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CDM Parameter estimation for cognitive diagnosis models (CDMs) by

MMLE/EM or MMLE/BM algorithm.

Description

A function to estimate parameters for cognitive diagnosis models by MMLE/EM (de la Torre, 2009;
de la Torre, 2011) or MMLE/BM (Ma & Jiang, 2020) algorithm.The function imports various func-
tions from the GDINA package, parameter estimation for Cognitive Diagnostic Models was per-
formed and extended. The CDM function not only accomplishes parameter estimation for most
commonly used models ( GDINA, DINA, DINO, ACDM, LLM, or rRUM) but also facilitates parameter
estimation for the LCDM model (Henson, Templin, & Willse, 2008; Tu et al., 2022). Furthermore, it
incorporates Bayes modal estimation (BM; Ma & Jiang, 2020) to obtain more reliable estimation
results, especially in small sample sizes. The monotonic constraints are able to be satisfied.

Usage

CDM(
Y,
Q,
model = "GDINA",
method = "BM",
mono.constraint = TRUE,
maxitr = 2000,
verbose = 1
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Arguments
Y A required N x I matrix or data.frame consisting of the responses of N individuals
to x I items. Missing values need to be coded as NA.
Q A required binary I x K containing the attributes not required or required, O or

1, to master the items. The ith row of the matrix is a binary indicator vector
indicating which attributes are not required (coded by 0) and which attributes
are required (coded by 1) to master item i.

model Type of model to be fitted; can be "GDINA", "LCDM", "DINA", "DINO", "ACDM",
"LLM", or "rRUM". Default = "GDINA".

method Type of mtehod to estimate CDMs’ parameters; one out of "EM”, "BM". Default
= "BM" However, "BM" is only avaible when method = "GDINA".
mono.constraint

Logical indicating whether monotonicity constraints should be fulfilled in esti-
mation. Default = TRUE.

maxitr A vector for each item or nonzero category, or a scalar which will be used for all
items to specify the maximum number of EM or BM cycles allowed. Default =
2000.

verbose Can be 0, 1 or 2, indicating to print no information, information for current

iteration, or information for all iterations. Default = 1.

Details

CDMs are statistical models that fully integrates cognitive structure variables, which define the
response probability of subjects on questions by assuming the mechanism of action between at-
tributes. In the dichotomous test, this probability is the probability of answering correctly. Accord-
ing to the specificity or generality of CDM assumptions, it can be divided into reduced CDM and
saturated CDM.

Reduced CDMs possess special and strong assumptions about the mechanisms of attribute inter-
actions, leading to clear interactions between attributes. Representative reduced models include
the Deterministic Input, Noisy and Gate (DINA) model (Haertel, 1989; Junker & Sijtsma, 2001;
de la Torre & Douglas, 2004), the Deterministic Input, Noisy or Gate (DINO) model (Templin &
Henson, 2006), and the Additive Cognitive Diagnosis Model (A-CDM; de la Torre, 2011), the re-
duced Reparametrized Unified Model (r-RUM; Hartz, 2002), among others. Compared to reduced
models, saturated models do not have strict assumptions about the mechanisms of attribute inter-
actions. When appropriate constraints are applied, they can be transformed into various reduced
models (Henson et al., 2008; de la Torre, 2011), such as the Log-Linear Cognitive Diagnosis Model
(LCDM; Henson et al., 2009) and the general Deterministic Input, Noisy and Gate model (G-DINA;
de la Torre, 2011).

The LCDM (Log-Linear Cognitive Diagnosis Model) is a saturated CDM fully proposed within
the framework of cognitive diagnosis. Unlike simplified models that only discuss the main effects
of attributes, it also considers the interactions between attributes, thus having more generalized
assumptions about attributes. Its definition of the probability of correct response is as follows:

; T .
P(sz = 1‘@1) — eXp(AzO + /\z h(q“al))
1+ exp(Xio + AT h(q;, 1))
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Where, P(X,; = 1|a;) represents the probability of a subject with attribute mastery pattern «,
where ] = 1,2,--- ,Land L = 2K, correctly answering item i. Here, K* denotes the number of
attributes in the collapsed g-vector, \;q is the intercept parameter, and \; = (Ai1, Ai2, -+, Ai12, -+, Adi12...

represents the effect vector of the attributes. Specifically, \;x is the main effect of attribute k, \;px/
is the interaction effect between attributes k and &', and A ;12... x represents the interaction effect of
all attributes.

The general Deterministic Input, Noisy and Gate model (G-DINA), proposed by de la Torre (2011),
is a saturated model that offers three types of link functions: identity link, log link, and logit link,
which are defined as follows:

K*-1 K~* K*
P(Xpi = 1|ay) —5O+Z5kalk+ > Z SikOiks cupaups + -+ + Orgce | [ un
k=1 k'=h+1 k=1
1 K .
log(P(Xpi = lau)) = vio + szkalk + Z Z VikVik/ QU Qkr + -+ 0 + V1. K H ik
k=1 k'—k+1 k=1
K* K*-1 K* K*
logit(P(Xp; = lau)) = Xio+ Y _Aiwcae+ D > Axdiwoupanw + -+ Mz | [ e
k=1 k=1 k'=k+1 Pt

Where 9,0, v;9, and \;o are the intercept parameters for the three link functions, respectively; d;x,
vik, and Ay are the main effect parameters of oy, for the three link functions, respectively; d;xx/,
vikk’, and \;xpps are the interaction effect parameters between oy and oy for the three link func-
tions, respectively; and d;19...x, Vj12...x*, and A;1o0...+ are the interaction effect parameters of
o1+ - oy~ for the three link functions, respectively. It can be observed that when the logit link is
adopted, the G-DINA model is equivalent to the LCDM model.

