
evclust: An R Package for Evidential Clustering

Thierry Denœux
Université de technologie de Compiègne

Abstract

One of the current trends in clustering is the development of algorithms able not only
to discover groups in data, but also to describe group-membership uncertainty. Evidential
clustering is a recent approach in this direction based on the Dempster-Shafer theory of
belief functions, a mathematical formalism for uncertainty representation. The output of
an evidential clustering procedure is a credal partition, defined as a tuple of mass func-
tions representing the uncertain assignment of objects to clusters. The R package evclust
described in this paper contains a collection of efficient evidential clustering algorithms, as
well as functions to display, evaluate and exploit credal partitions. The application of this
package is illustrated though the analysis of several datasets with different characteristics.

Keywords: clustering, belief functions, Dempster-Shafer theory, R.

1. Introduction
Since the introduction of the k-means clustering algorithm in the 1960’s (Lloyd 1982), clus-
ter analysis has been a very active research area in computational statistics and machine
learning (see, e.g. Jain and Dubes (1988); Kaufman and Rousseeuw (1990); Xu and Wunsch
(2009)). There is now an abundance of software tools for data clustering: for instance, the
Comprehensive R Archive Network (CRAN) task view on “Cluster Analysis & Finite Mix-
ture Models”1 lists 107 R packages (as of February 23, 2021). Among them, we can mention
the packages RSKC for robust and sparse k-means clustering (Kondo, Salibian-Barrera, and
Zamar 2016), pdfCluster for nonparametric clustering based on density estimation (Azzalini
and Menardi 2014), NbClust for determining the relevant number of clusters in a data set
(Charrad, Ghazzali, Boiteau, and Niknafs 2014), etc.
Whereas hard clustering algorithms such as the k-means procedure only generate a partition
of the dataset, an important research direction has been to develop algorithms that compute a
richer representation reflecting group-membership uncertainty. For instance, fuzzy clustering
algorithms such as the fuzzy k-means (Bezdek 1981) implemented in the R package fclust
(Ferraro, Giordani, and Serafini 2019), as well as model-based clustering methods based on
the EM algorithm (McLachlan and Basford 1988) implemented in mclust (Scrucca, Fop,
Murphy, and Raftery 2016) compute fuzzy partitions. In a fuzzy partition, each object i is
assigned a degree of membership uik in the range [0, 1] to each cluster k, in such as way
that, for each object i; the sum

∑
k uik of membership degrees (which can also be viewed as

probabilities) is equal to one. In possibilistic clustering (Krishnapuram and Keller 1993; Yang
and Wu 2006), this sum constraint is relaxed: each the computed quantity uik can then be

1https://cran.r-project.org/web/views/Cluster.html

https://cran.r-project.org/web/views/Cluster.html

2 evclust: An R Package for Evidential Clustering

interpreted as the degree of possibility that object i belongs to cluster k. Degrees of possibility
reflect the typicality of each observation, atypical patterns (or outliers) having a low degree
of possibility of belonging to any of the clusters. Yet another approach is rough clustering
(Peters, Crespo, Lingras, and Weber 2013; Peters 2014), in which each object is assigned a
set of possible clusters. For each cluster, we can then define a lower approximation, composed
of objects that certainly belong to that cluster, and an upper approximation, composed of
objects that possibly belong to it. In R, rough clustering algorithms are implemented in the
package SoftClustering (Peters 2019).
All the above approaches are subsumed by the evidential clustering approach (Denœux and
Masson 2004; Masson and Denoeux 2008), a relatively new approach based on the Dempster-
Shafer (DS) theory of belief functions (Dempster 1967; Shafer 1976; Denœux, Dubois, and
Prade 2020). Evidential clustering algorithms quantify clustering uncertainty using mass
functions assigning masses to sets of clusters, called focal sets, in such a way that the masses
sum to one. The collection of mass functions related to all objects in the dataset is called
a credal (or evidential) partition. A credal partition boils down to a fuzzy partition when
the focal sets are singletons, and it can be converted into any of the simpler classical rep-
resentations such as a fuzzy, possibilistic or rough partition for display and interpretation
(Denoeux and Kanjanatarakul 2016). Evidential clustering algorithms include the Eviden-
tial c-Means (ECM) algorithm (Masson and Denoeux 2008), a prototype-based procedure in
the k-means family, and EVCLUS (Denœux and Masson 2004; Denœux, Sriboonchitta, and
Kanjanatarakul 2016), an algorithm inspired by multidimensional scaling (Borg and Groe-
nen 1997) and applicable to non-metric proximity data. Until recently, there was no publicly
available software tool for evidential clustering. The R package evclust described in this paper
fills this gap by proposing an implementation of the main evidential clustering available so
far, as well as functions for displaying, evaluating and exploiting credal partitions.
The rest of this paper is organized as follows. The needed notions related to DS theory and
the main concepts underlying evidential clustering are first introduced in Section 2. The
main algorithms implemented in evclust are then described in Section 3, and the application
of these algorithms to various clustering problems is illustrated in Section 4. Finally, Section
5 summarizes the paper.

2. Evidential Clustering
Evidential clustering is based on the representation of cluster membership uncertainty using
the theory of belief functions. We first recall elements of this theory in Section 2.1. We
then introduce the notion of credal partition and its representation within package evclust in
Section 2.2.

2.1. Theory of Belief Functions

We start with the consideration of some question Q, which has one and only answer among
a finite set of possibilities Ω = {ω1, . . . , ωc} (called the frame of discernment). We assume
that any evidence about Q can be represented by a mass function on Ω, defined as a mapping
from the power set 2Ω to the interval [0, 1], such that

∑
A⊆Ωm(A) = 1. Each subset A of

Ω such that m(A) > 0 is called a focal set of m. Each mass m(A) represents the degree to
which the evidence supports A, without supporting any strict subset of A (Shafer 1976). A

Thierry Denœux 3

mass function m is said to be logical if it has only one focal set, consonant of its focal sets are
nested (i.e., for any two focal sets A and B, we have either A ⊆ B or B ⊆ A), and Bayesian
if its focal sets are singletons. A mass function that is both logical and Bayesian has only one
singleton focal set: it is said to be certain. If Ω is the only focal set, mass function m is said
to be vacuous and it represents total ignorance.

Belief and plausibility functions. Whereas a probability mass function induces a proba-
bility measure, a DS mass function induces two dual nonadditive measures: a belief function,
defined as

Bel(A) =
∑
∅6=B⊆A

m(B) (1)

for all A ⊆ Ω and a plausibility function defined as

Pl(A) =
∑

B∩A 6=∅
m(B). (2)

These two functions are linked by the relation Pl(A) = Bel(Ω)−Bel(A), for all A ⊆ Ω. The
quantity Bel(A) is a measure of total support for A (taking into account the support given
to its subsets), while Bel(Ω)− Pl(A) = Bel(A) is a measure of support for the complement
A of A, so that Pl(A) can be seen as a measure of lack of support for A. The function
pl : Ω → [0, 1] that maps each element ω of Ω to its plausibility pl(ω) = Pl({ω}) is called
the contour function associated to m. When m is consonant, the whole plausibility function
can be recovered from pl as Pl(A) = maxω∈Ω pl(ω). Function pl is then called a possibility
distribution (Zadeh 1978).

