (2017).

Usage

sensminimax (
formula,

100

predvars,

parvars,

family = gaussian(),

X,

W,

1x,

ux,

1p,

up,

fimfunc = NULL,

standardized = FALSE,

localdes = NULL,

sens.control = list(),
sens.minimax.control = list(),
calculate_criterion = TRUE,
crt.minimax.control = list(),
plot_3d = c("lattice”, "rgl"),
plot_sens = TRUE,

sensminimax

npar = length(lp),
silent = FALSE,
crtfunc = NULL,

sensfunc =

Arguments

formula

predvars
parvars

family

1x

ux

1p

NULL

A linear or nonlinear model formula. A symbolic description of the model
consists of predictors and the unknown model parameters. Will be coerced to a
formula if necessary.

A vector of characters. Denotes the predictors in the formula.
A vector of characters. Denotes the unknown parameters in the formula.

A description of the response distribution and the link function to be used in the
model. This can be a family function, a call to a family function or a character
string naming the family. Every family function has a link argument allowing to
specify the link function to be applied on the response variable. If not specified,
default links are used. For details see family. By default, a linear gaussian
model gaussian() is applied.

Vector of the design (support) points. See 'Details’ of sensminimax for models
with more than one predictors.

Vector of the corresponding design weights for x.

Vector of lower bounds for the predictors. Should be in the same order as
predvars.

Vector of upper bounds for the predictors. Should be in the same order as
predvars.

Vector of lower bounds for the model parameters. Should be in the same order
as parvars or param in the argument fimfunc.

sensminimax

up

fimfunc

standardized

localdes

sens.control

101

Vector of upper bounds for the model parameters. Should be in the same order
as parvars or param in the argument fimfunc. When a parameter is known
(has a fixed value), its associated lower and upper bound values in 1p and up
must be set equal.

A function. Returns the FIM as a matrix. Required when formula is missing.
See ’Details’ of minimax.

Maximin standardized design? When standardized = TRUE, the argument localdes
must be given. Defaults to FALSE. See ’Details’ of minimax.

A function that takes the parameter values as inputs and returns the design points
and weights of the locally optimal design. Required when standardized =
"TRUE". See ’Details’ of minimax.

Control Parameters for Calculating the ELB. For details, see sens.control.

sens.minimax.control

Control parameters to construct the answering set required for verify the gen-
eral equivalence theorem and calculating the ELB. For details, see the function
sens.minimax.control.

calculate_criterion

Calculate the optimality criterion? See ’Details’ of sensminimax.

crt.minimax.control

plot_3d

plot_sens

npar

silent

crtfunc

sensfunc

Details

Control parameters to calculate the value of the minimax or standardized max-
imin optimality criterion over the continuous parameter space. Only applicable
when calculate_criterion = TRUE. For more details, see crt.minimax.control.

Which package should be used to plot the sensitivity (derivative) function for
models with two predictors. Either "rgl” or "lattice” (default).

Plot the sensitivity (derivative) function? Defaults to TRUE.

Number of model parameters. Used when fimfunc is given instead of formula
to specify the number of model parameters. If not specified truly, the sensitivity
(derivative) plot may be shifted below the y-axis. When NULL (default), it is set
to length(1p).

Do not print anything? Defaults to FALSE.

(Optional) a function that specifies an arbitrary criterion. It must have especial
arguments and output. See ’Details’ of minimax.

(Optional) a function that specifies the sensitivity function for crtfunc. See
"Details’ of minimax.

Let the unknown parameters belong to ©. A design £* is minimax D-optimal among all designs on
x if and only if there exists a probability measure p* on

A = {v e —taglhe’)| = ax—togl (" 0) |

such that the following inequality holds for all x € x

ot €)= [M e) —p <o

102 sensminimax

with equality at all support points of £*. Here, p is the number of model parameters. c(x, u*, £*)
is called sensitivity or derivative function. The set A(£*) is sometimes called answering set of £*
and the measure p* is a sub-gradient of the non-differentiable criterion evaluated at M (£*,v).

For the standardized maximin D-optimal designs, the answering set N (£*) is

N = {l/ €0 |effp(¢*,v) = zrggeffD(g*,O)} .

where effp(€,0) = (%)i and &y is the locally D-optimal design with respect to 6. See

’Details’ of sens.minimax.control on how we find the answering set.

