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In this document, we demonstrate how to use the R package cate|to adjust for confounding effects in
multiple hypothesis testing. Users who are only interested in high dimensional factor analysis may skip
the motivating example and go to Section [4

1 Introduction

The dataset we will be using is a genome-wide association study of gender (Vawter et al/| |[2004). In this
study, samples were taken postmortem from the brains of 10 individuals, 5 men and 5 women. Three
samples were taken from different regions of the brain of each individual, and one aliquot of each sample
was sent to each of 3 laboratories for analysis. There were two different microarray platforms used by
these labs. The dataset was downloaded from .

First, let’s load the data.

library(cate)
data(gender.sm)
names (gender.sm)

## [1] ||Y|| IIXH IIZII llspikectlll llgeneinfoﬂ
## [6] "xchrom" "ychrom" "xychrom" "pctl" "autosomal"
## [11] "genecoloring" "samplecoloring"

cbind(X = dim(gender.sm$X), Y = dim(gender.sm$Y), Z = dim(gender.sm$Z))

##t X Y Z
## [1,] 84 84 84
## [2,] 1500 4

There are in total 84 samples and 500 genes in this dataset. There are 12600 genes measured in the
original dataset (Vawter et al., [2004; |(Gagnon-Bartsch and Speed, 2012) and here we look at a 500 sub-
sample. There should have been 10 x 3 x 3 = 90 samples in total, but 6 of them are missing. In the data
object gender. sm, X is the gender of each person, Y is the gene expression matrix, and Z includes the batch
labels (lab and microarray platform, not individual or brain region).

Since there are several batch variables and unmeasured covariates in this dataset, it should come as
no surprise that these confounders can seriously bias the association tests. In other words, the marginal
effects of X on Y may be different from the actual effects of X on Y. [Wang et al|(2017) describe a general
framework and a two-step solution for this problem. In the first step, we apply factor analysis to the part
of gene expression matrix Y that is unrelated to the variable(s) of interest X. In the second step, we correct
the marginal effects of X on Y by using the factors obtained in the first step.


https://cran.r-project.org/web/packages/cate/index.html
http://www-personal.umich.edu/~johanngb/ruv/
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Figure 1: Histogram of t-statistics before confounder adjustment

2 Confounder adjusted multiple testing

To illustrate how the confounders in the gender.sm dataset can bias the association tests, we first run the
two-sample t-test for each gene

t.stats <- apply(gender.sm$Y, 2, function(y, x) t.test(y~x)$statistic, gender.sm$X)

Under the null hypothesis that the gene is unrelated to the gender, the corresponding t-statistic is
expected to follow a t-distribution with n — 1 degrees of freedom. Since n = 84 is fairly large in this
study, this t-distribution is very close to the standard normal distribution N(0,1). However, the empirical
distribution of t.stats is shown in Figure[1|(code not echoed). It clearly departs from the theoretical null
distribution. The median absolute deviation (MAD) of this histogram is only 0.066, much less than the
theoretical value 1, i.e. the t-statistics are extremely underdispersed. The histogram is also a little skewed
compared to normal or t distribution.

As mentioned earlier, this phenomenon is most likely due to the existence of confounders, unmeasured
variables that are correlated with both the response Y and the variable of interest X. To correct for such con-
founders, we first need to estimate its number. This is implemented in the function est.confounder.num

n <- nrow(gender.sm$Y)
gender.data <- data.frame(gender = gender.sm$X, gender.sm$Z)
factor.num <- est.confounder.num(~ gender | . - gender + O,
gender.data, gender.sm$Y,
method = "bcv", bcv.plot = FALSE,
rmax = 30, nRepeat = 20)
factor.num$r

## [1] 18

By default, est.confounder.num uses method = "bcv", which calls the EsaBcv function in the esaBcv
package to estimate the number of factors by bi-cross-validation (BCV). To look at the curve of BCV error
using different number of factors, the user can turn on the bcv.plot argument. It is recommended to use
at least 20 for nRepeat to obtain a stable BCV error for n around a few hundreds or less.