Conjunctive sum and degree of conflict. Let m1 and m2 be two mass functions defined
on the same frame Ω. Their conjunctive sum (Smets and Kennes 1994) m1 ∩m2 is the mass
function defined as

(m1 ∩m2)(A) =
∑

B∩C=A
m1(B)m2(C) (3)

for all subset A ⊆ Ω. The quantity (m1 ∩ m2)(∅) is called degree of conflict (Shafer 1976)
between m1 and m2 and it is denoted as κ(m1,m2). When m1 and m2 represent two inde-
pendent pieces of evidence pertaining to the same question, κ(m1,m2) can be interpreted as
a measure of conflict between these two pieces of evidence (Shafer 1976). In contrast, when
m1 and m2 represent independent pieces of evidence about two distinct questions Q1 and Q2
with the same frame of discernment Ω, 1− κ(m1,m2) can be given a different interpretation
as the plausibility that the true answers to Q1 and Q2 are identical, as shown by Denœux
and Masson (2004) (see Section 2.2 below).

Distance measures. The degree of conflict measures the disagreement between two mass
functions, but it does not measure their dissimilarity. In particular, the degree of conflict
κ(m,m) between a mass function and itself is usually strictly positive. Several distance
measures for belief functions have been proposed (Jousselme and Maupin 2012). One of
the most widely used is Jousselme’s distance (Jousselme, Grenier, and Bossé 2001), which is
defined as follows. Let A1, . . . , AN be the subsets of Ω arranged in some order, with N = 2c.
A mass function m can be represented by an N -vector m = (m(A1), . . . ,m(AN))T . Let J be

4 evclust: An R Package for Evidential Clustering

the positive definite and symmetric N × N matrix whose general term [J]ij is the Jaccard
index between sets Ai and Aj :

[J]ij =

1 if Ai = Aj = ∅
|Ai∩Aj |
|Ai∪Aj | otherwise.

The Jousselme distance between two mass functions m1 and m2 on the same frame Ω is
defined as

dJ(m1,m2) =
[1

2(m1 −m2)TJ(m1 −m2)
]1/2

. (4)

It verifies 0 ≤ dJ(m1,m2) ≤ 1 for all m1 and m2. Another useful distance measure is the
belief distance (Denœux 2001), defined as

dB(m1,m2) = 1
2
∑
A⊆Ω

| Bel1(A)−Bel2(A) |, (5)

where Bel1 and Bel2 are, respectively, the belief functions corresponding to m1 and m2. We
also have 0 ≤ dB(m1,m2) ≤ 1 for all m1 and m2.

Summarization of a mass function. It is often useful to summarize the information
contained in a mass function for communication or display purposes. This can be done in a
number of ways. Here, we mention only two approaches implemented in evclust. The first
approach is to transform a mass function m into a probability distribution. This can be done
using the so-called plausibility transformation method (Voorbraak 1989), which consists in
normalizing the contour function, resulting in the following probability distribution:

pm(ω) = pl(ω)∑c
ω′=1 pl(ω′)

, (6)

for all ω ∈ Ω. Alternatively, the pignistic transformation (Smets and Kennes 1994) distributes
each normalized mass m(A)/(1−m(∅)) uniformly to the elements of A:

betpm(ω) =
∑

{A⊂Ω:ω∈A}

m(A)
(1−m(∅))|A| . (7)

The second approach is to approximate a mass function m as a set. A simple choice is to
select the focal set A∗(m) with the largest mass:

A∗(m) = arg max
B⊆Ω

m(B). (8)

As an alternative with a more decision-theoretic foundation (Denœux 2019), we may consider
the strict interval dominance relation � on Ω defined as follows: ω dominates ω′ (denoted as
ω � ω′) iff Bel({ω}) > Pl({ω′}), i.e., the degree of belief in ω is larger than the degree of
plausibility in ω′ (meaning that ω is unambiguously more supported than ω′). The set A◦(m)
of maximal (i.e., non-dominated) elements of this relation is then defined as

A◦(m) = {ω ∈ Ω : ∀ω′ ∈ ω,Bel({ω′}) ≤ Pl({ω}}. (9)

Thierry Denœux 5

Nonspecificity. Several measures have been proposed to quantify the degree of uncertainty
of a mass function. A mass function basically represents two kinds of uncertainty: impre-
cision and conflict (Klir and Wierman 1999). For instance, the vacuous mass function is
maximally imprecise but not conflicting, whereas the uniform Bayesian mass function (such
that m({ω}) = 1/c for all ω ∈ Ω) has maximal conflict, but no imprecision. Several uncer-
tainty measures quantifying imprecision, conflict, or both have been proposed. As a measure
of imprecision, nonspecificity seems particularly well justified (Klir and Wierman 1999). It is
defined as follows:

N(m) =
∑
∅6=A⊆Ω

m(A) log2 |A|+m(∅) log2 c. (10)

Nonspecifity is maximal for the vacuous mass function verifying m(Ω) = 1, and also for the
mass function m such that m(∅) = 1. The interpretation of the mass assigned to the empty
set in evidential clustering will be addressed in Section 2.2. Masson and Denoeux (2008)
proposed a method to determine the number of clusters in an evidential partition based
on the nonspecificity measure (10), which has been implemented in evclust (see Section 2.2
below).

2.2. Credal Partition

Let O = {o1, . . . , on} be a set of n objects. We assume that each object in O belongs to at most
one cluster in a set Ω = {ω1, . . . , ωc}. Using the formalism recalled in Section 2.1, evidence
about the cluster membership of each object oi can be described by a mass functionmi defined
on the frame on Ω. The n-tupleM = (m1, . . . ,mn) is called an credal (or evidential) partition
of O.

Generality of credal partitions. The notion of evidential partition encompasses most
classical clustering structures (Denoeux and Kanjanatarakul 2016). In particular, when all
mass functionsmi are certain,M becomes equivalent to a hard partition; this case corresponds
to full certainty about the group of each object. When mass functions are Bayesian, M
boils down to a fuzzy partition; the degree of membership uik of object i to group k is
then uik = Beli({ωk}) = Pli({ωk}) ∈ [0, 1] and we have

∑c
k=1 uik = 1. When all mass

functions mi are consonant, they are equivalently represented by their contour functions pli,
and plik = pli(ωk) can be interpreted as the degree of possibility that object oi belongs
to cluster ωk, as computed by possibilistic clustering algorithms. Finally, when each mass
function mi is logical with focal set Ai ⊆ Ω, mi is equivalent to a rough partition: the lower
and upper approximations of cluster ωk are then defined, respectively, as follows:

ωlk := {i ∈ O | Ai = {ωk}} and ωuk := {i ∈ O | ωk ∈ Ai}. (11)

They are interpreted, respectively, as the set of objets surely belong to cluster ωk, and the
set of objects possibly belong to ωk. We then have Beli({ωk}) = I(i ∈ ωlk) and Pli({ωk}) =
I(i ∈ ωuk), where I(·) denotes the indicator function.