The argument x is the vector of design points. For design points with more than one dimension (the
models with more than one predictors), it is a concatenation of the design points, but dimension-
wise. For example, let the model has three predictors (I, S, Z). Then, a two-point optimal design
has the following points: {pointl = (I, S1, Z1),point2 = (I3, S2, Z3)}. Then, the argument x is
equal to x = c(I1, I2, S1, S2, 71, Z2).

ELB is a measure of proximity of a design to the optimal design without knowing the latter. Given
a design, let € be the global maximum of the sensitivity (derivative) function with respect x where
x € x. ELB is given by

ELB =p/(p+e),

where p is the number of model parameters. Obviously, calculating ELB requires finding € and
another optimization problem to be solved. The tuning parameters of this optimization can be
regulated via the argument sens.minimax.control. See, for more details, Masoudi et al. (2017).

The criterion value for the minimax D-optimal design is (global maximum over ©)

—log |[M(&,0)];
wmasx — log |M(€,6)

for the standardized maximin D-optimal design is (global minimum over ©)

1m0y
525[(|M<59,9>>]

This function confirms the optimality assuming only a continuous parameter space ©.

Value

an object of class sensminimax that is a list with the following elements:

type Argument type that is required for print methods.

optima A matrix that stores all the local optima over the parameter space. The cost (criterion)
values are stored in a column named Criterion_Value. The last column (Answering_Set)
shows if the optimum belongs to the answering set (1) or not (0). See ’Details’ of sens.minimax.control.
Only applicable for minimax or standardized maximin designs.

mu Probability measure on the answering set. Corresponds to the rows of optima for which the
associated row in column Answering_Set is equal to 1. Only applicable for minimax or
standardized maximin designs.

max_deriv Global maximum of the sensitivity (derivative) function (e in *Details’).

sensminimax 103

ELB D-efficiency lower bound. Can not be larger than 1. If negative, see ’Note’ in sensminimax or
sens.minimax.control.

merge_tol Merging tolerance to create the answering set from the set of all local optima. See
"Details’ in sens.minimax.control. Only applicable for minimax or standardized maximin
designs.

crtval Criterion value. Compare it with the column Crtiterion_Value in optima for minimax
and standardized maximin designs.

time Used CPU time (rough approximation).

Note
Theoretically, ELB can not be larger than 1. But if so, it may have one of the following reasons:

e max_deriv is not a GLOBAL maximum. Please increase the value of the parameter maxeval
in sens.minimax.control to find the global maximum.

* The sensitivity function is shifted below the y-axis because the number of model parameters
has not been specified correctly (less value given). Please specify the correct number of model
parameters via argument npar.

Please increase the value of the parameter n_seg in sens.minimax.control for models with larger
number of parameters or large parameter space to find the true answering set for minimax and
standardized maximin designs. See sens.minimax.control for more details.

References

Masoudi E, Holling H, Wong W.K. (2017). Application of Imperialist Competitive Algorithm to
Find Minimax and Standardized Maximin Optimal Designs. Computational Statistics and Data
Analysis, 113, 330-345.

Examples

HHH

Power logistic model

A A

verifying the minimax D-optimality of a design with points x@ and weights w@
x0 <- c(-4.5515, 0.2130, 2.8075)

W <- c(0.4100, 0.3723, 0.2177)

Power logistic model when s = .2
sensminimax(formula = ~ (1/(1 + exp(-b * (x-a))))*.2,
predvars = "x",
parvars = c("a", "b"),

family = binomial(),

X = x0, w = wo,

Ix = -5, ux = 5,

Ip = c(@, 1), up = c(3, 1.5))

HHHEHHPREE AR
A model with two predictors
HHHHHHHEEE A

104

sensminimax

Verifying the minimax D-optimality of a design for a model with two predictors

The model is the mixed inhibition model.

X0 is the vector of four design points that are:

(3.4614, 0) (4.2801, 3.1426) (30, @) (30, 4.0373)
X0 <- c(3.4614, 4.2801, 30, 30, @, 3.1426, 0, 4.0373)
wo <- rep(1/4, 4)

sensminimax(formula = ~ V*S/(Km * (1 + I/Kic)+ S * (1 + I/Kiu)),
predvars = c("S", "I"),
parvars = c("V", "Km", "Kic"”, "Kiu"),
family = "gaussian”,

X = X0, w = w0,
1x = c(@, @), ux = c(30, 60),
lp =c(1, 4, 2, 4), up = c(1, 5, 3, 5))