Specifically, the A-CDM can be formulated as:

K
P(Xpi = o) = i + Z dikug
k=1
The RRUM, can be written as:
K*
log(P(Xpi = taw)) = Aio + Y Aincun
k=1
The item response function for LLM can be given by:
e
logit(P(Xp: = 1|on) = Aio + 3 Ao
k=1

In the DINA model, every item is characterized by two key parameters: guessing (g) and slip (s).
Within the traditional framework of DINA model parameterization, a latent variable 7, specific to
individual p who has the attribute mastery pattern o; and item ¢, is defined as follows:

H qu‘k
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If individual p who has the attribute mastery pattern «; has acquired every attribute required by item
i, n)p; is given a value of 1. If not, 7, is set to 0. The DINA model’s item response function can be
concisely formulated as such:

K
P(Xpi = 1]ay) = (1 - Sj)mq'gj(‘l_mi) =00 + di12...K H QrE
k=1

In contrast to the DINA model, the DINO model suggests that an individual can correctly respond
to an item if they have mastered at least one of the item’s measured attributes. Additionally, like
the DINA model, the DINO model also accounts for parameters related to guessing and slipping.
Therefore, the main difference between DINO and DINA lies in their respective 7,; formulations.
The DINO model can be given by:

K

mi=1-— H(l — )

k=1
Value
An object of class CDM. obj is a 1ist containing the following components:

analysis.obj An GDINA object gained from GDINA package or an list after BM algorithm,
depending on which estimation is used.

alpha Individuals’ attribute parameters caculated by EAP method (Huebner & Wang,
2011)

P.alpha.Xi Individual posterior

alpha.P Individuals’ marginal mastery probabilities matrix (Tu et al., 2022)

P.alpha Attribute prior weights for calculating marginalized likelihood in the last itera-
tion

model.fit Some basic model-fit indeces, including Deviance, npar, AIC, BIC

Author(s)

Haijiang Qin <Haijiang133 @outlook.com>

References

de la Torre, J. (2009). DINA Model and Parameter Estimation: A Didactic. Journal of Educational
and Behavioral Statistics, 34(1), 115-130. DOI: 10.3102/1076998607309474.

de la Torre, J., & Douglas, J. A. (2004). Higher-order latent trait models for cognitive diagnosis.
Psychometrika, 69(3), 333-353. DOI: 10.1007/BF02295640.

de la Torre, J. (2011). The Generalized DINA Model Framework. Psychometrika, 76(2), 179-199.
DOI: 10.1007/s11336-011-9207-7.

Haertel, E. H. (1989). Using restricted latent class models to map the skill structure of achievement
items. Journal of Educational Measurement, 26(4), 301-323. DOI: 10.1111/j.1745-3984.1989.tb00336.x.

Hartz, S. M. (2002). A Bayesian framework for the unified model for assessing cognitive abili-
ties: Blending theory with practicality (Unpublished doctoral dissertation). University of Illinois at
Urbana-Champaign.
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Henson, R. A., Templin, J. L., & Willse, J. T. (2008). Defining a Family of Cognitive Diagnosis
Models Using Log-Linear Models with Latent Variables. Psychometrika, 74(2), 191-210. DOI:
10.1007/s11336-008-9089-5.

Huebner, A., & Wang, C. (2011). A note on comparing examinee classification methods for
cognitive diagnosis models. Educational and Psychological Measurement, 71, 407-419. DOL:
10.1177/0013164410388832.

Junker, B. W,, & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and
connections with nonparametric item response theory. Applied Psychological Measurement, 25(3),
258-272. DOI: 10.1177/01466210122032064.

Ma, W., & Jiang, Z. (2020). Estimating Cognitive Diagnosis Models in Small Samples: Bayes
Modal Estimation and Monotonic Constraints. Applied Psychological Measurement, 45(2), 95-
111. DOI: 10.1177/014662162097768]1.

Templin, J. L., & Henson, R. A. (2006). Measurement of psychological disorders using cognitive
diagnosis models. Psychological methods, 11(3), 287-305. DOI: 10.1037/1082-989X.11.3.287.

Tu, D., Chiu, J., Ma, W., Wang, D., Cai, Y., & Ouyang, X. (2022). A multiple logistic regression-
based (MLR-B) Q-matrix validation method for cognitive diagnosis models: A confirmatory ap-
proach. Behavior Research Methods. DOI: 10.3758/s13428-022-01880-x.

See Also

validation.

Examples

AR
# Example 1 #
# fit using MMLE/EM to fit the GDINA models #
AR
set.seed(123)

library(Qval)

## generate Q-matrix and data to fit
K <-5
I<- 30
example.Q <- sim.Q(K, I)
IQ <- list(

PO = runif(I, 0.0, 0.2),

P1 = runif(I, 0.8, 1.0)
)
example.data <- sim.data(Q = example.Q, N = 500, IQ = IQ,

model = "GDINA", distribute = "horder")

## using MMLE/EM to fit GDINA model
example.CDM.obj <- CDM(example.data$dat, example.Q, model = "GDINA",
method = "EM", maxitr = 2000, verbose = 1)
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B S S S R
# Example 2 #
# fit using MMLE/BM to fit the DINA #
B S S S R
set.seed(123)

library(Qval)

## generate Q-matrix and data to fit
K <-5
I <- 30
example.Q <- sim.Q(K, I)
IQ <- list(

PO = runif(I, 0.0, 0.2),

P1 = runif(I, 0.8, 1.0)
)
example.data <- sim.data(Q = example.Q, N = 500, IQ = IQ,

model = "DINA", distribute = "horder")

## using MMLE/EM to fit GDINA model
example.CDM.obj <- CDM(example.data$dat, example.Q, model = "GDINA",
method = "BM", maxitr = 1000, verbose = 2)

HHHHHHAEEEE AR AR A
# Example 3 #
# fit using MMLE/EM to fit the ACDM #
HHHEHHAEEEE AR R A
set.seed(123)

library(Qval)

## generate Q-matrix and data to fit
K<-5
I <- 30
example.Q <- sim.Q(K, I)
IQ <- list(

PO = runif(I, 0.0, 0.2),

P1 = runif(I, 0.8, 1.0)
)
example.data <- sim.data(Q = example.Q, N = 500, IQ = IQ,

model = "ACDM", distribute = "horder")

## using MMLE/EM to fit GDINA model
example.CDM.obj <- CDM(example.data$dat, example.Q, model = "ACDM",
method = "EM", maxitr = 2000, verbose = 1)



fit Calculate data fit indeces

Description

Calculate relative fit indices (-2LL, AIC, BIC, CAIC, SABIC) and absolute fit indices (M5 test)
using the testfit function in the GDINA package.