Summarization of a credal partition. Being more general than classical clustering struc-
tures, a credal partition can be summarized into any of them. For instance, we obtain a fuzzy
partition by transforming each mass function mi into a probability distribution using (6) or
(7). A hard partition can then be obtained by selecting for each object the cluster with the

6 evclust: An R Package for Evidential Clustering

highest probability. Alternatively, we may summarize the credal partition into a rough par-
tition by approximating each mass function mi by a single set Ai using (8) or (9); the lower
and upper approximations of each cluster can then be computed using (11).

Representation in evclust. Credal partitions are represented in evclust by S3 objects of
class ‘credpart’. Some of the most important attributes of a ‘credpart’ object are the
following:

method: The clustering algorithm used to generate the credal partition;

F: The focal sets, encoded as a matrix of binary numbers with c columns and f rows, where
f is the number of focal sets; the first row must correspond to the empty set;

mass: The mass functions, encoded as a matrix of size n× f ;

pl: The contour functions, encoded as a matrix of size n× c;

p: The probability distributions computed by the plausibility transformation (6), encoded as
a matrix of size n× c;

y.pl: The n-vector of maximum-plausibility class labels;

Y: The maximum-mass sets A∗(mi), encoded as a matrix of 0’s and 1’s of size n× c;

upper.approx: The upper approximation of the credal partition, computed from the sets
Ai = A∗(mi) using (11), provided as a list of length c. The k-th component of the list
is the vector of indices of ωuk .

lower.approx: The lower approximation of the credal partition, computed from the sets
Ai = A∗(mi) using (11), provided a list of length c. The k-th component of the list is
the vector of indices of ωlk.

N: The average nonspecificity of the credal partition, normalized to range between 0 and 1.

A ‘credpart’ object also contains algorithm-specific information such as the prototypes (for
prototype-based algorithms such as ECM) and the value of the criterion for algorithms min-
imizing a cost function. S3 methods summary() and plot() display basic information about
objects of class ‘credpart’.
Consider, for instance, the butterfly data:

R> data(butterfly, package="evclust")
R> x<-butterfly

This is a toy dataset composed of 12 objects with two attributes (Figure 1a). Objects 1 to
11 can be naturally partitioned in two clusters, and object 12 is an outlier.
Function ecm() implements the ECM algorithm (see Section 3.1 below); it returns an object
of class ‘credpart’:

Thierry Denœux 7

−5 0 5 10

−
2

0
2

4
6

8
10

x1

x 2

1

2

3

4

5 6 7

8

9

10

11

12

(a)

2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

objects

m
as

se
s m(∅)

m(ω1)
m(ω2)
m(Ω)

(b)

Figure 1: butterfly dataset (a) and credal partition generated by the ECM algorithm (b).

R> library("evclust")
R> set.seed(210121)
R> clus<-ecm(x, c=2, delta=5, disp=FALSE)
R> summary(clus)

------ Credal partition ------
2 classes,12 objects
Generated by ecm
Focal sets:

[,1] [,2]
[1,] 0 0
[2,] 1 0
[3,] 0 1
[4,] 1 1
Value of the criterion = 35.16
Nonspecificity = 0.29
Prototypes:

[,1] [,2]
[1,] -3.521806 0.005540579
[2,] 3.641838 0.069230936
Number of outliers = 1.00

The mass functions are encoded in a matrix clus$mass of 12 rows and 4 columns, corre-
sponding to the four focal sets in clus$F. They are displayed in Figure 1b. We can see that
Object 6 has a large mass on Ω = {ω1, ω2} because it cannot be unambiguously assigned to
any of the two classes, while Object 12 has a large mass on the empty set, which signals it as
an outlier.

Relational representation. A (hard) partition of a dataset can be represented in two
ways: as a list of object subsets, or as the incidence matrix of the corresponding equivalence

8 evclust: An R Package for Evidential Clustering

relation. Similarly, a credal partition admits a relational representation (Denœux, Li, and
Sriboonchitta 2018), defined as a tuple R = (mij)1≤i<j≤n, in which mij is a so-called pairwise
mass function on the frame Θij = {sij ,¬sij} , where sij denotes the proposition “Objects i
and j belong to the same cluster”, and ¬sij denotes the negation of sij . As proved by Denœux
et al. (2018), paiwise mass function mij can be obtained from mi and mj as

mij(∅) = mi(∅) +mj(∅)−mi(∅)mj(∅) (12a)

mij({sij}) =
c∑

k=1
mi({ωk})mj({ωk}) (12b)

mij({¬sij}) =
∑

A∩B=∅
mi(A)mj(B)−mij(∅) (12c)

mij(Θij) =
∑

A∩B 6=∅
mi(A)mj(B)−mij({sij}). (12d)

The degree of plausibility that objects i and j belong to the same cluster is, thus,

plij(sij) = mij({sij}) +mij(Θij) =
∑

A∩B 6=∅
mi(A)mj(B) = 1− κij , (13)

where κij is the degree of conflict between mass functions mi and mj .
In evclust, function pairwise_mass() takes as input a ‘credpart’ object and returns its rela-
tional representation as a list of three ‘dist’ objects Me, M1 and M0 corresponding, respectively,
to (mij(∅))i<j , (mij({sij}))i<j and (mij({¬sij}))i<j .
The relational representation is useful, in particular, to compare two credal partitions. Denœux
et al. (2018) propose two extensions of the Rand index, a classical measure to compare two
hard partitions: a similarity index, defined as

ρS(M,M′) = 1−
2
∑
i<j d(mij ,m

′
ij)

n(n− 1) , (14)

whereM andM′ are two credal partitions and d denotes either the Jousselme distance (4)
or the belief distance (5), and a consistency index, defined as

ρC(M,M′) = 1−
2
∑
i<j κ(mij ,m

′
ij)

n(n− 1) , (15)

where κ denotes the degree of conflict. In evclust, these two indices are computed by function
credal_RI(), which has three arguments: two relational representation objects P1 and P2,
and type with possible values ‘c’ for ‘consistency’, ‘j’ for Jousselme’s distance, and ‘b’ for
belief distance.

3. Evidential Clustering Algorithms
Table 1 presents an overview of the evidential clustering algorithms implemented in evclust.
Some of these algorithms require attribute data, whereas others can handle proximity data,
i.e., a matrix of dissimilarities, or distances between objects. Naturally, algorithms in the
latter category can also be applied to attribute data after computing a distance matrix.

