
Package ‘bcrypt’
October 12, 2022

Type Package

Title 'Blowfish' Password Hashing Algorithm

Version 1.1

Description Bindings to the 'blowfish' password hashing algorithm derived from
the 'OpenBSD' implementation.

URL https://github.com/jeroen/bcrypt

https://www.openbsd.org/papers/bcrypt-paper.pdf

BugReports https://github.com/jeroen/bcrypt/issues

License BSD_2_clause + file LICENSE

Imports openssl

RoxygenNote 6.0.1.9000

Suggests spelling

Language en-US

Encoding UTF-8

NeedsCompilation yes

Author Jeroen Ooms [cre, aut],
Damien Miller [cph],
Niels Provos [cph]

Maintainer Jeroen Ooms <jeroen@berkeley.edu>

Repository CRAN

Date/Publication 2018-01-26 09:08:42 UTC

R topics documented:
bcrypt . 2

Index 4

1

https://github.com/jeroen/bcrypt
https://www.openbsd.org/papers/bcrypt-paper.pdf
https://github.com/jeroen/bcrypt/issues

2 bcrypt

bcrypt Bcrypt password hashing

Description

Bcrypt is used for secure password hashing. The main difference with regular digest algorithms
such as MD5 or SHA256 is that the bcrypt algorithm is specifically designed to be CPU intensive in
order to protect against brute force attacks. The exact complexity of the algorithm is configurable
via the log_rounds parameter. The interface is fully compatible with the Python one.

Usage

gensalt(log_rounds = 12)

hashpw(password, salt = gensalt())

checkpw(password, hash)

Arguments

log_rounds integer between 4 and 31 that defines the complexity of the hashing, increasing
the cost as 2^log_rounds.

password the message (password) to encrypt

salt a salt generated with gensalt.

hash the previously generated bcrypt hash to verify

Details

The hashpw function calculates a hash from a password using a random salt. Validating the hash is
done by rehashing the password using the hash as a salt. The checkpw function is a simple wrapper
that does exactly this.

gensalt generates a random text salt for use with hashpw. The first few characters in the salt string
hold the bcrypt version number and value for log_rounds. The remainder stores 16 bytes of base64
encoded randomness for seeding the hashing algorithm.

Examples

Secret message as a string
passwd <- "supersecret"

Create the hash
hash <- hashpw(passwd)
hash

To validate the hash
identical(hash, hashpw(passwd, hash))

bcrypt 3

Or use the wrapper
checkpw(passwd, hash)

Use varying complexity:
hash11 <- hashpw(passwd, gensalt(11))
hash12 <- hashpw(passwd, gensalt(12))
hash13 <- hashpw(passwd, gensalt(13))

Takes longer to verify (or crack)
system.time(checkpw(passwd, hash11))
system.time(checkpw(passwd, hash12))
system.time(checkpw(passwd, hash13))

Index

bcrypt, 2

checkpw (bcrypt), 2

gensalt (bcrypt), 2

hashpw (bcrypt), 2

4

	bcrypt
	Index