HHHEHHHEEERE AR A
Standardized maximin D-optimal designs
HHHHHHAEHE R
Verifying the standardized maximin D-optimality of a design for
the loglinear model
First we should define the function for 'localdes' argument
The function LDOD takes the parameters and returns the points and
weights of the locally D-optimal design
LDOD <- function(theta®, thetal, theta2){
param is the vector of theta = (theta®, thetal, theta2)
1x <- @ # lower bound of the design space
ux <- 150 # upper bound of the design space
param <- c()
param[1] <- theta@
param[2] <- thetal
param[3] <- theta2
xstar <- (ux+param[3]) x (1x + param[3]) =*
(log(ux + param[3]) - log(lx + param[3]))/(ux - 1x) - param[3]
return(list(x = c(1x, xstar, ux) , w = rep(1/3, 3)))
3
X0 <- c(0, 4.2494, 17.0324, 149.9090)
wd <- c(0@.3204, 0.1207, ©.2293, 0.3296)
Not run:
sensminimax(formula = ~theta® + thetal* log(x + theta2),
predvars = c("x"),
parvars = c("theta@"”, "thetal”, "theta2"),
X = X0, w = wo,
Ix = @, ux = 150,
lp = c(2, 2, 1), up = c(2, 2, 15),
localdes = LDOD,
standardized = TRUE,
sens.minimax.control = list(n_seg = 10))

End(Not run)
B s S R
Not necessary!

The rest of the examples here are only for professional uses.
B s S S

Imagine you have written your own FIM, say in Rcpp that is faster than

sensminimax 105

the FIM created by the formula interface here.

HHHHHHAEEE A
Power logistic model
WA
For example, th cpp FIM function for the power logistic model is named:
FIM_power_logistic
args(FIM_power_logistic)
The arguments do not match the standard of the argument 'fimfunc'
in 'sensminimax'
So we reparameterize it:
myfiml <- function(x, w, param)
FIM_power_logistic(x = x, w = w, param =param, s = .2)

args(myfim1)
Not run:
Verify minimax D-optimality of a design
sensminimax(fimfunc = myfiml,
x = c(-4.5515, 0.2130, 2.8075),
w = c(0.4100, 0.3723, 0.2177),
Ix = -5, ux =5,
lp = c(0, 1), up = c(3, 1.5))

End(Not run)

SEEEHEEHHEHEHE AR

A model with two predictors

HHHHHHEEEEE AR

An example of a model with two-predictors: mixed inhibition model
Fisher information matrix:

FIM_mixed_inhibition

args(FIM_mixed_inhibition)

We should first reparameterize the FIM to match the standard of the
argument 'fimfunc'
myfim2 <- function(x, w, param){
npoint <- length(x)/2
S <- x[1:npoint]
I <- x[(npoint+1): (npoint*2)]
out <- FIM_mixed_inhibition(S =S, I = I, w = w, param = param)
return(out)
3
args(myfim2)
Not run:
Verifyng minimax D-optimality of a design
sensminimax(fimfunc = myfim2,
x = c(3.4614, 4.2801, 30, 30, 0, 3.1426, @, 4.0373),
w = rep(1/4, 4),
1x = c(@, @), ux = c(30, 60),
lp = c(1, 4, 2, 4), up = c(1, 5, 3, 5))

End(Not run)

SRR R R

106 sensminimax

Standardized maximin D-optimal designs
HHHHHHARHEAH A
An example of a user-written FIM function:
help(FIM_loglin)
An example of verfying standardaized maximin D-optimality for a design
Look how we re-define the function LDOD above
LDOD2 <- function(param){
param is the vector of theta = (theta@, thetal, theta2)
1x <- @ # lower bound of the design space
ux <- 150 # upper bound of the design space
xstar <- (ux + param[3]) * (I1x + param[3]) *
(log(ux + param[3]) - log(lx + param[3]1))/(ux - 1x) - param[3]
return(list(x = c(1lx, xstar, ux) , w = rep(1/3, 3)))

args(LDOD2)

sensminimax (fimfunc = FIM_loglin,
X = X0,
w = wo,
1x = 0, ux = 150,
1p = c(2, 2, 1), up = c(2, 2, 15),
localdes = LDOD2,
standardized = TRUE)