Thierry Denœux 9

Function Name Inputs
ecm() Evidential c-means attribute data
recm() Relational evidential c-means proximity data
cecm() Constrained evidential c-means attribute data + constraints
bpec() Belief peak evidential clustering attribute data
kevclus() EVCLUS proximity data
kcevclus() CEVCLUS proximity data + constraints
nnevclus() NN-EVCLUS attribute data (+ constraints

+ labels)
bootclus() Bootstrap evidential clustering attribute data
EkNNclus() EK-NNclus attribute data

Table 1: Overview of clustering algorithms in evclust.

Finally, some algorithms can also handle pairwise constraints, or can be trained in supervised
learning mode (with class labels for some objects). These algorithms are reviewed below.

3.1. Evidential c-Means and Variants
Introduced by Masson and Denoeux (2008), the evidential c-means (ECM) algorithm is an
alternating optimization procedure in the same family as the hard and fuzzy c-means al-
gorithms (Bezdek 1981). As these algorithms, ECM represents each cluster ωk ∈ Ω by a
prototype gk ∈ Rp, where p is the dimension of the data. However, a particularity of ECM is
that it also represents each nonempty set of clusters (or meta-cluster) Aj ⊆ Ω by a prototype
gj , defined as the barycenter of the prototypes gk for ωk ∈ Aj :

gj = 1
|Aj |

∑
ωk∈Aj

gk.

Having specified a set F = {A1, . . . , Af} ⊂ 2Ω of f nonempty subsets of Ω, the cost function
of ECM is defined as

JECM(M,G) =
n∑
i=1

f∑
j=1
|Aj |αmβ

ijd
2
ij +

n∑
i=1

δ2mβ
i∅, (16)

whereM = (m1, . . . ,mn) is the credal partition, G is the c × p matrix of prototypes, dij =
‖xi−gj‖ is the Euclidean distance between attribute vector xi and prototype gj ,mij = mi(Aj)
and mi∅ = mi(∅). Parameters α, β and δ control, respectively, the nonspecificity of the credal
partition (larger values of α favor the allocation of mass to smaller focal sets), the “fuzziness”
of the partition (higher values of β favor more uniform allocation of masses to focal sets), and
the proportion of outliers (smaller values of δ result in more outliers). ECM minimizes cost
function JECM(M,G) by alternating two steps:

1. Update ofM for fixed G, as

mij =
|Aj |−α/(β−1)d

−2/(β−1)
ij∑f

k=1 |Ak|−α/(β−1)d
−2/(β−1)
ik + δ−2/(β−1)

, (17)

for i = 1, . . . , n and j = 1, . . . , f , and mi∅ = 1−
∑f
j=1mij for i = 1, . . . , n.

10 evclust: An R Package for Evidential Clustering

2. Update of G for fixedM by solving a linear system of the form HG = B, where B is
a matrix of size c× p and H a matrix of size c× c.

In evclust, ECM is implemented in function ecm():

ecm(x, c, g0 = NULL, type = "full", pairs = NULL, Omega = TRUE,
ntrials = 1, alpha = 1, beta = 2, delta = 10, epsi = 0.001, disp = TRUE)

where the arguments without a default value are the input data matrix x (of size n×p, where
p is the number of attributes) and the number c of clusters. Argument g0 is an optional
matrix of initial prototypes. Argument type specifies the focal sets: its values are "full" for
all the subsets of Ω, "simple" for the empty set, the singletons and Ω, and "pairs" for the
empty set, the singletons, Ω and either all pairs, or only the pairs specified by pairs. Setting
Omega = FALSE removes Ω from the list of focal sets. The meaning of the other arguments is
either obvious or can be found using ?ecm. The output is a ‘credpart’ object encoding the
computed evidential partition.

RECM. The relational evidential c-means (RECM) algorithm is a relational version of
ECM, which takes as input a distance matrix instead of a matrix of attribute values (Masson
and Denœux 2009). The convergence of the algorithm is guaranteed if the distances are
Euclidean, but the algorithm will often converge even if they are not. Function recm() has
the same arguments as ecm(), except that the first argument is a distance matrix D instead
of an object-attributes matrix x. Also, the algorithm can be initialized with a matrix m0 of
masses, instead of the matrix g0 of initial prototypes.

CECM. The constrained Evidential c-Means (CECM) algorithm (Antoine, Quost, Masson,
and Denoeux 2012) is another variant of ECM that takes as inputs not only attribute data,
but also pairwise constraints specifying that some pairs of object belong to the same cluster
(must-link constraint) or belong to different clusters (cannot-link constraint). The CECM
algorithm minimizes the following penalized cost function:

JCECM(M,G) = (1− ξ)JECM(M,G)+

ξ

|ML|+ |CL|

 ∑
(xi,xj)∈ML

plij(¬sij) +
∑

(xi,xj)∈CL
plij(sij)

 , (18)

where ML and CL are, respectively, the sets of must-link and cannot-link constraints, plij is
the contour function corresponding to pairwise mass function mij defined by (12), and ξ is a
penalization coefficient. As ECM, CECM uses an alternating optimization scheme, minimiz-
ing the cost function with respect toM and G in turn. Here, the former optimization problem
does not admit a closed-form solution and needs to be solved by a quadratic programming
procedure.
A version of CECM uses an adaptive metric to account for elliposidal clusters, in a similar way
as the Gustafson-Kessel fuzzy clustering algorithm (Gustafson and Kessel 1979). A symmetric
and positive definite matrix Sk is defined for each cluster ωk, and the matrix Sj of each meta-
cluster Aj ⊆ Ω is defined as the average of matrices Sk for ωk ∈ Aj . The squared distance dij

Thierry Denœux 11

between xi and the center gj of meta-cluster Aj is then defined as d2
ij = (x−gj)TSj(x−gj).

The cost function (18) is then minimized with respect toM, V and the matrices Sk.
The CECM algorithm is implemented in function cecm(), which has the same arguments as
ecm(), and four additional arguments: ML, CL, xi (with obvious meanings), and distance
with possible values 0 for Euclidean distance and 1 for adaptive metric.

BPEC. The belief peak evidential clustering (BPEC) method (Su and Denœux 2019) is
similar to ECM, except that the cluster centers are selected as the “belief peaks” in a two
dimensional “δ-Bel” graph, defined as points of high density (estimated by a K nearest
neighbor approach) and located far from points with a higher density. The ECM algorithm
is then run, keeping the cluster centers constant. In evclust, function delta_Bel() takes as
input the data matrix x, the number K or neighbors and a scale parameter q. It draws the
δ-Bel graph, and the user is invited to manually select the lower right corner of a rectangle
containing the belief peaks, which are then returned as output. Function bpec(), whose
syntax is similar to that of ecm() can then be run with the belief peaks as fixed cluster
centers.

