
Package ‘ageutils’
March 6, 2024

Type Package

Title Collection of Functions for Working with Age Intervals

Version 0.0.2

Description Provides a collection of efficient functions for working with
individual ages and corresponding intervals. These include functions for
conversion from an age to an interval, aggregation of ages with associated
counts in to intervals and the splitting of interval counts based on
specified age distributions.

License GPL-2

Encoding UTF-8

RoxygenNote 7.3.1

Suggests knitr, markdown, tinytest

Depends R (>= 3.5.0)

LazyData true

VignetteBuilder knitr

URL https://timtaylor.github.io/ageutils/

BugReports https://github.com/TimTaylor/ageutils/issues

NeedsCompilation yes

Author Tim Taylor [aut, cre, cph] (<https://orcid.org/0000-0002-8587-7113>),
Edwin van Leeuwen [ctb] (<https://orcid.org/0000-0002-2383-5305>)

Maintainer Tim Taylor <tim.taylor@hiddenelephants.co.uk>

Repository CRAN

Date/Publication 2024-03-06 13:10:12 UTC

R topics documented:
aggregate_age_counts . 2
breaks_to_interval . 3
cut_ages . 4

1

https://timtaylor.github.io/ageutils/
https://github.com/TimTaylor/ageutils/issues
https://orcid.org/0000-0002-8587-7113
https://orcid.org/0000-0002-2383-5305

2 aggregate_age_counts

pop_dat . 5
reaggregate_interval_counts . 6
reaggregate_interval_rates . 7
split_interval_counts . 8

Index 11

aggregate_age_counts Aggregate counts across ages

Description

aggregate_age_counts() provides aggregation of counts across ages (in years). It is similar to
a cut() and tapply() pattern but optimised for speed over flexibility. It takes a specified set
of breaks representing the left hand limits of a closed open interval, i.e [x, y), and returns the
corresponding interval and upper bounds. The resulting intervals span from the minimum break
through to the maximum age. Missing values are grouped as NA.

Usage

aggregate_age_counts(counts, ages = seq_along(counts) - 1L, breaks)

Arguments

counts [numeric].

Vector of counts to be aggregated.

ages [numeric].

Vector of age in years.

Double values are coerced to integer prior to categorisation / aggregation.

For aggregate_age_counts(), these must corresponding to the counts entry
and will defaults to 0:(N-1) where N is the number of counts present.

No (non-missing) age can be less than the minimum break.

breaks [numeric].

1 or more cut points in increasing (strictly) order.

These correspond to the left hand side of the desired intervals (e.g. the closed
side of [x, y).

Double values are coerced to integer prior to categorisation.

Value

A data frame with 4 entries; interval, lower_bound, upper_bound and an associated count.

breaks_to_interval 3

Examples

default ages generated if only counts provided (here ages will be 0:64)
aggregate_age_counts(counts = 1:65, breaks = c(0L, 1L, 5L, 15L, 25L, 45L, 65L))

NA ages are handled with their own grouping
ages <- 1:65
ages[1:44] <- NA
aggregate_age_counts(

counts = 1:65,
ages = ages,
breaks = c(0L, 1L, 5L, 15L, 25L, 45L, 65L)

)

breaks_to_interval Convert breaks to an interval

Description

breaks_to_interval() takes a specified set of breaks representing the left hand limits of a closed
open interval, i.e [x, y), and returns the corresponding interval and upper bounds. The resulting
intervals span from the minimum break through to a specified max_upper.

Usage

breaks_to_interval(breaks, max_upper = Inf)

Arguments

breaks [integerish].
1 or more non-negative cut points in increasing (strictly) order.
These correspond to the left hand side of the desired intervals (e.g. the closed
side of [x, y).
Double values are coerced to integer prior to categorisation.

max_upper [numeric]

Represents the maximum upper bound splitting the data.
Defaults to Inf.

Value

A data frame with an ordered factor column (interval), as well as columns corresponding to the
explicit bounds (lower_bound and upper_bound). Note these bounds are returned as <numeric>
to allow the maximum upper bound to be Inf.