Usage

fit(Y, Q, model = "GDINA")

Arguments
Y A required N x I matrix or data.frame consisting of the responses of N individuals
to I items. Missing values should be coded as NA.
Q A required binary I x K matrix containing the attributes not required or required
, coded as 0 or 1, to master the items. The ith row of the matrix is a binary
indicator vector indicating which attributes are not required (coded as 0) and
which attributes are required (coded as 1) to master item i.
model Type of model to be fitted; can be "GDINA", "LCDM", "DINA", "DINO", "ACDM",
"LLM", or "rRUM". Default = "GDINA".
Value

An object of class 1ist. The list contains various fit indices:

npar The number of parameters.

-2LL The Deviance.

AIC The Akaike information criterion.

BIC The Bayesian information criterion.

CAIC The consistent Akaike information criterion.

SABIC The Sample size Adjusted BIC.

M2 A vector consisting of M, statistic, degrees of freedom, significance level, and
RMSFE A, (Liu, Tian, & Xin, 2016).

SRMSR The standardized root mean squared residual (SRMSR; Ravand & Robitzsch,
2018).

Author(s)

Haijiang Qin <Haijiang133 @outlook.com>
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References

Khaldi, R., Chiheb, R., & Afa, A.E. (2018). Feed-forward and Recurrent Neural Networks for
Time Series Forecasting: Comparative Study. In: Proceedings of the International Conference on
Learning and Optimization Algorithms: Theory and Applications (LOPAL 18). Association for
Computing Machinery, New York, NY, USA, Article 18, 1-6. DOI: 10.1145/3230905.3230946.

Liu, Y., Tian, W., & Xin, T. (2016). An application of M2 statistic to evaluate the fit of cognitive di-
agnostic models. Journal of Educational and Behavioral Statistics, 41, 3-26. DOI: 10.3102/1076998615621293.

Ravand, H., & Robitzsch, A. (2018). Cognitive diagnostic model of best choice: a study of reading
comprehension. Educational Psychology, 38, 1255-1277. DOIL: 10.1080/01443410.2018.1489524.

Examples
set.seed(123)
library(Qval)

## generate Q-matrix and data to fit

K<-5
I<- 30
example.Q <- sim.Q(K, I)
IQ <- list(
PO = runif(I, 0.0, 0.2),

P1

)
example.data <- sim.data(Q = example.Q, N = 500, IQ = IQ, model = "GDINA", distribute = "horder")

runif(I, 0.8, 1.0)

## calculate fit indices
fit.indices <- fit(Y = example.data$dat, Q = example.Q, model = "GDINA")
print(fit.indices)

get.Mmatrix Calculate M matrix

Description

Calculate M matrix for stauted CDMs (de la Torre, 2011).

Usage
get.Mmatrix(K = NULL, pattern = NULL)

Arguments
K The number of attributes. Can be NULL if pattern is passed to the function
and is not NULL.
pattern The knowledge state matrix containing all possible attribute mastery pattern.

Can be gained from @seealso attributepattern. Also can be NULL if K is
passed to the function and is not NULL.
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Value

An object of class matrix.

Author(s)

Haijiang Qin <Haijiang133 @outlook.com>

References

de la Torre, J. (2011). The Generalized DINA Model Framework. Psychometrika, 76(2), 179-199.
DOI: 10.1007/s11336-011-9207-7.

Examples

library(Qval)

example.Mmatrix <- get.Mmatrix(K = 5)

get.PVAF Calculate PV AF

Description

The function is able to caculate the proportion of variance accounted for (PV AF’) for all items after
fitting CDM or directly.

Usage
get.PVAF(Y = NULL, Q = NULL, CDM.obj = NULL, model = "GDINA")

Arguments
Y A required N x I matrix or data.frame consisting of the responses of N individuals
to I items. Missing values should be coded as NA.
Q A required binary I x K matrix containing the attributes not required or required,

coded as O or 1, to master the items. The ith row of the matrix is a binary
indicator vector indicating which attributes are not required (coded as 0) and
which attributes are required (coded as 1) to master item i.

CDM.obj An object of class CDM.obj. Can can be NULL, but when it is not NULL, it
enables rapid verification of the Q-matrix without the need for parameter esti-
mation. @seealso CDM.

model Type of model to be fitted; can be "GDINA", "LCDM", "DINA", "DINO", "ACDM",
"LLM", or "rRUM". Default = "GDINA".
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Details

The intrinsic essence of the GDI index (as denoted by (») is the weighted variance of all 2€*
attribute mastery patterns’ probabilities of correctly responding to item ¢, which can be computed
as: i
¢ = Y m(P(Xpi = Lar) — Peom)’
=1

where 7; represents the prior probability of mastery pattern [; P/"¢*" = ZZ; mP(Xpi = 1ay)
is the weighted average of the correct response probabilities across all attribute mastery patterns.
When the g-vector is correctly specified, the calculated ¢? should be maximized, indicating the
maximum discrimination of the item.

Theoretically, ¢? is larger when q; is either specified correctly or over-specified, unlike when q;
is under-specified, and that when q; is over-specified, (? is larger than but close to the value of
q; when specified correctly. The value of ¢2 continues to increase slightly as the number of over-
specified attributes increases, until q; becomes q;1.x. Thus, ¢ 2 / Cfnaz is computed to indicate the
proportion of variance accounted for by q; , called the PV AF.

Value
An object of class matrix, which consisted of PV AF for each item and each possible attribute
mastery pattern.

Author(s)

Haijiang Qin <Haijiang133 @outlook.com>

References

de la Torre, J., & Chiu, C. Y. (2016). A General Method of Empirical Q-matrix Validation. Psy-
chometrika, 81(2), 253-273. DOI: 10.1007/s11336-015-9467-8.

See Also

validation

Examples

library(Qval)
set.seed(123)

## generate Q-matrix and data
K<-3
I<-20
example.Q <- sim.Q(K, I)
IQ <- list(
PO = runif(I, 0.0, 0.2),
P1 = runif(I, 0.8, 1.0)
)
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example.data <- sim.data(Q = example.Q, N = 500, IQ = IQ, model = "GDINA", distribute = "horder")

## calculate PVAF directly
PVAF <-get.PVAF(Y = example.data$dat, Q = example.Q)
print (PVAF)

## caculate PVAF after fitting CDM

example.CDM.obj <- CDM(example.data$dat, example.Q, model="GDINA")
PVAF <-get.PVAF(CDM.obj = example.CDM.obj)

print (PVAF)

get.R2 Calculate McFadden pseudo-R"2

Description

The function is able to calculate the McFadden pseudo-R? (R?) for all items after fitting CDM or
directly.