3.2. EVCLUS and Variants

The EVCLUS algorithm, introduced by Denœux and Masson (2004) and improved by Denœux
et al. (2016), is another evidential clustering algorithm that takes inspiration from multidi-
mensional scaling (Borg and Groenen 1997). It takes as input a symmetric n×n dissimilarity
matrix D = (δij), where δij denotes the dissimilarity between objects oi and oj . Dissimilari-
ties may be computed from attribute data, or they may be directly available. They need not
satisfy the axioms of a distance such as the triangular inequality.
The fundamental assumption underlying EVCLUS is that the more similar are two objects,
the more plausible it is that they belong to the same cluster. From (13), the plausibility
plij(sij) that two objects oi and oj belong to the same cluster is equal to 1− κij , where κij is
the degree of conflict between mi and mj . The credal partitionM should thus be determined
in such a way that similar objects have mass functions mi and mj with low degree of conflict,
whereas highly dissimilar objects are assigned highly conflicting mass functions. This can be
achieved by minimizing the following loss function:

L(M) = 2
n(n− 1)

∑
i<j

(κij − ϕ(δij))2 , (19)

where ϕ is a fixed nondecreasing mapping from [0,+∞) to [0, 1], such as ϕ(δ) = 1 −
exp(−ηδ2/d2

0). Setting η to − logα, d0 is the threshold such that two objects oi and oj with
dissimilarity larger than d0 have a plausibility at least α of belonging to different clusters.
Typically, α = 0.05 and d0 is set to some quantile of the dissimilarities δij .
Computing the loss function (19) requires to store the whole dissimilarity matrix, which may
not be feasible for large datasets. Denœux et al. (2016) showed that it is sufficient to minimize
the sum of squared errors for a subset of k object pairs. This is achieved by changing the loss
function (19) to

L(M; J) = 1
nk

n∑
i=1

∑
j∈J(i)

(κij − ϕ(δij))2 , (20)

12 evclust: An R Package for Evidential Clustering

where J(i) is a randomly selected subset of {1, . . . , n} \ {i} with cardinality k ≤ n− 1.
In evclust, EVCLUS is implemented in function kevclus():

kevclus(x, k=n-1, D, J, c, type='simple', pairs=NULL, m0=NULL, ntrials=1,
disp=TRUE, maxit=1000, epsi=1e-5, d0=quantile(D,0.9), tr=FALSE,
change.order=FALSE, norm=1)

where most arguments have obvious meanings. If an object-attribute data matrix x of size
n × p is supplied, then the dissimilarities are computed as the Euclidean distances between
the rows of x. Otherwise, a dissimilarity matrix D must be supplied. If D is not square and has
size n× k, then a matrix J of the same size containing the indices to be used for computing
the loss function (20) must be provided. Arguments type and pairs have the same meaning
as in ecm(). The meaning of the other arguments can be found using ?kevclus. The output
is a ‘credpart’ object encoding the computed evidential partition. It contains, in addition
to the usual attributes of a ‘credpart’ object, a matrix Kmat of degrees of conflict (of size
n× k) and a matrix D of the same size containing the transformed dissimilarities ϕ(δij).

CEVCLUS. CEVCLUS is a constrained version of EVCLUS that uses must-link and
cannot-link constraints (Antoine, Quost, Masson, and Denoeux 2014; Li, Li, and Denœux
2018). It minimizes the following loss function

LC(M; J) = L(M; J) + ξ

2(|ML|+ |CL|)

 ∑
(i,j)∈ML

plij(¬sij) + 1− plij(sij)] +

∑
(i,j)∈CL

[plij(sij) + 1− plij(¬sij)]

 (21)

where, as before, ξ is a penalization coefficient, and ML and CL denote, respectively, the sets
of must-link and cannot-link constraints. In evclust, the CEVCLUS algorithm is implemented
in function kcevclus(), which has the same arguments as kevclus(), and three additional
arguments: ML, CL, and xi.

NN-EVCLUS. As opposed to ECM reviewed in Section 3.1, the EVCLUS algorithm does
not build a compact representation of clusters as a collection of prototypes, but it learns an
evidential partition of the n objects directly. If each mass function is constrained to have f
focal sets, the number of free parameters is, thus, n(f − 1), i.e., it grows linearly with the
number of objects. This characteristic makes EVCLUS impractical for clustering very large
datasets. Also, the algorithm learns an evidential partition of a given dataset, but it does
not allow us to extrapolate beyond the learning set and make predictions for new objects.
The NN-EVCLUS algorithm addresses these issues by learning a mapping from attribute
vectors to mass functions using a multilayer feedforward neural network (Denœux 2021). The
network is trained in an unsupervised way by minimizing a loss function similar to (19) or
(20) with respect to the network weights. To enhance its robustness to outliers, the learning
algorithm can also use the output of a one-class support vector machine such as implemented
in the R package kernlab (Karatzoglou, Smola, Hornik, and Zeileis 2004); the mass functions
computed by the neural network are then transformed so that outliers receive a large mass on

Thierry Denœux 13

the empty set. The network can also be trained in semi-supervised mode using either must-
link and cannot-link constraints (in which case a loss function similar to (21) is minimized),
or using class labels for some learning instances. In the latter case, we assume that we have
ns labeled attribute vectors {(xi, yi), i ∈ Is}, where Is ⊆ {1, . . . , n} and yi ∈ Ω is the class
label of object i, and the following term is added to the loss function:

ν

ns

∑
i∈Is

c∑
l=1

(plil − yil)2. (22)

where yil = I(yi = ωl), plil = pli(ωl), pli is the contour function corresponding to mi, and ν
is a penalization coefficient.
The function nnevclus() implementing the NN-EVCLUS algorithm has the following syntax:

nnevclus(x, k=n-1, D=NULL, J=NULL, c, type='simple', n_H, ntrials=1,
d0=quantile(D,0.9), fhat=NULL, lambda=0,y=NULL, Is=NULL, nu=0,
ML=NULL, CL=NULL, xi=0, tr=FALSE, options=c(1, 1000, 1e-4, 10),
param0=list(U0=NULL, V0=NULL, W0=NULL, beta0=NULL))