S HEHHRHEHEHR AR R AR R
user-defined optimality criterion
HHHHHHEEEEE A
When the model is defined by the formula interface
Checking the A-optimality for the 2PL model.
the criterion function must have argument x, w fimfunc and the parameters defined in 'parvars'.
use 'fimfunc' as a function of the design points x, design weights w and
the 'parvars' parameters whenever needed.
Aopt <-function(x, w, a, b, fimfunc){
sum(diag(solve(fimfunc(x = x, w =w, a = a, b =b))))
3
the sensitivtiy function
xi_x is a design that put all its mass on x in the definition of the sensitivity function
x is a vector of design points
Aopt_sens <- function(xi_x, x, w, a, b, fimfunc){
fim <- fimfunc(x = x, w=w, a =a, b =b)
M_inv <- solve(fim)

M_x <- fimfunc(x = xi_x, w=1, a =a, b =b)
sum(diag(M_inv %*% M_x %*% M_inv)) - sum(diag(M_inv))
3
sensminimax(formula = ~1/(1 + exp(-b * (x-a))), predvars = "x",
parvars = c("a", "b"), family = "binomial"”,

Ip = c(-2, 1), up = c(2, 1.5),
= Aopt,
Ix = -2, ux = 2,

sensmultiple 107

sensfunc = Aopt_sens,
x = c(-2, .0033, 2), w = c(.274, .452, .274))

sensmultiple Verifying Optimality of The Multiple Objective Designs for The 4-
Parameter Hill Model

Description

This function uses general equivalence theorem to verify the optimality of a multiple objective
optimal design found for the 4-Parameter Hill model and the 4-parameter logistic model. For more
details, See Hyun and Wong (2015).

Usage

sensmultiple(
dose,
w,
minDose,
maxDose,
inipars,
lambda,
delta,
Hill_par = TRUE,
sens.control = list(),
calculate_criterion = TRUE,
plot_sens = TRUE,
tol = sqrt(.Machine$double.xmin),
silent = FALSE

)
Arguments

dose A vector of design points. It is either dose values or logarithm of dose values
when Hill_par = TRUE.

w A vector of design weights.

minDose Minimum dose D. For the 4-parameter logistic model, i.e. when Hill_par =
FALSE, it is the minimum of log(D).

maxDose Maximum dose D. For the 4-parameter logistic model, i.e. when Hill_par =
FALSE, it is the maximum of log(D).

inipars A vector of initial estimates for the vector of parameters (a, b, ¢, d). For the 4-
parameter logistic model, i.e. when Hill_par = FALSE, it is a vector of initial
estimates for (61, 62, 63, 0,).

lambda A vector of relative importance of each of the three criteria, i.e. A = (A1, A2, A3).

Here 0 < \; < landsd A\ =1.

108 sensmultiple

delta Predetermined meaningful value of the minimum effective dose MED. When
6 < 0, then 65 > 0 or when ¢ > 0, then 65 < 0.

Hill_par Hill model parameterization? Defaults to TRUE.

sens.control Control Parameters for Calculating the ELB. For details, see sens.control.

calculate_criterion
Calculate the criterion? Defaults to TRUE.

plot_sens Plot the sensitivity (derivative) function? Defaults to TRUE.

tol Tolerance for finding the general inverse of the Fisher information matrix. De-
faults to .Machine$double.xmin.

silent Do not print anything? Defaults to FALSE.

Details

ELB is a measure of proximity of a design to the optimal design without knowing the latter. Given
a design, let € be the global maximum of the sensitivity (derivative) function over x € . ELB is
given by

ELB =p/(p +¢),

where p is the number of model parameters. Obviously, calculating ELB requires finding e and
another optimization problem to be solved. The tuning parameters of this optimization can be
regulated via the argument sens.minimax.control. See, for more details, Masoudi et al. (2017).

Value

an object of class sensminimax that is a list with the following elements:

type Argument type that is required for print methods.

optima A matrix that stores all the local optima over the parameter space. The cost (criterion)
values are stored in a column named Criterion_Value. The last column (Answering_Set)
shows if the optimum belongs to the answering set (1) or not (0). See ’Details’ of sens.minimax.control.
Only applicable for minimax or standardized maximin designs.

mu Probability measure on the answering set. Corresponds to the rows of optima for which the
associated row in column Answering_Set is equal to 1. Only applicable for minimax or
standardized maximin designs.

max_deriv Global maximum of the sensitivity (derivative) function (e in ’Details’).