Usage

get.R2(Y = NULL, Q = NULL, CDM.obj = NULL, model = "GDINA")

Arguments
Y A required N x I matrix or data.frame consisting of the responses of N individuals
to I items. Missing values should be coded as NA.
Q A required binary I x K matrix containing the attributes not required or required,

coded as 0 or 1, to master the items. The ith row of the matrix is a binary
indicator vector indicating which attributes are not required (coded as 0) and
which attributes are required (coded as 1) to master item i.

CDM.obj An object of class CDM.obj. Can can be NULL, but when it is not NULL, it
enables rapid verification of the Q-matrix without the need for parameter esti-
mation. @seealso CDM.

model Type of model to fit; can be "GDINA", "LCDM", "DINA", "DINO", "ACDM", "LLM",
or "rRUM". Default = "GDINA".

Details

The McFadden pseudo-R? ( McFadden in 1974) serves as a definitive model-fit index, quantify-
ing the proportion of variance explained by the observed responses. Comparable to the squared
multiple-correlation coefficient in linear statistical models, this coefficient of determination finds its
application in logistic regression models. Specifically, in the context of the CDM, where probabili-
ties of accurate item responses are predicted for each examinee, the McFadden pseudo-R? provides
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a metric to assess the alignment between these predictions and the actual responses observed. Its
computation is straightforward, following the formula:

IOg(Lim
R2 =1 lo8Lim
log(Ljo)

where log(L;,, is the log-likelihood of the model, and log(L;o) is the log-likelihood of the null
model. If there were N examinees taking a test comprising I items, then log(L;,,) would be
computed as:

oK™

N
log(Lim) = Y _log »_ w(af|X,) P(af )7 (1 = Pi(af))' ¥
p =1

where 7(aj|X,) is the posterior probability of examinee p with attribute profle o] when their
response vector is X,,, and X,; is examinee p’s response to item 7. Let X" be the average prob-
ability of correctly responding to item ¢ across all N examinees; then log(L;q could be computed
as:

N
log(LzO) = Z ]Og XimcanXpi (1 _ Ximean)l—Xp,i
P
Value
An object of class matrix, which consisted of R? for each item and each possible attribute mastery
pattern.
Author(s)

Haijiang Qin <Haijiang133 @outlook.com>

References

McFadden, D. (1974). Conditional logit analysis of qualitative choice behavior. In P. Zarembka
(Ed.), Frontiers in economics (pp.105-142). Academic Press.

Najera, P., Sorrel, M. A., de la Torre, J., & Abad, F. J. (2021). Balancing ft and parsimony
to improve Q-matrix validation. British Journal of Mathematical and Statistical Psychology, 74,
110-130. DOI: 10.1111/bmsp.12228.

Qin, H., & Guo, L. (2023). Using machine learning to improve Q-matrix validation. Behavior
Research Methods. DOI: 10.3758/s13428-023-02126-0.

See Also

validation

Examples

library(Qval)

set.seed(123)
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## generate Q-matrix and data

K<-3
I<- 20
example.Q <- sim.Q(K, I)
I1Q <- list(
PO = runif(I, 0.0, 0.2),

P1 = runif(I, 0.8, 1.0)
)
example.data <- sim.data(Q = example.Q, N = 500, IQ = IQ, model = "GDINA", distribute = "horder")

## calculate PVAF directly
PVAF <-get.PVAF(Y = example.data$dat, Q = example.Q)
print(PVAF)

## caculate PVAF after fitting CDM

example.CDM.obj <- CDM(example.data$dat, example.Q, model="GDINA")
PVAF <-get.PVAF(CDM.obj = example.CDM.obj)

print(PVAF)

getOSR Caculate over-specifcation rate (OSR)

Description

Caculate over-specifcation rate (OSR)

Usage

getOSR(Q. true, Q.sug)

Arguments

Q.true The true Q-matrix.

Q.sug The Q-matrix that has being validated.
Details

The OSR is defned as:

OSR — Sizt Sk Lah < a3)
IK

where ¢!, denotes the kth attribute of item 1 in the true Q-matrix (Q. true), ¢, denotes kth attribute
of item i in the suggested Q-matrix(Q. sug), and I(-) is the indicator function.

Value

A numeric (OSR index).



getQRR 15

Examples

library(Qval)
set.seed(123)

example.Q1 <- sim.Q(5, 30)
example.Q2 <- sim.MQ(example.Q1, 0.1)
OSR <- getOSR(example.Q1, example.Q2)
print(OSR)

getQRR Caculate Q-matrix recovery rate (QRR)

Description

Caculate Q-matrix recovery rate (QRR)

Usage

getQRR(Q.true, Q.sug)

Arguments

Q.true The true Q-matrix.

Q.sug A The Q-matrix that has being validated.
Details

The Q-matrix recovery rate (QRR) provides information on overall performance, and is defned as:

I K s
ORR — Doim1 Dkl I(qfk = q1.)
IK

where ¢!, denotes the kth attribute of item ¢ in the true Q-matrix (Q.true), ¢3, denotes kth attribute
of item ¢ in the suggested Q-matrix(Q.sug), and I(-) is the indicator function.

Value

A numeric (QRR index).
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Examples

library(Qval)
set.seed(123)

example.Q1 <- sim.Q(5, 30)
example.Q2 <- sim.MQ(example.Q1, 0.1)
QRR <- getQRR(example.Q1, example.Q2)
print (QRR)

getTNR Calculate true negative rate (TNR)

Description

Calculate true negative rate (TNR)

Usage

getTNR(Q.true, Q.orig, Q.sug)

Arguments
Q.true The true Q-matrix.
Q.orig The Q-matrix need to be validated.
Q.sug The Q-matrix that has being validated.
Details

TNR is defined as the proportion of correct elements which are correctly retained:

I K s
TNR — Dim1 Dkl 1(g5), = 4ilai, # 450)
B I K t o
Dim1 2o Ly, # 4))

where qﬁk denotes the kth attribute of item 1i in the true Q-matrix (Q. true), g7, denotes kth attribute
of item i in the original Q-matrix(Q.orig), ¢;, denotes kth attribute of item i in the suggested
Q-matrix(Q. sug), and I(-) is the indicator function.