Function nnevclus() shares most arguments with kevclus() and kcevclus(). Specific
arguments include: n_H, which specifies the architecture of the neural network: it is either
a scalar equal to the number of units in a single hidden layer, or a two-dimensional vector
containing the sizes of two hidden layers; fhat is an optional vector of one-class support
vector machine (SVM) outputs; lambda is a weight decay (L2 regularization) coefficient; y
is a vector of class labels for some instances, Is is a vector of corresponding indices, and nu
is the penalization coefficient of the supervised part of the loss function; param0 is a list of
initial network parameters. More details can be found using the instruction ?nnevclus.
Function nnevclus() uses a batch learning algorithm, which compute the gradient of the
average loss at each iteration. For large datasets, a stochastic gradient descent (SGD) algo-
rithm is more suitable. Function nnevclus_mb() implements RMSprop, an accelerated SGD
algorithm (Goodfellow, Bengio, and Courville 2016). Function nnevclus_mb() is called as
follows:

nnevclus_mb(x, foncD=function(x) as.matrix(dist(x)), c, type='simple', n_H,
nbatch=10, alpha0=0.9, fhat=NULL, lambda=0, y=NULL, Is=NULL, nu=0,
disp=TRUE, options=list(Niter=1000, epsi=0.001, rho=0.9, delta=1e-8,
Dtmax=100, print=5), param0=list(V0=NULL, W0=NULL, beta0=NULL))

where foncD is a function that computes distances, nbatch is the number of mini-batches
used by the SGD algorithm, alpha0 is the order of the quantile used to compute parameter
d0, and epsi, rho and delta are the usual parameters of RMSprop. Currently, the net-
work architecture is limited to one hidden layer, and semi-supervised learning with pairwise
constraints has not been implemented.

3.3. Bootclus

The Bootclus algorithm uses the bootstrap and a model-based clustering approach to con-
struct a credal partition that reflects second-order cluster-membership uncertainty (Denœux
2020). The method can be summarized as follows:

14 evclust: An R Package for Evidential Clustering

1. A finite mixture model, typically a Gaussian mixture model (GMM) is postulated;

2. B bootstrap samples are generated;

3. Parameter estimates are computed from each bootstrap sample using the expectation-
maximization (EM) algorithm;

4. Let Pij denote the probability that objects i and j belong to the same class. A bootstrap
percentile confidence interval [P lij , P uij] at level 1−α on Pij is computed for each object
pair (i, j);

5. A normalized credal partition M = (m1, . . . ,mn) (such that mi(∅) = 0 for all i) is
obtained as the solution of the following minimization problem:

min
M

J(M) =
∑
i<j

(
mij({sij})− P lij

)2
+
(
mij({¬sij})− (1− P uij)

)2
,

where mij({sij}) and mij({¬sij}) are computed using, respectively, Eqs. (12b) and
(12c).

The resulting credal partition is such that, for any pair (i, j) of objects, Belij({sij}) ≈ P lij and
Plij({sij}) ≈ P uij , where Belij and Plij are, respectively, the belief and plausibility functions
corresponding to mij . As a result, the intervals [Belij({sij}), P lij({sij})] are approximate
1 − α confidence intervals on the pairwise probabilities: the credal partition is said to be
calibrated.
In evclus, the Bootclus algorithm is implemented in function bootclus():

bootclus(x, conf=0.90, B=500, param=list(G=NULL), type="pairs", Omega=FALSE)

where x is the object-attribute matrix of size n× p, conf is the confidence degree 1− α and
B is the number of bootstrap samples. Function bootclus() calls functions Mclust() and
MclustBootstrap() of package mclust for model-based clustering with GMMs (Scrucca et al.
2016). The argument param contains a list of arguments passed to Mclust(). Arguments
type and Omega have the same meanings as the corresponding arguments of function ecm()
(see Section 3.1).
The output of function bootclus() is a list containing the credal partition (a ‘credpart’
object), the mixture model estimation results provided as an ‘Mclust’ object by function
Mclust(), as well as the confidence intervals [P lij , P uij] and the approximating pairwise belief
and plausibility degrees.

3.4. EK-NNclus

Many clustering algorithms are based on the so-called “decision-directed” approach, in which
an initial classifier is used to label the learning instances; the classifier is then updated, and the
process is repeated until no changes occur in the labels. For instance, the c-means algorithm
is based on this principle: in that case, the nearest-prototype classifier is used to label the
samples, and it is updated by recomputing the prototypes as the cluster centers.
EK-NNclus (Denœux, Kanjanatarakul, and Sriboonchitta 2015) is a decision-directed clus-
tering algorithm in which the base classifier is the evidential K nearest neighbors (E-KNN)

Thierry Denœux 15

rule (Denœux 1995). Given a labeled training set T = {(x1, y1), . . . , (xn, yn)}, where yi ∈ Ω
is the class label of instance i, the E-KNN rule classifies a new instance x using the subset
NK(x) ⊂ T of its K nearest neighbors in T . For each neighbor xi ∈ NK(x) a mass function
mi on Ω is computed as

mi({ωk}) = ϕ(‖x− xi‖)I(yi = ωk), k = 1, . . . , c
mi(Ω) = 1− ϕ(‖x− xi‖),

where I(·) is the indicator function and ϕ(·) is a decreasing mapping from [0,+∞) to [0, 1].
Typically, ϕ(d) = exp(−γdb), where γ and b are positive parameters. The K mass functions
mi corresponding to the K nearest neighbors are then combined using the conjunctive sum
operation (3) and renormalized, an operation called Dempster’s rule (Shafer 1976).
The EK-NNclus algorithm uses the above EK-NN rule for clustering. The algorithm is initial-
ized by assigning each object a random label. If the dataset is not too large, we can initially
assume that there are as many clusters as objects and each cluster contains exactly one object.
Objects are then considered in random order and classified from their K nearest neighbors
using the EK-NN rule. The algorithm stops when the class labels have not changed during
the last iteration through the whole training set. By noticing the similarity with Hopfield
neural networks (Hopfield 1982), Denœux et al. (2015) showed that this algorithm converges
in a finite number of iterations. After convergence, we can compute a combined mass function
for each object, which gives us a normalized credal partition. As mass functions in this credal
partition are obtained by combining K mass functions using Dempster’s rule, they are often
very specific, with most of the mass concentrated on singletons. However, outlier are charac-
terized by mass functions with a large mass on Ω. We also note that this method does not
require the user to specify the number of clusters: starting with an arbitrarily large number
of clusters, the algorithm usually converges to a meaningful partition.
In evclust, the EK-NNclus algorithm is implemented in function EkNNclus()

EkNNclus(x, D, K, y0, ntrials=1, q=0.5, b=1, disp=TRUE, tr=FALSE)

where x is the n× p object-attributes data matrix, D is distance matrix (required only if x is
not provided), K is the number of neighbors, y0 is the n-vector of initial labels, q is a number
in (0, 1) such that parameter γ is set to the inverse of the q-quantile of distances between any
attribute vector and its K nearest neighbors. Arguments disp and tr control, respectively,
the display and storage of intermediate results. The output is a ‘credpart’ object encoding
the final credal partition.

4. Illustrations
In this section, we demonstrate the use of the main functions in the evclus package through
the analysis of some datasets.