4 cut_ages

Examples

brks <- c(0L, 1L, 5L, 15L, 25L, 45L, 65L)
breaks_to_interval(breaks = brks)
breaks_to_interval(breaks = brks, max_upper = 100L)

cut_ages Cut integer age vectors

Description

cut_ages() provides categorisation of ages based on specified breaks which represent the left-
hand interval limits. The resulting intervals span from the minimum break through to a specified
max_upper and will always be closed on the left and open on the right. Ages below the minimum
break, or above max_upper will be returned as NA.

Usage

cut_ages(ages, breaks, max_upper = Inf)

Arguments

ages [numeric].

Vector of age values.

Double values are coerced to integer prior to categorisation / aggregation.

Must not be NA.

breaks [integerish].

1 or more non-negative cut points in increasing (strictly) order.

These correspond to the left hand side of the desired intervals (e.g. the closed
side of [x, y).

Double values are coerced to integer prior to categorisation.

max_upper [numeric]

Represents the maximum upper bound for the resulting intervals.

Double values are rounded to the nearest (numeric) integer.

Defaults to Inf.

Value

A data frame with an ordered factor column (interval), as well as columns corresponding to the
explicit bounds (lower_bound and upper_bound).

pop_dat 5

Examples

cut_ages(ages = 0:9, breaks = c(0L, 3L, 5L, 10L))

cut_ages(ages = 0:9, breaks = c(0L, 5L))

Note the following is comparable to a call to
cut(ages, right = FALSE, breaks = c(breaks, Inf))
ages <- seq.int(from = 0, by = 10, length.out = 10)
breaks <- c(0, 1, 10, 30)
cut_ages(ages, breaks)

values above max_upper treated as NA
cut_ages(ages = 0:10, breaks = c(0,5), max_upper = 7)

pop_dat Aggregated population data

Description

A dataset derived from the 2021 UK census containing population for different age categories across
England and Wales.

Usage

pop_dat

Format

A data frame with 200 rows and 6 variables:

area_code Unique area identifier

area_name Unique area name

age_category Left-closed and right-open age interval

value count of individ

Source

https://github.com/TimTaylor/census_pop_2021

https://github.com/TimTaylor/census_pop_2021

6 reaggregate_interval_counts

reaggregate_interval_counts

Reaggregate age intervals

Description

reaggregate_interval_counts() converts counts over one interval range to another. It first splits
counts of a given age interval in to counts for individual years based on a given weighting. These
are then aggregated to the desired breaks. Functionally this is equivalent to, but more efficient than,
a call to split_interval_counts() followed by aggregate_age_counts().

Usage

reaggregate_interval_counts(
lower_bounds,
upper_bounds,
counts,
breaks,
max_upper = 100L,
weights = NULL

)

Arguments
lower_bounds, upper_bounds

[integerish].
A pair of vectors representing the bounds of the intervals.
lower_bounds must be strictly less than upper_bounds and greater than or
equal to zero.
Missing (NA) bounds are not permitted.
Double vectors will be coerced to integer.

counts [numeric].
Vector of counts to be aggregated.

breaks [numeric].
1 or more cut points in increasing (strictly) order.
These correspond to the left hand side of the desired intervals (e.g. the closed
side of [x, y).
Double values are coerced to integer prior to categorisation.

max_upper [integerish]

Represents the maximum upper bounds permitted upon splitting the data.
Any upper bound greater than this will be replaced with this value prior to split-
ting.
Double vectors will be coerced to integer.

reaggregate_interval_rates 7

weights [numeric]

Population weightings to apply for individual years.
If NULL (default) counts will be split evenly based on interval size.
If specified, must be of length max_upper and represent weights in the range
0:(max_upper - 1).

Value

A data frame with 4 entries; interval, lower_bound, upper_bound and an associated count.