Value

A numeric (TNR index).
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Examples

library(Qval)

set.seed(123)

example.Q1 <- sim.Q(5, 30)

example.Q2 <- sim.MQ(example.Q1, 0.1)

example.Q3 <- sim.MQ(example.Q1, 0.05)

TNR <- getTNR(example.Q1, example.Q2, example.Q3)

print (TNR)

getTPR Caculate true-positive rate (TPR)

Description

Caculate true-positive rate (TPR)

Usage

getTPR(Q. true, Q.orig, Q.sug)

Arguments
Q.true The true Q-matrix.
Q.orig The Q-matrix need to be validated.
Q.sug The Q-matrix that has being validated.
Details

TPR is defned as the proportion of correct elements which are correctly retained:

I K ) .
TPR — Doim1 Dokt I(ka = qfk|qzt'k = q3.)
= T K PR
Dic 2oper L(afy = ay)
where qﬁk denotes the kth attribute of item ¢ in the true Q-matrix (Q. true), g7}, denotes kth attribute

of item i in the original Q-matrix(Q.orig), ¢;; denotes kth attribute of item i in the suggested
Q-matrix(Q. sug), and I(+) is the indicator function.

Value

A numeric (TPR index).
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Examples
library(Qval)
set.seed(123)
example.Q1 <- sim.Q(5, 30)
example.Q2 <- sim.MQ(example.Q1, 0.1)
example.Q3 <- sim.MQ(example.Q1, 0.05)
TPR <- getTPR(example.Q1, example.Q2, example.Q3)

print(TPR)

getUSR Caculate under-specifcation rate (USR)

Description

Caculate under-specifcation rate (USR)

Usage

getUSR(Q. true, Q.sug)

Arguments

Q.true The true Q-matrix.

Q.sug A The Q-matrix that has being validated.
Details

The USR is defned as:

UsR - Sizt Sk Lt > a3)
IK

where ¢!, denotes the kth attribute of item 1 in the true Q-matrix (Q. true), ¢, denotes kth attribute
of item i in the suggested Q-matrix(Q. sug), and I(-) is the indicator function.

Value

A numeric (USR index).
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Examples

library(Qval)
set.seed(123)

example.Q1 <- sim.Q(5, 30)
example.Q2 <- sim.MQ(example.Q1, 0.1)
USR <- getUSR(example.Q1, example.Q2)
print (USR)

getVRR Caculate vector recovery ratio (VRR)

Description

Caculate vector recovery ratio (VRR)

Usage

getVRR(Q.true, Q.sug)

Arguments

Q.true The true Q-matrix.

Q.sug A The Q-matrix that has being validated.
Details

The VRR shows the ability of the validation method to recover g-vectors, and is determined by

VRR - Sz l(al=a)
I

where q! denotes the g-vector of item 1 in the true Q-matrix (Q. true), g5 denotes the g-vector of
item i in the suggested Q-matrix(Q. sug), and I(-) is the indicator function.

Value

A numeric (VRR index).
Examples

library(Qval)

set.seed(123)

example.Q1 <- sim.Q(5, 30)
example.Q2 <- sim.MQ(example.Q1, 0.1)
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VRR <- getVRR(example.Q1, example.Q2)
print(VRR)

sim.data generate response data

Description

randomly generate response data matrix according to certen conditions, including attributes distri-
bution, item quality, sample size, Q-matrix and cognitive diagnosis models (CDMs).

Usage
sim.data(
Q = NULL,
N = NULL,

IQ = list(P@ = NULL, P1 = NULL),
model = "GDINA",

distribute = "uniform”,

control = NULL,

verbose = TRUE

)
Arguments

Q The Q-matrix. A random 30 x 5 Q-matrix (sim.Q) will be used if NULL.

N Sample size. Default = 500.

IQ A List contains tow I-length vectors: P@ and P1.

model Type of model to be fitted; can be "GDINA", "LCDM", "DINA", "DINO", "ACDM",
"LLM", or "rRUM".

distribute Attribute distributions; can be "uniform” for the uniform distribution, "mvnorm"”
for the multivariate normal distribution (Chiu, Douglas, & Li, 2009) and "horder”
for the higher-order distribution (Tu et al., 2022).

control A list of control parameters with elements:

* sigma A positive-definite symmetric matrix specifying the variance-covariance
matrix when distribute = "mvnorm”. Default = 0.5 (Chiu, Douglas, & Li,
2009).

* cutoffs A vector giving the cutoff for each attribute when distribute =
"mvnorm”. Default = k/(1 + K) (Chiu, Douglas, & Li, 2009).

* theta A vector of length N representing the higher-order ability for each
examinee. By default, generate randomly from the normal distribution (Tu
et al, 2022).

* a The slopes for the higher-order model when distribute = "horder”.
Default = 1.5 (Tu et al, 2022).
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* b The intercepts when distribute = "horder”. By default, select equally
spaced values between -1.5 and 1.5 according to the number of attributes
(Tu et al, 2022).

verbose Logical indicating to print information or not. Default is TRUE

Value

Object of class simGDINA. An simGDINA object gained by simGDINA function form GDINA package.
Elements that can be extracted using method extract include:

dat An N x I simulated item response matrix.
Q The Q-matrix.
attribute An N x K matrix for inviduals’ attribute patterns.

catprob.parm A list of non-zero category success probabilities for each latent group.

delta.parm A list of delta parameters.
higher.order.parm
Higher-order parameters.

mvnorm.parm Multivariate normal distribution parameters.
LCprob.parm A matrix of item/category success probabilities for each latent class.
Author(s)

Haijiang Qin <Haijiang133 @outlook.com>

References

Chiu, C.-Y., Douglas, J. A., & Li, X. (2009). Cluster Analysis for Cognitive Diagnosis: Theory and
Applications. Psychometrika, 74(4), 633-665. DOI: 10.1007/s11336-009-9125-0.

Tu, D., Chiu, J., Ma, W.,, Wang, D., Cai, Y., & Ouyang, X. (2022). A multiple logistic regression-
based (MLR-B) Q-matrix validation method for cognitive diagnosis models:A confirmatory ap-
proach. Behavior Research Methods. DOI: 10.3758/s13428-022-01880-x.