ELB D-efficiency lower bound. Can not be larger than 1. If negative, see ’Note’ in sensminimax or
sens.minimax.control.

merge_tol Merging tolerance to create the answering set from the set of all local optima. See
"Details’ in sens.minimax.control. Only applicable for minimax or standardized maximin
designs.

crtval Criterion value. Compare it with the column Crtiterion_Value in optima for minimax
and standardized maximin designs.

time Used CPU time (rough approximation).

sensmultiple 109

Note

DO NOT use this function to verify c-optimal designs for estimating "MED’ or ’ED50’ (verifying
single objective optimal designs) because the results may be unstable. The reason is that for the c-
optimal criterion the generalized inverse of the Fisher information matrix is not stable and depends
on the tolerance value (tol).

Theoretically, ELB can not be larger than 1. But if so, it may have one of the following reasons:

* max_deriv is not a GLOBAL maximum. Please increase the value of the parameter maxeval
in sens.minimax.control to find the global maximum.

* The sensitivity function is shifted below the y-axis because the number of model parameters
has not been specified correctly (less value given). Please specify the correct number of model
parameters via argument npar.

References

Hyun, S. W., and Wong, W. K. (2015). Multiple-Objective Optimal Designs for Studying the Dose
Response Function and Interesting Dose Levels. The international journal of biostatistics, 11(2),
253-271.

See Also

multiple

Examples

HHHEHHARHEEE AR A R
Verifying optimality of a design for the 4-parameter Hill model
HHEHHHHHHHHEE AR HEHHREEEEHHHHH R

initial estiamtes for the parameters of the Hill model
a <- 0.008949 # ED50

b <- -1.79 # Hill constant

c <- 0.137 # lower limit

d <- 1.7 # upper limit

D belongs to c(.001, 1000) ## dose in mg

Hill parameters are c(a, b, c, d)

dose, minDose and maxDose vector in mg scale

sensmultiple (dose = c(0.001, 0.009426562, ©.01973041, 999.9974),
w = c(0.4806477, ©.40815, 0.06114173, 0.05006055),
minDose = .001, maxDose = 1000,
Hill_par = TRUE,
inipars = c(a, b, c, d),
lambda = c(0.05, 0.05, .90),
delta = -1)

110 sensrobust

sensrobust Verifying Optimality of The Robust Designs

Description

It plots the sensitivity (derivative) function of the robust criterion at a given approximate (continu-
ous) design and also calculates its efficiency lower bound (ELB) with respect to the optimality crite-
rion. For an approximate (continuous) design, when the design space is one or two-dimensional, the
user can visually verify the optimality of the design by observing the sensitivity plot. Furthermore,
the proximity of the design to the optimal design can be measured by the ELB without knowing the
latter. See, for more details, Masoudi et al. (2017).

Usage

sensrobust(
formula,
predvars,
parvars,
family = gaussian(),
X,
w,
1x,
ux,
prob,
parset,
fimfunc = NULL,
sens.control = list(),
calculate_criterion = TRUE,
plot_3d = c("lattice”, "rgl"),
plot_sens = TRUE,
npar = dim(parset)[2],
silent = FALSE,
crtfunc = NULL,
sensfunc = NULL

)
Arguments

formula A linear or nonlinear model formula. A symbolic description of the model
consists of predictors and the unknown model parameters. Will be coerced to a
formula if necessary.

predvars A vector of characters. Denotes the predictors in the formula.

parvars A vector of characters. Denotes the unknown parameters in the formula.

family A description of the response distribution and the link function to be used in the

model. This can be a family function, a call to a family function or a character
string naming the family. Every family function has a link argument allowing to

sensrobust

1x

ux

prob

parset

fimfunc

sens.control

111

specify the link function to be applied on the response variable. If not specified,
default links are used. For details see family. By default, a linear gaussian
model gaussian() is applied.

Vector of the design (support) points. See *Details’ of sensminimax for models
with more than one predictors.

Vector of the corresponding design weights for x.

Vector of lower bounds for the predictors. Should be in the same order as
predvars.

Vector of upper bounds for the predictors. Should be in the same order as
predvars.

A vector of the probability measure 7 associated with each row of parset.

A matrix that provides the vector of initial estimates for the model parameters,
i.e. support of 7. Every row is one vector (nrow(parset) == length(prob)).
See ’Details’.

A function. Returns the FIM as a matrix. Required when formula is missing.
See ’Details’ of minimax.

Control Parameters for Calculating the ELB. For details, see sens.control.

calculate_criterion

plot_3d
plot_sens
npar
silent

crtfunc

sensfunc

Details

Calculate the optimality criterion? See ’Details’ of sensminimax.

