Package 'Vdgraph'

September 8, 2023

Type Package

Title Variance Dispersion Graphs and Fraction of Design Space Plots for Response Surface Designs
Version 2.2-7
Date 2023-09-06
Author John Lawson <pre><lawsonjs17net@gmail.com></lawsonjs17net@gmail.com></pre> , with contributions from G. Vining
Maintainer John Lawson <lawsonjsl7net@gmail.com></lawsonjsl7net@gmail.com>
Description Uses a modification of the published FORTRAN code in ``A Computer Program for Generating Variance Dispersion Graphs" by G. Vining, Journal of Quality Technology, Vol. 25 No. 1 January 1993, to produce variance dispersion graphs. Also produces fraction of design space plots, and contains data frames for several minimal run response surface designs.
License GPL-2
LazyLoad yes
RoxygenNote 7.2.3
NeedsCompilation yes
Repository CRAN
Date/Publication 2023-09-08 21:30:02 UTC
R topics documented:
Vdgraph-package Compare2FDS Compare2Vdg D310 D311A D311B
D416A

2 Vdgraph-package

Vdgra	aph-packag	ge				•		_					e o	•		_	ар	hs	a	na	l fr	ac	tio	n o	of	de	!-
Index																											18
	Vdgraph .													•	•												16
	Vardsgr .																										15
	SCDH6.																										14
	SCDH5.																										14
	SCDH4 .																										13
	SCDH3 .																										13
	SCDH2 .																										12
	SCDDL5																										12
	mx																										11
	Hex2																										11
	FDSPlot .																										10

Description

The **Vdgraph** package provides functions for creating Variance Dispersion Graphs and Fraction of Design Space Plots of a standardized response surface design stored in a matrix or a data frame.

The function Vdgraph(des) creates the variance dispersion graph of the response surface design stored in the matrix or data frame des. The function FDSPlot(des) creates the fraction of design space plot of the response surface design stored in the matrix or data frame des. Useful response surface designs are also included as matricies in the package. These include the hexagonal design for two factors Hex2, the small composite designs for 3 to 6 factors and Roquemore's hybrid designs for 3 to 6 factors. The function Compare2Vdg makes the variance dispersion graphs of two designs on the same scale for comparison.

Details

Package: Vdgraph
Type: Package
Version: 2.2-7
Date: 2023-09-08
License: GPL2.0

Dependencies:

LazyLoad: yes

Packaged: 2023-09-08 19:54:07 UTC; Lawson

Built: R 3.0.2; i386-pc-mingw32; 2011-03-22 19:54:08 UTC; windows

Index:

Compare2Vdg this function makes Variance Dispersion Graphs

of two response surface designs on the same

Compare2FDS 3

Compare2FDS	graph for comparison this function makes fraction of design space plots of two response surface designs on the same graph for comparison
D310	Roquemore (1976) Hybrid design D310
D311A	Roquemore (1976) Hybrid design 311A
D311B	Roquemore (1976) Hybrid design D311B
D416A	Roquemore (1976) Hybrid design 416A
D416B	Roquemore (1976) Hybrid design D416B
D416C	Roquemore (1976) Hybrid design D416C
D628A	Roquemore (1976) Hybrid design D628A
FDSPlot	this function makses a fraction of design space plot of a response surface design
Hex2	Hexagonal design for two factors
SCDDL5	Draper and Lin's Small Composite Design for five factors
SCDH2	Hartley's Small Composite Design for two factors
SCDH3	Hartley's Small Composite Design for three factors
SCDH4	Hartley's Small Composite Design for four factors
SCDH5	Hartley's Small Composite Design for five factors
SCDH6	Hartley's Small Composite Design for six factors
Vardsgr	Loads compiled fortran in shared file vdg
Vdgraph	this function makes a Variance Dispersion Graph of a response surface design

Author(s)

John Lawson lawson@byu.edu

Maintainer: John Lawson lawson@byu.edu

Compare2FDS This function con	mpares Fraction of Design Space Plots for two re-
sponse surface de	esigns.

Description

This function compares Fraction of Design Space Plots for two response surface designs with the same number of factors over the unit hypercube design space.