Examples

AR

# Example 1 #
# generate data follow the uniform distrbution #
A AR AR A
library(Qval)

set.seed(123)
K<-5

I<-10

Q <- sim.Q(K, I)

10 <- list(



sim.MQ

PO = runif(I, 0.0, 0.2),
P1 = runif(I, 0.8, 1.0)
)

data <- sim.data(Q = Q, N = 10, IQ=IQ, model = "GDINA", distribute = "uniform”)
print(data$dat)

HHHHHHHEHE AR A
# Example 2 #
# generate data follow the mvnorm distrbution #
HHHHHHHEEEE AR R A
set.seed(123)

K<-5

I<-10

Q <- sim.Q(K, I)

IQ <- list(
PO = runif(I, 0.0, 0.2),
P1 = runif(I, 0.8, 1.0)
)

example_cutoffs <- sample(gnorm(c(1:K)/(K+1)), ncol(Q))
data <- sim.data(Q = Q, N = 10, IQ=IQ, model = "GDINA", distribute = "mvnorm”,
control = list(sigma = 0.5, cutoffs = example_cutoffs))

print(data$dat)

HHH A AR A
# Example 3 #
# generate data follow the horder distrbution #
HHH AR A
set.seed(123)

K <-5

I<-10

Q <- sim.Q(K, I)

IQ <- list(
PO = runif(I, 0.0, 0.2),
P1 = runif(I, 0.8, 1.0)
)

example_theta <- rnorm(10, 0, 1)

example_b <- seq(-1.5,1.5,1length.out=K)

data <- sim.data(Q = Q, N = 10, IQ=IQ, model = "GDINA", distribute = "horder”,
control = list(theta = example_theta, a = 1.5, b = example_b))

print(data$dat)

sim.MQ Simulate mis-specifications
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Description

simulate certen rate mis-specifications in the Q-matrix.

Usage

sim.MQ(Q, rate, verbose = TRUE)

Arguments
Q The Q-matrix (sim. Q) that need to simulate mis-specifications.
rate The pecentage of mis-specifications in the@.
verbose Logical indicating to print information or not. Default is TRUE
Value

An object of class matriz.

Author(s)

Haijiang Qin <Haijiang133 @outlook.com>

Examples

library(Qval)
set.seed(123)

Q <- sim.Q(5, 10)
print(Q)

MQ <- sim.MQ(Q, @.1)
print(MQ)

sim.Q generate a random Q-matrix

Description

generate a I * K Q-matrix randomly, which consisted of one-attribute g-vectors (0.5), two-attribute
g-vectors (0.25), and three-attribute g-vectors (0.25).

Usage

sim.Q(K, I)
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Arguments
K The number of attributes of each item.
I The number of items.

Value

An object of class matrix.

Author(s)

Haijiang Qin <Haijiang133 @outlook.com>

References

Najera, P., Sorrel, M. A., de la Torre, J., & Abad, F. J. (2021). Balancing fit and parsimony to im-
prove Q-matrix validation. Br J Math Stat Psychol, 74 Suppl 1, 110-130. DOI: 10.1111/bmsp.12228.

Examples
library(Qval)
set.seed(123)

Q <- sim.Q(5, 10)
print(Q)

validation Perform Q-matrix validation methods

Description

This function uses generalized Q-matrix validation methods to validate the Q-matrix, including
commonly used methods such as GDI (de la Torre, & Chiu, 2016; Najera, Sorrel, & Abad, 2019;
Najera et al., 2020), Wald (Ma, & de la Torre, 2020), Hull (Najera et al., 2021), and MLR-B (Tu et
al., 2022). It supports different iteration methods (test level or item level; Najera et al., 2020; Najera
etal., 2021; Tu et al., 2022) and can apply various attribute search methods (ESA, SSA, PAA; de la
Torre, 2008; Terzi, & de 1a Torre, 2018). More see details.

Usage

validation(
Y,
Q,
CDM.obj = NULL,
par.method = "BM",
mono.constraint = TRUE,
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model = "GDINA",
method = "GDI",
search.method = "PAA",
maxitr = 1,

iter.level = "test",
eps = 0.95,

criter = "PVAF",
verbose = TRUE

)
Arguments

Y A required N x I matrix or data.frame consisting of the responses of N individuals
to I items. Missing values need to be coded as NA.

Q A required binary I x K containing the attributes not required or required, 0 or
1, to master the items. The ith row of the matrix is a binary indicator vector
indicating which attributes are not required (coded by 0) and which attributes
are required (coded by 1) to master item i.

CDM. obj An object of class CDM.obj. When it is not NULL, it enables rapid verification
of the Q-matrix without the need for parameter estimation. @seealso CDM.

par.method Type of mtehod to estimate CDMs’ parameters; one out of "EM”, "BM". Default

= "BM" However, "BM" is only avaible when method = "GDINA".
mono.constraint

Logical indicating whether monotonicity constraints should be fulfilled in esti-
mation. Default = TRUE.

model Type of model to fit; can be "GDINA", "LCDM", "DINA", "DINO" , "ACDM", "LLM",
or "rRUM". Default = "GDINA". @seealso CDM.

method The methods to validata Q-matrix, can be "GDI", "Wald"”, "Hull", and "MLR-B".
The "model” must be "GDINA" when method = "Wald". Default = "GDI". See
details.

search.method Character string specifying the search method to use during validation.
""SSA'" for sequential search algorithm (see de la Torre, 2008; Terzi & de la
Torre, 2018). This option can be used when the method is "GDI" or "MLR-B".
"ESA" for exhaustive search algorithm. This option can be used when the
method is any of "GDI", "Wald", "Hull", or "MLR-B".
"PAA" for priority attribute algorithm. This is the default option and can be
used when the method is any of "GDI", "Wald", "Hull", or "MLR-B".

maxitr Number of max iterations. Default = 1.
iter.level Can be "item" level or "test"” level. Default = "test”. See details.
eps Cut-off points of PV AF, will work when the method is "GDI" or "Wald". De-

fault = 0. 95. See details.

criter The kind of fit-index value, can be R? for R3, 1. ic, @seealso get.R2 or
PV AF for the proportion of variance accounted for (PV AF') @seealso get.PVAF.
Only when method = "Hull"” works and default = "PVAF". See details.

verbose Logical indicating to print iterative information or not. Default is TRUE
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Value

An object of class validation is a 1ist containing the following components:

Q.orig The original Q-matrix that maybe contains some mis-specifications and need to
be validate.