Which package should be used to plot the sensitivity (derivative) function for
models with two predictors. Either "rgl” or "lattice"” (default).

Plot the sensitivity (derivative) function? Defaults to TRUE.

Number of model parameters. Used when fimfunc is given instead of formula
to specify the number of model parameters. If not given, the sensitivity plot may
be shifted below the y-axis. When NULL, it is set to dim(parset)[2].

Do not print anything? Defaults to FALSE.

(Optional) a function that specifies an arbitrary criterion. It must have especial
arguments and output. See ’Details’ of minimax.

(Optional) a function that specifies the sensitivity function for crtfunc. See
’Details’ of minimax.

Let © be the set initial estimates for the model parameters and 7 be a probability measure having
support in ©. A design £* is robust with respect to 7 if the following inequality holds for all = € x:

(@, €)= / tr MY (e 0) (. 0)m(6)d(6) — p <O,

with equality at all support points of £*. Here, p is the number of model parameters.

ELB is a measure of proximity of a design to the optimal design without knowing the latter. Given
a design, let € be the global maximum of the sensitivity (derivative) function over x € . ELB is

given by

where p is the number of model parameters. Obviously, calculating ELB requires finding € and
another optimization problem to be solved. The tuning parameters of this optimization can be
regulated via the argument sens.minimax.control.

112 sensrobust

Value

an object of class sensminimax that is a list with the following elements:

type Argument type that is required for print methods.

optima A matrix that stores all the local optima over the parameter space. The cost (criterion)
values are stored in a column named Criterion_Value. The last column (Answering_Set)
shows if the optimum belongs to the answering set (1) or not (0). See ’Details’ of sens.minimax.control.
Only applicable for minimax or standardized maximin designs.

mu Probability measure on the answering set. Corresponds to the rows of optima for which the
associated row in column Answering_Set is equal to 1. Only applicable for minimax or
standardized maximin designs.

max_deriv Global maximum of the sensitivity (derivative) function (e in ’Details’).

ELB D-efficiency lower bound. Can not be larger than 1. If negative, see ’Note’ in sensminimax or
sens.minimax.control.

merge_tol Merging tolerance to create the answering set from the set of all local optima. See
"Details’ in sens.minimax.control. Only applicable for minimax or standardized maximin
designs.

crtval Criterion value. Compare it with the column Crtiterion_Value in optima for minimax
and standardized maximin designs.

time Used CPU time (rough approximation).

Note
Theoretically, ELB can not be larger than 1. But if so, it may have one of the following reasons:

* max_deriv is not a GLOBAL maximum. Please increase the value of the parameter maxeval
in sens.minimax.control to find the global maximum.

» The sensitivity function is shifted below the y-axis because the number of model parameters
has not been specified correctly (less value given). Please specify the correct number of model
parameters via the argument npar-.

See Also

bayes sensbayes robust

Examples

Verifying a robust design for the two-parameter logistic model
sensrobust(formula = ~1/(1 + exp(-b *(x - a))),

predvars = c("x"),

parvars = c("a", "b"),

family = binomial(),

prob = rep(1/4, 4),

parset = matrix(c(0.5, 1.5, 0.5, 1.5, 4.0, 4.0, 5.0, 5.0), 4, 2),

x = c(0.260, 1, 1.739), w = c(0.275, 0.449, 0.275),

Ix = -5, ux = 5)

skewnormal 113

HEHHHHHHHHEHHEEHBEHEHHHHHREEE
user-defined optimality criterion
HHHHHHEEEEE A
When the model is defined by the formula interface
Checking the A-optimality for the 2PL model.
the criterion function must have argument x, w fimfunc and the parameters defined in 'parvars'.
use 'fimfunc' as a function of the design points x, design weights w and
the 'parvars' parameters whenever needed.
Aopt <-function(x, w, a, b, fimfunc){
sum(diag(solve(fimfunc(x = x, w =w, a = a, b =b))))
3
the sensitivtiy function
xi_x is a design that put all its mass on x in the definition of the sensitivity function
x is a vector of design points
Aopt_sens <- function(xi_x, x, w, a, b, fimfunc){
fim <- fimfunc(x = x, w=w, a =a, b =b)
M_inv <- solve(fim)

M_x <= fimfunc(x = xi_x, w =1, a =a, b =bhb)
sum(diag(M_inv %*% M_x %*% M_inv)) - sum(diag(M_inv))