4.1. fourclass dataset

The fourclass dataset is a synthetic dataset with two attributes and four classes of 100
points each, generated from a multivariate t distribution with five degrees of freedom:

16 evclust: An R Package for Evidential Clustering

0 5 10

−
4

−
2

0
2

4
6

8

x1

x 2

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Shepard diagram

transformed dissimilarities
de

gr
ee

s
of

 c
on

fli
ct

(b)

Figure 2: Plot of the fourclass dataset with the credal partition generated by kevclus()
(a) and plot of the degrees of conflict κij vs. the transformed dissimilarities ϕ(δij) (b).

R> data(fourclass, package="evclust")
R> x<-fourclass[,1:2]
R> y<-fourclass[,3]

EVCLUS. Calling function kevclus with the argument c=4 creates an object clus.evclus
of class ‘credpart’:

R> clus.evclus<-kevclus(x, c=4, disp=FALSE)

Figure 2 contains the graphs generated by S3 method plot() applied to the credal partition
clus.evclus:

plot(clus.evclus, x, plot_Shepard=TRUE)

Figure 2a is a scatterplot of the data together with a view of the credal partition. The solid
and broken lines are the convex hulls of, respectively, the lower and upper approximations
of the four clusters. The symbol and color of each point indicate the maximum-plausibility
cluster, and the size of the symbols is proportional to the plausibility of that cluster. Outliers
are indicated by circles. Figure 2b is a “Shepard diagram” showing the degrees of conflict
κij (vertical axis) vs. the transformed dissimilarities ϕ(δij) (horizontal axis). This diagram
reflects, in some way, the quality of the credal partition.

ECM The ECM algorithm can be applied to the same data by calling function ecm() as:

R> clus.ecm<-ecm(x, c=4, type = "pairs", delta=3.5, disp=FALSE, Omega=FALSE)

Thierry Denœux 17

0 5 10

−
4

−
2

0
2

4
6

8

x1

x 2

(a)

0 5 10

−
4

−
2

0
2

4
6

8

x1

x 2

(b)

Figure 3: Plots of the fourclass dataset with the credal partitions generated by ecm() with
α = 1 (a) and α = 3 (b). The prototypes are displayed as filled circles.

We note that, in this call to function ecm(), we have restricted the focal sets to the empty
set, singletons, and pairs (thus excluding triplets and Ω). The delta argument determines
the proportion of outliers. The resulting credal partition is shown in Figure 3a. We notice
that the obtained credal partition is more imprecise than that generated by EVCLUS, in the
sense that more points are located in the boundary areas of the four clusters (defined as the
set difference between the upper and lower approximations). However, we can obtain a more
precise credal partition by increasing the value of parameter α in cost function (16) from the
default value α = 1 to α = 3, as

R> clus.ecm1<-ecm(x, c=4, type = "pairs", delta=3.5, a=3, disp=FALSE,
+ Omega=FALSE)

By comparing Figures 3b and 2a, we can see that the credal partition generated by ECM is
then very similar to that computed by EVCLUS.

NN-EVCLUS. Let us now consider the application of NN-EVCLUS to the same data. We
may first train a one-class SVM using function ksvm() of package kernlab:

R> library(kernlab)
R> svmfit<-ksvm(~., data=data.frame(x), type="one-svc", kernel="rbfdot",
+ nu=0.2, kpar=list(sigma=0.2))
R> fhat<-predict(svmfit, newdata=x, type="decision")

Vector fhat containing the one-class SVM output is then provided as input to function
nnevclus() to train a neural network with one hidden layer of 20 units:

18 evclust: An R Package for Evidential Clustering

0 5 10

−
4

−
2

0
2

4
6

8

x1

x 2

(a)

0 100 200 300 400

0.
01

0.
03

0.
05

0.
07

iteration
lo

ss

(b)

Figure 4: Plots of the fourclass dataset with the credal partitions generated by nnevclus()
(a) and evolution of the loss as function of the number of iterations (b).

R> clus.nn<-nnevclus(x, k=100, c=4, n_H=20, type='pairs', fhat=fhat,
+ options=c(0,1000,1e-4,10), tr=TRUE)

By setting the argument k to 100, we only use the distances from each input vector to 100
randomly selected input vectors, which speeds up the calculations. The obtained credal
partition displayed in Figure 4a is similar to those generated by EVCLUS and ECM. Figure
4b shows the decrease of the loss (20) as a function of the number of iterations.
An advantage of NN-EVCLUS is the possibility to predict the cluster-membership of new
data. The S3 method predict() for ‘credpart’ objects takes as input a credal partition of
class ‘credpart’ generated by NN-EVCLUS or ECM as well as a new data matrix, and outputs
a credal partition for the new data. The following code computes an array PL containing the
plausibilities of the four clusters at the nodes of a 50×50 grid in the two-dimensional attribute
space:

R> nx <- 50
R> xmin <- apply(x,2,min) - 2
R> xmax <- apply(x,2,max) + 2
R> xx <- seq(xmin[1], xmax[1], (xmax[1] - xmin[1]) / (nx-1))
R> yy <- seq(xmin[2], xmax[2], (xmax[2] - xmin[2]) / (nx-1))
R> PL <- array(0, c(nx, nx, 4))
R> for(i in 1:nx){
+ X1 <- matrix(c(rep(xx[i],nx),yy),nx,2)
+ x1 <- data.frame(X1)
+ names(x1) <- c("x1","x2")
+ fhat <- predict(svmfit, newdata=x1, type="decision")

Thierry Denœux 19

−5 0 5 10

−
5

0
5

10

pl(ω1)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0
.7

 0.8

 0.9

−5 0 5 10

−
5

0
5

10

pl(ω2)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0
.7

 0
.8

−5 0 5 10

−
5

0
5

10

pl(ω3)

 0.1

 0.2

 0.3 0.4

 0.5 0.6

 0
.7

 0.8

−5 0 5 10

−
5

0
5

10

pl(ω4)

 0.1

 0.2

 0.3 0.4

 0.5 0.
6

 0.7

 0
.8

Figure 5: Contour plots of the plausibilities of the four clusters computed from the fourclass
dataset using the NN-EVCLUS algorithm.

+ clus.t <- predict(clus.nn, X1, fhat)
+ PL[i,,] <- clus.t$pl
+ }

The corresponding contour plots are shown in Figure 5.