Q.sug The Q-matrix that suggested by certain validation method.

priority An I x K matrix that contains the priority of every attribute for each item. Only
when the search.method is "PAA", the value is availble. See details.

iter The number of iteration.

time.cost The time that CPU cost to finish the function.

The GDI method

The GDI method (de la Torre & Chiu, 2016), as the first Q-matrix validation method applicable
to saturated models, serves as an important foundation for various mainstream Q-matrix validation
methods.

The method calculates the proportion of variance accounted for (PV AF'; @seealso get.PVAF) for
all possible g-vectors for each item, selects the g-vector with a PV AF just greater than the cut-off
point (or Epsilon, EPS) as the correction result, and the variance (? is the generalized discriminating
index (GDI; de la Torre & Chiu, 2016). Therefore, the GDI method is also considered as a general-
ized extension of the delta method (de la Torre, 2008), which also takes maximizing discrimination
as its basic idea. In the GDI method, ¢ 2 is defined as the weighted variance of the correct response
probabilities across all mastery patterns, that is:

2K
=Y m(P(Xys = ) — Preom)?
=1

where 7; represents the prior probability of mastery pattern [; P/"¢%" = 25:1 mP(Xpi = 1ay)
is the weighted average of the correct response probabilities across all attribute mastery patterns.
When the g-vector is correctly specified, the calculated ¢? should be maximized, indicating the
maximum discrimination of the item. However, in reality, (? continues to increase when the g-
vector is over-specified, and the more attributes that are over-specified, the larger (? becomes.
The g-vector with all attributes set to 1 (i.e., q1.x) has the largest ¢(? (de la Torre, 2016). This is
because an increase in attributes in the q-vector leads to an increase in item parameters, resulting
in greater differences in correct response probabilities across attribute patterns and, consequently,
increased variance. However, this increase in variance is spurious. Therefore, de la Torre et al.

calculated PVAF = Cg—g to describe the degree to which the discrimination of the current g-
1:K

vector explains the maximum discrimination. They selected an appropriate PV AF' cut-off point to

achieve a balance between g-vector fit and parsimony. According to previous studies, the PV AF

cut-off point is typically set at 0.95 (Ma & de la Torre, 2020; Najera et al., 2021).

The Wald method

The Wald method (Ma & de la Torre, 2020) combines the Wald test with PV AF to correct the Q-
matrix at the item level. Its basic logic is as follows: when correcting item ¢, the single attribute that
maximizes the PV AF value is added to a vector with all attributes set to 0 (i.e., g = (0,0, ...,0))
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as a starting point. In subsequent iterations, attributes in this vector are continuously added or
removed through the Wald test. The correction process ends when the PV AF exceeds the cut-
off point or when no further attribute changes occur. The Wald statistic follows an asymptotic 2
distribution with a degree of freedom of 25~ — 1.

The calculation method is as follows:
Wald = (R x Pi(a)) (R x V; x R)"'(R x P;(«))

R represents the restriction matrix; P;(«) denotes the vector of correct response probabilities for
item ¢; V is the variance-covariance matrix of the correct response probabilities for item ¢, which
can be obtained by multiplying the M; matrix (de la Torre, 2011) with the variance-covariance
matrix of item parameters X;, i.e., V; = M, x 3;. The X, can be derived by inverting the
information matrix. Using the the empirical cross-product information matrix (de la Torre, 2011) to
calculate X;.

M, is a 27 257 matrix that represents the relationship between the parameters of item 4 and the at-
tribute mastery patterns. The rows represent different mastery patterns, while the columns represent
different item parameters.

The Hull method

The Hull method (Najera et al., 2021) addresses the issue of the cut-off point in the GDI method
and demonstrates good performance in simulation studies. Najera et al. applied the Hull method
for determining the number of factors to retain in exploratory factor analysis (Lorenzo-Seva et al.,
2011) to the retention of attribute quantities in the g-vector, specifically for Q-matrix validation.
The Hull method aligns with the GDI approach in its philosophy of seeking a balance between fit
and parsimony. While GDI relies on a preset, arbitrary cut-off point to determine this balance, the
Hull method utilizes the most pronounced elbow in the Hull plot to make this judgment. The the
most pronounced elbow is determined using the following formula:

(fk = fru=1)/(npr, — npr—1)

o= (fre1 — fx)/ (MPry1 — npr)

where f, represents the fit-index value (can be PV AF @seealso get.PVAF or R2 @seealso get.R2)
when the g-vector contains k attributes, similarly, fr_1 and f;1 represent the fit-index value when
the g-vector contains k¥ — 1 and k + 1 attributes, respectively. np, denotes the number of parameters
when the g-vector has k attributes, which is 2¥ for a saturated model. Likewise, np;,_; and np;, 11
represent the number of parameters when the g-vector has k — 1 and k + 1 attributes, respectively.
The Hull method calculates the st index for all possible g-vectors and retains the g-vector with the
maximum st index as the corrected result. Najera et al. (2021) removed any concave points from
the Hull plot, and when only the first and last points remained in the plot, the saturated g-vector was
selected.

The MLR-B method

The MLR-B method proposed by Tu et al. (2022) differs from the GDI, Wald and Hull method
in that it does not employ PV AF'. Instead, it directly uses the marginal probabilities of attribute
mastery for subjects to perform multivariate logistic regression on their observed scores. This ap-
proach assumes all possible g-vectors and conducts 2% — 1 regression modelings. After proposing
regression equations that exclude any insignificant regression coefficients, it selects the g-vector
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corresponding to the equation with the minimum AIC fit as the validation result. The performance
of this method in both the LCDM and GDM models even surpasses that of the Hull method, making
it an efficient and reliable approach for Q-matrix correction.

Iterative procedure

The iterative procedure that one modification at a time is item level iteration ("item”) in (Najera et
al., 2020, 2021), while the iterative procedure that the entire Q-matrix is modified at each iteration
is test level iteration ("test") (Najera et al., 2020; Tu et al., 2022).