3

sensrobust(formula = ~1/(1 + exp(-b * (x-a))), predvars = "x",

parvars = c("a", "b"), family = "binomial”,
crtfunc = Aopt,
sensfunc = Aopt_sens,
Ix = -3, ux = 3,
prob = c(.25, .5, .25),
parset = matrix(c(-2, @, 2, 1.25, 1.25, 1.25), 3, 2),
x = c(-2.469, 0, 2.469), w = c(.317, .365, .317))
not optimal. the optimal design has four points. see the last example in ?robust

skewnormal Assumes A Multivariate Skewed Normal Prior Distribution for The
Model Parameters

Description
Creates a multivariate skewed normal prior distribution for the unknown parameters as an object of
class cprior.

Usage

skewnormal (xi, Omega, alpha, lower, upper)

Arguments
xi A numeric vector of length d=1length(alpha) representing the location param-
eter of the distribution. For more details, see *Background’ in dmsn.
Omega A symmetric positive-definite matrix of dimension (d,d). For more details, see

’Background’ in dmsn.

114 student

alpha A numeric vector which regulates the slant of the density. For more details, see
’Background’ in dmsn.

lower A vector of lower bounds for the model parameters.
upper A vector of upper bounds for the model parameters.
Value

An object of class cprior that is a list with the following components:
 fn: prior distribution as an R function with argument param that is the vector of the unknown
parameters. See below.
* npar: Number of unknown parameters and is equal to the length of param.
e lower: Argument lower. It has the same length as param.
e upper: Argument lower. It has the same length as param.
The list will be passed to the argument prior of the function bayes. The order of the argument

paramin fn has the same order as the argument parvars when the model is specified by a formula.
Otherwise, it is equal to the argument param in the function fimfunc.

See Also

bayes sensbayes

Examples

skewnormal(xi = c(0, 1),
Omega = matrix(c(1, -0.17, -0.17, .5), nrow = 2),
alpha = c(1, @), lower = c(-3, .1), upper = c(3, 2))

student Multivariate Student’s t Prior Distribution for Model Parameters

Description

Creates the prior distribution for the parameters as an object of class cprior.

Usage

student(mean, S, df, lower, upper)

uniform 115

Arguments
mean A vector of length d=ncol(S), representing the location parameter (equal to the
mean vector when df>1). For more details, see ’Arguments’ in dmt.
S A symmetric positive-definite matrix representing the scale matrix of the dis-
tribution, such that Sxdf/(df-2) is the variance-covariance matrix when df>2.
For more details, see ’ Arguments’ in dmt.
df Degrees of freedom; it must be a positive integer. For more details, see ’Argu-
ments’ in dmt.
lower A vector of lower bounds for the model parameters.
upper A vector of upper bounds for the model parameters.
Value

An object of class cprior that is a list with the following components:
 fn: prior distribution as an R function with argument param that is the vector of the unknown
parameters. See below.
* npar: Number of unknown parameters and is equal to the length of param.
e lower: Argument lower. It has the same length as param.
* upper: Argument lower. It has the same length as param.
The list will be passed to the argument prior of the function bayes. The order of the argument

param in fn has the same order as the argument parvars when the model is specified by a formula.
Otherwise, it is equal to the argument param in the function fimfunc.

See Also

bayes sensbayes

Examples

skewnormal(xi = c(0, 1),
Omega = matrix(c(1, -0.17, -0.17, .5), nrow = 2),
alpha = c(1, @), lower = c(-3, .1), upper = c(3, 2))

uniform Assume A Multivariate Uniform Prior Distribution for The Model Pa-
rameters

Description
Creates independent uniform prior distributions for the unknown model parameters as an object of
class cprior.

Usage

uniform(lower, upper)

116 update.minimax

Arguments
lower A vector of lower bounds for the model parameters.
upper A vector of upper bounds for the model parameters.
Value

An object of class cprior that is a list with the following components:

* fn: prior distribution as an R function with argument param that is the vector of the unknown
parameters. See below.

* npar: Number of unknown parameters and is equal to the length of param.
* lower: Argument lower. It has the same length as param.

e upper: Argument lower. It has the same length as param.

The list will be passed to the argument prior of the function bayes. The order of the argument
paramin fn has the same order as the argument parvars when the model is specified by a formula.
Otherwise, it is equal to the argument param in the function fimfunc.

Note

The order of the argument param in fn has the same order as the argument parvars when the model
is specified by a formula. Otherwise, it is the same as the argument param in the function fimfunc.