Usage

```
Compare2FDS(des1, des2, name1, name2, mod=2)
```

4 Compare2Vdg

Arguments

des1	des1 is a matrix or a data frame containing the first response surface design to be compared in coded or uncoded units. There should be one column for each factor in the design, and one row for each run in the design. The maximum number of rows allowed is 99, and the maximum number of columns is 7.
des2	des2 is a matrix or a data frame containing the second response surface design to be compared in coded or uncoded units. There should be one column for each factor in the design, and one row for each run in the design. The maximum number of rows allowed is 99, and the maximum number of columns is 7.
name1	name1 is a character string containing a descriptive name for the first design. This descriptive name should be no more than 40 characters in order to fit in the space for a legend. If left out name1 defaults to des1
name2	name2 is a character string containing a descriptive name for the second design. This descriptive name should be no more than 40 characters in order to fit in the space for a legend. If left out name2 defaults to des2
mod	mod is the model to be represented. $0 = \text{linear model } 1 = \text{linear main effects plus linear by linear 2-factor interactions } 2 = \text{full quadratic response surface model (default.}$

Author(s)

John S. Lawson < lawson@byu.edu>

References

1.Zahran, A., Anderson-Cook, C. M. and Myers, R. H. "Fraction of Design Space to Assess Prediction Capability of Response Surface Designs" Journal of Quality Technology, Vol 35, No. 4, pp 377-386. 2003.

Examples

```
data(SCDH5)
data(SCDDL5)
Compare2FDS(SCDH5, SCDDL5, "Hartley SCD-5", "Draper-Lin SCD5", mod=2)
```

Compare2Vdg this function compares Variance Dispersion Graph of two response surface designs with the same number of factors on the same scale

Description

This function calls the function Vardsgr which uses Vining's (1993) fortran code to get the coordinates of a two variance dispersion graph, and then makes the plot.

Usage

Compare2Vdg(des,des2,name1,name2,ncolleg)

Compare2Vdg 5

Arguments

des2

des des is a matrix or a data frame containing the first response surface design to be compared in coded or uncoded units. There should be one column for each factor in the design, and one row for each run in the design. The maximum number of rows allowed is 99, and the maximum number of columns is 7.

des2 is a matrix or a data frame containing the second response surface design to be compared in coded or uncoded units. There should be one column for each factor in the design, and one row for each run in the design. The maximum

number of rows allowed is 99, and the maximum number of columns is 7.

name1 name1 is a character string containing a descriptive name for the first design.

This descriptive name should be no more than 40 characters in order to fit in the

space for a legend. If left out name1 defaults to des

name2 name2 is a character string containing a descriptive name for the second design.

This descriptive name should be no more than 40 characters in order to fit in the

space for a legend. If left out name2 defaults to des2

ncolleg The number of columns in the legend this can be 1 or 2

Value

vdgpl

vdgpl This is a graph containing the two Variance Dispersion Graphs, one for each

design

Note

This function calls the function Vardsgr to get the coordinates for the plot.

Author(s)

John S. Lawson < lawson@byu.edu>

References

1. Vining, G. "A Computer Program for Generating Variance Dispersion Graphs" Journal of Quality Technology, Vol 25, No. 1, pp. 45-58, 1993. 2. Vining, G. "Corrigenda" Journal of Quality Technology, Vol 25, No. 4, pp 333-335. 1993.

Examples

```
data(SCDH5)
data(SCDDL5)
Compare2Vdg(SCDH5,SCDDL5,"Hartley's SCD-5","Draper-Lin's SCD-5 fac",ncolleg=1)
```

6 D311A

D310

Roquemore (1976) Hybrid design D310

Description

A This is an .rda file containing the design in a matrix.

Usage

data(D310)

Format

Three columns of independent variables

Source

source

References

Myers, R. H. and Montgomery D. C. *Response Surface Methodology* 2nd Ed., John Wiley and Sons NY, 2002. p.386

D311A

Roquemore (1976) Hybrid design 311A

Description

This is an .rda file containing the design in a matrix.

Usage

data(D311A)

Format

Three columns of independent variables

Source

source

References

Myers, R. H. and Montgomery D. C. *Response Surface Methodology* 2nd Ed., John Wiley and Sons NY, 2002. p.386

D311B

D311B

Roquemore (1976) Hybrid design D311B

Description

This is an .rda file containing the design in a matrix.

Usage

data(D311B)

Format

Three columns of independent variables

Source

source

References

Myers, R. H. and Montgomery D. C. *Response Surface Methodology* 2nd Ed., John Wiley and Sons NY, 2002. p.386

D416A

Roquemore (1976) Hybrid design 416A

Description

This is an .rda file containing the design in a matrix.