The steps of the item level iterative procedure algorithm are as follows:

Stepl Fit the CDM according to the item responses and the provisional Q-matrix (QP).
Step2 Validate the provisional Q-matrix and gain a suggested Q-matrix (Q?).

Step3 for each item, PV AFy; as the PV AF of the provisional g-vector specified in Q, and
PV AF}y; as the PV AF of the suggested g-vector in Q*.

Stepd Calculate all items’ § PV AF;, defined as 0PV AF; = |PV AFy; — PV AFy;|

Step5 Define the hit item as the item with the highest § PV AF;.

Step6 Update QO by changing the provisional g-vector by the suggested g-vector of the hit item.
Step7 Iterate over Steps 1 to 6 until Zle OPVAF; =0

The steps of the test level iterative procedure algorithm are as follows:

Step1 Fit the CDM according to the item responses and the provisional Q-matrix (Q°).

Step2 Validate the provisional Q-matrix and gain a suggested Q-matrix (Q').

Step3 Check whether Q! = QU. If TRUE, terminate the iterative algorithm. If FALSE, Update Q°
as Q1.

Step4 Iterate over Steps 1 and 3 until one of conditions as follows is satisfied: 1. Q' = QU; 2.

Reach the max iteration (maxitr); 3. Q' does not satisfy the condition that an attribute is
measured by one item at least.

Author(s)

Haijiang Qin <Haijiang133 @outlook.com>
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Examples
HHHEHHHEHE A AR A
# Example 1 #
# The GDI method to validate Q-matrix #

HHHEHHAEHEE A A A
set.seed(123)

library(Qval)

## generate Q-matrix and data

K <-4
I<-20
example.Q <- sim.Q(K, I)
IQ <- list(
PO = runif(I, 0.0, 0.2),

P1
)
example.data <- sim.data(Q = example.Q, N = 500, IQ = IQ,
model = "GDINA", distribute = "horder")

runif(I, 0.8, 1.0)

## simulate random mis-specifications
example.MQ <- sim.MQ(example.Q, 0.1)

## using MMLE/EM to fit CDM model first
example.CDM.obj <- CDM(example.data$dat, example.MQ)
## using the fitted CDM.obj to avoid extra parameter estimation.

Q.GDI.obj <- validation(example.data$dat, example.MQ, example.CDM.obj, method = "GDI")

## also can validate the Q-matrix directly
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Q.GDI.obj <- validation(example.data$dat, example.MQ)

## item level iteration
Q.GDI.obj <- validation(example.data$dat, example.MQ, method = "GDI",
iter.level = "item", maxitr = 150)

## search method
Q.GDI.obj <- validation(example.data$dat, example.MQ, method = "GDI",
search.method = "ESA")

## cut-off point
Q.GDI.obj <- validation(example.data$dat, example.MQ, method
eps = 0.90)

"GDI",

## check QRR
print(getQRR(example.Q, Q.GDI.obj$Q.sug))

S
# Example 2 #
# The Wald method to validate Q-matrix #
S
set.seed(123)

library(Qval)

## generate Q-matrix and data
K <-4
I <- 20
example.Q <- sim.Q(K, I)
IQ <- list(
PO = runif(I, 0.0, 0.2),
P1 = runif(I, 0.8, 1.0)
)
example.data <- sim.data(Q = example.Q, N = 500, IQ = IQ, model = "GDINA",
distribute = "horder")

## simulate random mis-specifications

example.MQ <- sim.MQ(example.Q, 0.1)

## using MMLE/EM to fit CDM first

example.CDM.obj <- CDM(example.data$dat, example.MQ)

## using the fitted CDM.obj to avoid extra parameter estimation.

Q.Wald.obj <- validation(example.data$dat, example.MQ, example.CDM.obj, method = "Wald")

## also can validate the Q-matrix directly
Q.Wald.obj <- validation(example.data$dat, example.MQ, method = "Wald")
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## check QRR
print(getQRR(example.Q, Q.Wald.obj$Q.sug))

B S R
# Example 3 #
# The Hull method to validate Q-matrix #
B S
set.seed(123)

library(Qval)

## generate Q-matrix and data
K <-4
I <- 20
example.Q <- sim.Q(K, I)
IQ <- list(
PO = runif(I, 0.0, 0.2),
P1 = runif(I, 0.8, 1.0)
)
example.data <- sim.data(Q = example.Q, N = 500, IQ = IQ, model = "GDINA",
distribute = "horder")

## simulate random mis-specifications

example.MQ <- sim.MQ(example.Q, 0.1)

## using MMLE/EM to fit CDM first

example.CDM.obj <- CDM(example.data$dat, example.MQ)

## using the fitted CDM.obj to avoid extra parameter estimation.

Q.Hull.obj <- validation(example.data$dat, example.MQ, example.CDM.obj, method = "Hull")

## also can validate the Q-matrix directly
Q.Hull.obj <- validation(example.data$dat, example.MQ, method

"Hull™)

## change PVAF to R2 as fit-index
Q.Hull.obj <- validation(example.data$dat, example.MQ, method = "Hull"”, criter = "R2")

## check QRR
print(getQRR(example.Q, Q.Hull.obj$Q.sug))

B s S R
# Example 4 #
# The MLR-B method to validate Q-matrix #
B s S S
set.seed(123)
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library(Qval)

## generate Q-matrix and data
K <-4
I <- 20
example.Q <- sim.Q(K, I)
I1Q <- list(
PO = runif(I, 0.0, 0.2),
P1 = runif(I, 0.8, 1.0)
)

example.data <- sim.data(Q = example.Q, N = 500, IQ = IQ, model = "GDINA",

distribute = "horder")
## simulate random mis-specifications
example.MQ <- sim.MQ(example.Q, ©.1)
## using MMLE/EM to fit CDM first

example.CDM.obj <- CDM(example.data$dat, example.MQ)

## using the fitted CDM.obj to avoid extra parameter estimation.

validation

Q.MLR.obj <- validation(example.data$dat, example.MQ, example.CDM.obj, method = "MLR-B")

## also can validate the Q-matrix directly

Q.MLR.obj <- validation(example.data$dat, example.MQ, method = "MLR-B")

## check QRR
print(getQRR(example.Q, Q.Hull.obj$Q.sug))
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