See Also

bayes sensbayes

Examples

uniform(lower = c¢(-3, .1), upper = c(3, 2))

update.minimax Updating an Object of Class minimax

Description
Runs the ICA optimization algorithm on an object of class minimax for more number of iterations
and updates the results.

Usage

S3 method for class 'minimax'
update(object, iter, ...)

update.minimax

Arguments

object

iter

See Also

minimax

An object of class minimax.
Number of iterations.

An argument of no further use.

117

Index

bayes, 3,4, 5,13, 15, 19, 24, 25, 38, 72, 75,
76,78, 86,90, 112, 114-116

bayes.update, 13

bayescomp, 14, 38, 91

beff, 18

createNIGrid, 24, 25, 81

crt.bayes.control, 4, 15, 19, 24,74, 81, 86,
90

crt.minimax.control, 25, 54, 57, 58, 74, 101

dmsn, /13, 114
dmt, 7115

family, 3, 14, 19, 40, 43, 49, 54, 56, 76, 85,
90, 93,97, 100, 111
FIM_2par_exp_censorl, 27
FIM_2par_exp_censor2, 27
FIM_3par_exp_censorl, 28
FIM_3par_exp_censor2, 29
FIM_exp_2par, 29
FIM_kinetics_alcohol, 30
FIM_logistic, 31
FIM_logistic_2pred, 31
FIM_logistic_4par, 32
FIM_loglin, 33
FIM_mixed_inhibition, 34
FIM_power_logistic, 35
FIM_sig_emax, 35
formula, 3, 14, 19, 40, 42, 49, 54, 56, 76, 85,
90, 93, 97, 100, 110

hcubature, 24, 25, 81

ICA.control, 4, 5, 15, 16, 31, 36, 43, 44, 49,
50, 57,59, 69,77
ICAQD, 38

leff, 19, 39, 40, 54
locally, 38, 42, 50, 74, 75, 78
locallycomp, 48

118

meff, 53

minimax, 4, 15, 19, 38, 40, 43, 49, 50, 54, 55,
57,58, 69,74, 75,77, 86, 90, 93, 97,
101,111,117

multiple, 33, 38, 67, 109

nl.opts, 26, 82
nloptr, 25, 26, 58, 82
normal, 4, 5,15, 19,71, 86, 90

plot, 5, 16, 50
plot.minimax, 73
print.minimax, 74
print.sensminimax, 75

robust, 3, 38, 74, 75,76, 112

sens.bayes.control, 4, 15, 74, 81, 86, 90, 91
sens.control, 4, 15,43,49, 57,69, 74, 77,
82, 86, 90, 93,97, 101, 108, 111
sens.minimax.control, 57, 73, 83, 83, 94,
98, 101-103, 108, 109, 111, 112
sensbayes, 6, 39, 72,84, 112, 114-116
sensbayescomp, 17, 39, 89
senslocally, 38,45, 75,92
senslocallycomp, 96
sensminimax, 4, 39, 43, 58, 59, 61, 69, 75, 77,
85, 86, 90, 91, 93, 94, 97, 98, 99,
100, 101, 103,108,111, 112
sensmultiple, 39, 70, 107
sensrobust, 39, 75, 77, 78, 110
skewnormal, 4, 5, 15, 19, 86, 90, 113
student, 4, 5, 15, 19, 86, 90, 114

uniform, 4, 5, 15, 19, 86, 90, 115
update.minimax, 116

	bayes
	bayes.update
	bayescomp
	beff
	crt.bayes.control
	crt.minimax.control
	FIM_2par_exp_censor1
	FIM_2par_exp_censor2
	FIM_3par_exp_censor1
	FIM_3par_exp_censor2
	FIM_exp_2par
	FIM_kinetics_alcohol
	FIM_logistic
	FIM_logistic_2pred
	FIM_logistic_4par
	FIM_loglin
	FIM_mixed_inhibition
	FIM_power_logistic
	FIM_sig_emax
	ICA.control
	ICAOD
	leff
	locally
	locallycomp
	meff
	minimax
	multiple
	normal
	plot.minimax
	print.minimax
	print.sensminimax
	robust
	sens.bayes.control
	sens.control
	sens.minimax.control
	sensbayes
	sensbayescomp
	senslocally
	senslocallycomp
	sensminimax
	sensmultiple
	sensrobust
	skewnormal
	student
	uniform
	update.minimax
	Index