Another method to estimate the number of confounders of is the eigenvalue difference method (Onatski,
2010)

est.confounder.num(~ gender | . - gender + 0,
gender.data, gender.sm$Y, method = "ed")

## [1] 2


https://cran.r-project.org/web/packages/esaBcv/index.html

The formula " gender | . - gender + 0" here means gender is the primary variable and all other variables
in gender.data are nuisance variables. The intercept is not included because it is already included in
gender.data. The "bcv" method is better at estimating weak factors but takes longer time than "ed". We
recommend to use "bcv" method for most datasets; see|Owen and Wang| (2016) for more detail.

After finding the number of factors, the user can call the main cate function to adjust for the con-
founders

cate.results <- cate(” gender | . - gender + 0,
gender.data, gender.sm$Y, r = factor.num$r)
names (cate.results)

## [1] "Gamma" "Sigma" "z" "niter" "converged"
## [6] "alpha" "beta" "beta.cov.row" '"beta.cov.col" "alpha.p.value"
## [11] "beta.t" "beta.p.value" "Y.tilde"

For most users, the interesting returned values are
beta: the estimated effects after adjustment;
beta.t: the t-statistics after adjustment;
beta.p.value: the p-values of the estimated effects;
alpha.p.value: the p-value of a y?-test for confounding.

The first thing to look at is perhaps the confounding test, whose null hypothesis is that the estimated
factors are not correlated with X so the individual association tests are not biased. For the gender dataset,
the p-value of this test is

cate.results$alpha.p.value

Ht gender
## 0.01667668

This is much smaller than 0.05, which indicates, together with the previous histogram, that there are
some confounders in the experiment. When this is the case, the user may want to look at the factor analysis
results to search for possible sources of confounding (in particular the loadings Gamma and the estimated
confounders Z returned by cate).

To discover candidate genes, the user can apply the p.adjust function in the stats package to control
certain multiple testing error. For controlling the family-wise error rate (FWER), the user may use the
bonferroni or holm option in p.adjust. To increase the number of findings and still control the false
discovery rate (FDR), the user may use the BH option. Here are a couple of examples:

which(p.adjust(cate.results$beta.p.value, "bonferroni") < 0.05)
which(p.adjust(cate.results$beta.p.value, "BH") < 0.2)

Finally, let’s review all the available options in cate.

args(cate)

## function (formula, X.data = NULL, Y, r, fa.method = c("ml", "pc",

#i# "esa"), adj.method = c("rr", "nc", "lgs", "naive"), psi = psi.huber,
#i# nc = NULL, nc.var.correction = TRUE, calibrate = TRUE)
## NULL

Here are some detailed descriptions of all the arguments



nln

formula: R formula indicating primary and nuisance predictors, which are separated by
formula = “treatment | batch.label.

Example:

Y: response matrix (e.g. gene expression).

X.data: a data frame including both primary treatment variables whose effects are of interest and nuisance
covariates to adjust for (for example the known batch variables and other demographics variables
such as age or gender). X can also be a formula starting with

primary.var.names a vector of strings indicating the names of the primary treatment variables, or an
integer vector indicating the columns of the primary treatment variables in X when X is a matrix or
data frame. If primary.var.names is a vector of string, then the names should match the column
names of X or X.data.

r: number of confounders, usually estimated by est.confounder.num.
fa.method: method used to estimate the confounders. See Section [ for more detail.

adj.method: method used to adjust for the confounders. There are two main approaches: robust regres-
sion (rr) and negative control (nc). If a fair amount (rule of thumb: > 30) of negative control genes
(e.g. spike-in controls) are available, it is recommended to use the nc option. Housekeeping genes
can also be used as negative controls, but they are not as reliable as spike-in controls. The robust
regression (rr) option assumes the true effects are sparse and can be used when negative controls
are not available.

psi: estimating equation function used when adj.method = "rr". See the rlm function in package MASS
for more detail.

nc: positions of the negative controls. Can be a vector of numbers between 1 and p, or a logical vector of
length p.

nc.var.correction: if TRUE (default and recommended), use the variance correction formula in Wang
et al.| (2017) when adj.method = "nc"; if FALSE, use the oracle variance (same as the RUV4 function
in package ruv). See Wang et al.|(2017) for more detail.

calibrate: if TRUE (default), scale the t-statistics beta.t to have median equal to 0 and median absolute
deviation (with respect to normal distribution) equal to 1 .