Usage

data(D416A)

Format

Four columns of independent variables

Source

source

References

Myers, R. H. and Montgomery D. C. *Response Surface Methodology* 2nd Ed., John Wiley and Sons NY, 2002. p.386

8 D416C

D416B

Roquemore (1976) Hybrid design D416B

Description

this is an .rda file containing the design in a matrix.

Usage

data(D416B)

Format

Four columns of independent variables

Source

source

References

Myers, R. H. and Montgomery D. C. *Response Surface Methodology* 2nd Ed., John Wiley and Sons NY, 2002. p.386

D416C

Roquemore (1976) Hybrid design D416C

Description

This is an .rda file containing the design in a matrix.

Usage

data(D416C)

Format

Three columns of independent variables

Source

source

References

Myers, R. H. and Montgomery D. C. *Response Surface Methodology* 2nd Ed., John Wiley and Sons NY, 2002. p.386

D628A 9

D628A

Roquemore (1976) Hybrid design D628A

Description

This is an .rda file containing the design in a matrix.

Usage

data(D628A)

Format

Three columns of independent variables

Source

source

References

Myers, R. H. and Montgomery D. C. *Response Surface Methodology* 2nd Ed., John Wiley and Sons NY, 2002. p.386

f

Calculate column means of design

Description

This function calculates means of design.

Usage

f(x)

Arguments

Х

This is a design matrix

Value

mean

mean

This is the mean of the design x

10 FDSPlot

Note

This function is called by the function Vdgraph.

Author(s)

John S. Lawson < lawson@byu.edu>

FDSPlot This function makes a Fraction of Design Space Plot of a response surface design.

Description

This function creates a Fraction of Design Space Plot over the hypercube design space from -1 to 1 on each component.

Usage

```
FDSPlot(des, mod=2)
```

Arguments

des des is a matrix or a data frame containing a response surface design in coded or

uncoded units. There should be one column for each factor in the design, and one row for each run in the design. The maximum number of rows allowed is

99, and the maximum number of columns is 7.

mod is the model to be represented. 0 = linear model 1 = linear main effects plus

linear by linear 2-factor interactions 2 = full quadratic response surface model

(default.

Author(s)

John S. Lawson < lawson@byu.edu>

References

1.Zahran, A., Anderson-Cook, C. M. and Myers, R. H. "Fraction of Design Space to Assess Prediction Capability of Response Surface Designs" Journal of Quality Technology, Vol 35, No. 4, pp 377-386. 2003.

Examples

```
data(D310)
FDSPlot(D310)
```

Hex2 11

Hex2

Hexagonal design for two factors

Description

This is an .rda file containing the design in a matrix.

Usage

data(Hex2)

Format

Two columns of independent variables

Source

source

References

Myers, R. H. and Montgomery D. C. Response Surface Methodology 2nd Ed., John Wiley and Sons NY, 2002. p.386

mx

Calculate column maximums of design

Description

This function calculates maximums of design.

Usage

mx(x)

Arguments

Х

This is a design matrix

Value

mean

max

This is the maximum of the design x

12 SCDH2

Note

This function is called by the function FDSPlot.

Author(s)

John S. Lawson < lawson@byu.edu>

SCDDL5

Draper and Lin's Small Composite Design for five factors

Description

This is an .rda file containing the design in a matrix.

Usage

data(SCDDL5)

Format

Five columns of independent variables

Source

source

References

Myers, R. H. and Montgomery D. C. *Response Surface Methodology* 2nd Ed., John Wiley and Sons NY, 2002. p.386

SCDH2

Hartley's Small Composite Design for two factors

Description

This is an .rda file containing the design in a matrix.

Usage

data(SCDH2)

Format

Two columns of independent variables

SCDH3

Source

source

References

Myers, R. H. and Montgomery D. C. *Response Surface Methodology* 2nd Ed., John Wiley and Sons NY, 2002. p.386

SCDH3

Hartley's Small Composite Design for three factors

Description

This is an .rda file containing the design in a matrix.

Usage

data(SCDH3)

Format

Three columns of independent variables

Source

source

References

Myers, R. H. and Montgomery D. C. Response Surface Methodology 2nd Ed., John Wiley and Sons NY, 2002. p.386

SCDH4

Hartley's Small Composite Design for four factors

Description

This is an .rda file containing the design in a matrix.