Examples

reaggregate_interval_counts(
lower_bounds = c(0, 5, 10),
upper_bounds = c(5, 10, 20),
counts = c(5, 10, 30),
breaks = c(0L, 1L, 5L, 15L, 25L, 45L, 65L)

)

reaggregate_interval_rates

Reaggregate rates across intervals

Description

reaggregate_interval_rates() enables the reweighting of interval rates in to different intervals
ranges. It first replicates the rates of a given age interval into the individual years of said interval.
These are then aggregated allowing for a user specified weight vector.

Usage

reaggregate_interval_rates(
lower_bounds,
upper_bounds = NULL,
rates,
breaks,
weights = NULL

)

Arguments
lower_bounds, upper_bounds

[integerish].
A pair of vectors representing the bounds of the current intervals.
If upper_bounds is NULL, it will be automatically set to c(lower_bounds[-1L],
max_upper).

8 split_interval_counts

lower_bounds must be strictly less than upper_bounds and greater than or
equal to zero.
Missing (NA) bounds are not permitted.
Double vectors will be coerced to integer.

rates [numeric].
Vector of counts to be averaged.

breaks [numeric].
1 or more non-negative cut points in increasing (strictly) order.
These correspond to the left hand side of the desired intervals (e.g. the closed
side of [x, y).
Double values are coerced to integer prior to categorisation.

weights [numeric]

Population weightings to apply for individual years.
If NULL (default) weights will be allocated proportional to the interval size.
If specified, must be of length most 2000 and represent weights in the range
0:1999.
weights of length less than 2000 will be padded with 0.

Value

A data frame with 4 entries; interval, lower_bound, upper_bound and an associated count.

Examples

reaggregate_interval_rates(
lower_bounds = c(0, 5, 13),
upper_bounds= c(5, 15, 100),
rates = c(1, 0.1, 0.01),
breaks = c(0, 1, 9, 15),
weights = round(runif(70, 10, 30))

)

reaggregate_interval_rates(
lower_bounds = c(0, 5, 13),
rates = c(1, 0.1, 0.01),
breaks = c(0, 1, 9, 15),
weights = round(runif(70, 10, 30))

)

split_interval_counts Split interval counts

split_interval_counts 9

Description

split_interval_counts() splits counts of a given age interval in to counts for individual years
based on a given weighting. Age intervals are specified by their lower (closed) and upper (open)
bounds, i.e. intervals of the form [lower, upper).

Usage

split_interval_counts(
lower_bounds,
upper_bounds,
counts,
max_upper = 100L,
weights = NULL

)

Arguments
lower_bounds, upper_bounds

[integerish].
A pair of vectors representing the bounds of the intervals.
lower_bounds must be strictly less than upper_bounds and greater than or
equal to zero.
Missing (NA) bounds are not permitted.
Double vectors will be coerced to integer.

counts [numeric].
Vector of counts to be aggregated.

max_upper [integerish]

Represents the maximum upper bounds permitted upon splitting the data.
Any upper bound greater than this will be replaced with this value prior to split-
ting.
Double vectors will be coerced to integer.

weights [numeric]

Population weightings to apply for individual years.
If NULL (default) counts will be split evenly based on interval size.
If specified, must be of length max_upper and represent weights in the range
0:(max_upper - 1).

Value

A data frame with entries age (in years) and count.

Examples

split_interval_counts(
lower_bounds = c(0, 5, 10),
upper_bounds = c(5, 10, 20),

10 split_interval_counts

counts = c(5, 10, 30)
)

split_interval_counts(
lower_bounds = c(0, 5, 10),
upper_bounds = c(5, 10, Inf),
counts = c(5, 10, 30),
max_upper = 15

)

split_interval_counts(
lower_bounds = c(0, 5),
upper_bounds = c(5, 10),
counts = c(5, 10),
max_upper =10,
weights = 1:10

)

Index

∗ datasets
pop_dat, 5

aggregate_age_counts, 2

breaks_to_interval, 3

cut_ages, 4

pop_dat, 5

reaggregate_interval_counts, 6
reaggregate_interval_rates, 7

split_interval_counts, 8

11

	aggregate_age_counts
	breaks_to_interval
	cut_ages
	pop_dat
	reaggregate_interval_counts
	reaggregate_interval_rates
	split_interval_counts
	Index