For example, to use the nc adjustment method, the user must specify the positions of negative con-
trol genes. In the dataset gender.sm, these are given in spikectl (33 spike-in controls) and hkctl (799
housekeeping genes). Here is a sample usage:

cate.results.nc <- cate(” gender | . - gender + O,
gender.data, gender.sm$Y, r = factor.num$r,
adj.method = "nc", nc = gender.sm$spikectl)

The housekeeping genes are usually less reliable than the spike-in controls.
Alternatively, cate.fit provides a non-formula interface for the same purpose. To use cate.fit, the
user needs to specify

X.primary: primary treatment variable(s) whose effects are of interest. These are the variables that come
before "|" in the formula in cate.

X.nuis: nuisance covariate(s) to include in the regression whose effects are not of interest. These are the
variables that come after "|" in the formula in cate.

Y: response matrix (e.g. gene expression).

All the other arguments are the same as cate.

We end this section with Figure [2, two histograms of beta.t after the confounder adjustment using
adj.method = "rr" and adj.method = "nc". Inboth cases, the bulk of the statistics approximately follows
the standard normal distribution.
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Figure 2: Histograms of test statistics after adjustment

3 Other available confounder adjustment methods on CRAN/Bioconductor

The preprocessed gender.sm dataset was first used by (Gagnon-Bartsch and Speed| (2012) to demonstrate
their confounder correction method "Remove Unwanted Variation" (RUV) using negative controls. See also
the R package ruv. The RUV4 function therein is very similar to the adj.method = "nc" option in cate.
Two other related packages are sva (Leek and Storey, [2008) and 1eapp| (Sun et al., 2012), which motivate
the robust regression method (adj.method = "rr")in cate.

To compare the performance of different methods, the user can use the wrapper functions sva.wrapper,
ruv.wrapper, leapp.wrapper in the cate package. They provide a uniform interface and call the corre-
sponding functions in the original packages.

4 Factor analysis

For a data matrix Y € R"*?, n being the number of observations and p being the number of variables (e.g.
genes), the factor model assumes
Yﬁxp ::anrrgxr+‘Enxp/

where Z is a rotation matrix containing latent factors, I' is a matrix of loadings and E is a noise matrix.
The columns of E have covariance matrix X.

To perform factor analysis, one simply calls the function factor.analysis with the data matrix and
number of factors:

mle <- factor.analysis(gender.sm$Y, r = 5)
names (mle)

## [1] "Gamma" "Sigma" 7 "niter" "converged"


https://cran.r-project.org/web/packages/ruv/index.html
https://www.bioconductor.org/packages/release/bioc/html/sva.html
https://cran.r-project.org/web/packages/leapp/index.html

By default, factor.analysis estimates the latent factors by maximum likelihood (method = "ml").
Other available algorithms are principal component analysis (method = "pc") and bi-convex optimization
via early stopping alternation (method = "esa"). The default maximum likelihood estimator has good
theoretical properties under heteroscedastic noise variance ¥ (Bai and Li, 2012) or approximate factor
model (Bai and Li, 2015). The esa method tries to minimize the prediction error for Y; for more details we
refer the readers to the R package esaBcv. The pc option is usually more desirable when the noise variance
is homoscedastic & = ¢2I,. Finally, using the pc method will always outputs the same results, but the
iterative procedures ml and esa may converge to different values depending on the initial point.

The factor.analysis function can work for any n and p. In contrasts, both the factanal function in
package stats and the fa function in package psych|/do not support the high dimensional problem where
p > n.
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