Usage

data(SCDH4)

Format

Four columns of independent variables

14 SCDH6

Source

source

References

Myers, R. H. and Montgomery D. C. *Response Surface Methodology* 2nd Ed., John Wiley and Sons NY, 2002. p.386

SCDH5

Hartley's Small Composite Design for five factors

Description

This is an .rda file containing the design in a matrix.

Usage

data(SCDH5)

Format

Five columns of independent variables

Source

source

References

Myers, R. H. and Montgomery D. C. *Response Surface Methodology* 2nd Ed., John Wiley and Sons NY, 2002. p.386

SCDH6

Hartley's Small Composite Design for six factors

Description

This is an .rda file containing the design in a matrix.

Usage

data(SCDH6)

Format

Six columns of independent variables

15 Vardsgr

Source

source

References

Myers, R. H. and Montgomery D. C. Response Surface Methodology 2nd Ed., John Wiley and Sons NY, 2002. p.386

Vardsgr

Loads compiled fortran in shared file vdg

Description

This function loads and runs the compiled fortran code vdg. vdg is Vining's 1999 JQT fortran code for producing variance dispersion graphs.

Usage

```
Vardsgr(ndpts, kvar1, kdv1, rdes)
```

Arguments

ndpts	This is the number of runs in the response surface design (maximum=99).
kvar1	This is the number of factors in the design matrix (maximum=6).
المامية	This is the good act of a data and learns

This is the product of ndpts and kvar1. kdv1

rdes This is the response surface design matrix stored as a vector of the concatenated

columns of the design matrix, one column for each factor in the design.

Value

vdgr

vdgr This is the matrix of coordinates for the variance dispersion graph. It is stored

as a vector of concatenated columns. Each column is of length 20, and there are four columns in the matrix. The first column is the radius from the center of the response surface design. The second column is the maximum variance of a predicted value, the third column is the minimum variance of a predicted value,

and the fourth column is the average variance of a predicted value.

Note

This function is called by the function Vdgraph.

Author(s)

John S. Lawson < lawson@byu.edu>

16 Vdgraph

References

1. Vining, G. "A Computer Program for Generating Variance Dispersion Graphs" Journal of Quality Technology, Vol 25, No. 1, pp. 45-58, 1993. 2. Vining, G. "Corrigenda" Journal of Quality Technology, Vol 25, No. 4, pp 333-335. 1993.

Vdgraph

this function makes a Variance Dispersion Graph of a response surface design

Description

This function calls the function Vardsgr which uses Vining's (1993) fortran code to get the coordinates of a variance dispersion graph, and then makes the plot.

Usage

Vdgraph(des)

Arguments

des

des is a matrix or a data frame containing a response surface design in coded or uncoded units. There should be one column for each factor in the design, and one row for each run in the design. The maximum number of rows allowed is 99, and the maximum number of columns is 7.

Value

vdgpl

vdgpl

This is a graph containing the Variance Dispersion Graph

Note

This function calls the function Vardsgr to get the coordinates for the plot.

Author(s)

John S. Lawson < lawson@byu.edu>

References

1. Vining, G. "A Computer Program for Generating Variance Dispersion Graphs" Journal of Quality Technology, Vol 25, No. 1, pp. 45-58, 1993. 2. Vining, G. "Corrigenda" Journal of Quality Technology, Vol 25, No. 4, pp 333-335. 1993.

Vdgraph 17

Examples

data(D310) Vdgraph(D310)

Index

* datagen	FDSPlot, 10
f, 9	
mx, 11	Hex2, 11
* datasets	mv 11
D310, 6	mx, 11
D311A, 6	SCDDL5, 12
D311B, 7	SCDH2, 12
D416A, 7	SCDH3, 13
D416B, 8	SCDH4, 13
D416C, 8	SCDH5, 14
D628A, 9	SCDH6, 14
Hex2, 11	
SCDDL5, 12	Vardsgr, 15
SCDH2, 12	Vdgraph, 16
SCDH3, 13	Vdgraph-package, 2
SCDH4, 13	
SCDH5, 14	
SCDH6, 14	
* hplot	
Compare2FDS, 3	
Compare2Vdg, 4	
FDSPlot, 10	
Vdgraph, 16	
* interface	
Vardsgr, 15	
* package	
Vdgraph-package, 2	
Compare2FDS, 3	
Compare2Vdg, 4	
D310, 6	
D311A, 6	
D311B, 7	
D416A, 7	
D416B, 8	
D416C, 8	
D628A, 9	
f, 9	