Comparison of credal partitions. The quality of a credal partition can be assessed by
its consistency with the true partition (when it is known) and by its nonspecificity. Function
create_hard_credpart() transforms a vector of class labels encoding a hard partition into
a ‘credpart’ object, and function pairwise_mass() computes the relational representation

20 evclust: An R Package for Evidential Clustering

of a credal partition (defined in Section 2.2). Function nonspecificity() computes the
average nonspecifity of pairwise mass functions mij in the relational representation of a credal
partition. The following piece of code computes the consistency degrees and nonspecificities
of the credal partitions generated by EVCLUS, ECM and NN-EVCLUS:

R> Ptrue <- pairwise_mass(create_hard_credpart(y))
R> P_evclus <- pairwise_mass(clus.evclus)
R> RI_evclus <- credal_RI(Ptrue,P_evclus,type="c")
R> NS_evclus <- nonspecificity(P_evclus)
R> P_ecm <- pairwise_mass(clus.ecm)
R> RI_ecm <- credal_RI(Ptrue,P_ecm,type="c")
R> NS_ecm <- nonspecificity(P_ecm)
R> P_nn <- pairwise_mass(clus.nn)
R> RI_nn <- credal_RI(Ptrue,P_nn,type="c")
R> NS_nn <- nonspecificity(P_nn)
R> print(c(RI_evclus, RI_ecm, RI_nn))

[1] 0.8015894 0.7948521 0.8233088

R> print(c(NS_evclus, NS_ecm, NS_nn))

[1] 0.2690493 0.4504993 0.4241045

We can see that the three credal partitions have similar consistency degrees. The credal
partition generated by EVCLUS is more specific because, by default, masses are assigned to
the empty set, singletons and Ω (and to no strict subset of Ω of cardinality greater than 1).

4.2. S2 dataset

With c clusters, the number of focal sets of the mass functions in a credal partition can be
as high as 2c, which is not tractable for large c. If we allow masses to be assigned to pairs of
clusters, as suggested by Denœux and Masson (2004) and Masson and Denoeux (2008), the
number of focal sets becomes proportional to c2, which is manageable for moderate values of
c (say, until 10), but is still impractical when c is very large. It is clear, however, that only
the pairs of overlapping clusters will be assigned some mass during the learning process.
To determine which pairs of clusters can potentially become focal sets, a two-step approach
was proposed by Denœux et al. (2016):

1. In the first step, a credal clustering algorithm is run with focal sets of cardinalities 0, 1
and c. A credal partitionM0 is obtained. The similarity between each pair of clusters
(ωj , ω`) is measured by

S(j, `) =
n∑
i=1

plijpli`, (23)

where plij and pli` are the normalized plausibilities that object i belongs, respectively,
to clusters j and `. We then determine the set Pk of pairs {ωj , ω`} that are mutual k
nearest neighbors, according to similarity measure S.

Thierry Denœux 21

2. In the second step, the credal clustering algorithm is initialized with the previous credal
partitionM0, but adding as focal sets the pairs in Pk; it is run again until convergence.

To illustrate this methodology, we consider the S2 dataset (Fränti and Sieranoja 2018) com-
posed of n = 5000 two-dimensional vectors grouped in 15 Gaussian clusters:

R> data(s2, package="evclust")
R> n <- nrow(s2)

We first use the EK-NNclus algorithm with K = 200 neighbors, starting from five different
initial random hard partitions in 500 clusters:

R> clus.eknnclus <- EkNNclus(s2, K=200, y0=sample(500,n,replace=TRUE),
+ ntrials=5, q=0.9, disp=FALSE)
R> print(clus.eknnclus$N)

[1] 5.810961e-13

The resulting partition is close to a hard partition, with a mean nonspecificity close to zero. It
is plotted in Figure 6a. We can see that the algorithm has correctly identified the 15 clusters.
This credal partition can be used to initialize the EVCLUS algorithm. We first compute the
Euclidean distances between each input vector and k=100 random input vectors:

R> Dist <- createD(s2,k=100)

and use these distances as inputs to function kevclus(), with focal sets restricted to the
empty set, singletons and Ω:

R> clus.evclus1 <- kevclus(D=Dist$D, c=15, J=Dist$J, type='simple',
+ d0=quantile(Dist$D,0.25), m0=clus.eknnclus$mass, maxit=100, epsi=1e-4,
+ disp=FALSE)

Function createPairs() then finds the mutual k nearest neighbor pairs of clusters; here,
setting k=2, we get 11 cluster pairs:

R> P <- createPairs(clus.evclus1, k=2)
R> print(t(P$pairs))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
row 3 1 4 3 2 10 8 9 11 6 9
col 4 5 5 7 10 11 12 12 13 14 15

Finally, we run the EVCLUS algorithm a second time, starting with the previous credal
partition P$m0 and adding the pairs of clusters P$pairs found in the previous step as focal
sets:

R> clus.evclus2 <- kevclus(D=Dist$D, c=15, J=Dist$J, type='pairs',
+ pairs=P$pairs, d0=quantile(Dist$D,0.25), m0=P$m0, maxit=100, epsi=1e-4,
+ disp=FALSE)

22 evclust: An R Package for Evidential Clustering

−2 −1 0 1 2

−
2

−
1

0
1

2

x1

x 2

(a)

−2 −1 0 1 2

−
2

−
1

0
1

2

x1

x 2

(b)

Figure 6: Plots of the S2 dataset with the credal partitions generated by EkNNclus() (a) and
kevclus() with selected pairs of clusters as focal sets (b).

The final credal partition is displayed in Figure 6b. It is clearly more informative than the
initial partition found by EK-NNclus, as overlapping regions between clusters are now clearly
identified.

4.3. Iris dataset

To illustrate the Bootclus algorithm, we consider the famous Iris dataset, which contains
the measurements in centimeters of sepal and petal length and width for 50 flowers from each
of three species of iris: Iris setosa, versicolor, and virginica:

R> data("iris", package="datasets")
R> x<-iris[,1:4]
R> Y<-as.numeric(iris[,5])
R> n<-nrow(x)

The Bootclus algorithm can be applied to these data by running function bootclus():

R> fit <- bootclus(x, param=list(G = 3))

where the argument G = 3 is passed to function Mclust() from package mclust called in-
ternally by bootclus(). This function searches for the best GMM out of 14 models with
different contraints on the cluster volumes, shapes and orientations. The selected model can
be displayed as

R> print(fit$clus$modelName)

[1] "VEV"

Thierry Denœux 23

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lower bound of 90% CI

B
el

ie
f

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Upper bound of 90% CI
P

la
us

ib
ili

ty

(b)

Figure 7: Approximation of confidence intervals by belief-plausibility intervals for the Iris data.
(a) Lower bound P lij of the 90% confidence interval on pairwise probabilties Pij (x-axis) vs.
belief degree Belij({sij}) (y-axis); (b) Upper bound P uij of the 90% confidence interval on Pij
(x-axis) vs. plausibility degree Plij({sij}) (y-axis).

It is model “VEV” corresponding to ellipsoidal clusters with equal shape. The default confi-
dence level of the bootstrap percentile confidence intervals is 1 − α = 0.9 (See Section 3.3).
By default, the focal sets are the singletons and the pairs; the computed mass functions thus
have f = 6 focal sets in this case. Figure 7 displays the pairwise belief and plausibility de-
grees vs. the lower and upper bounds of the 90% bootstrap percentile confidence intervals.
We can see that the confidence bounds are quite well approximated by the belief-plausibility
intervals. Some belief values are smaller than the lower bounds of the confidence intervals
(Figure 7a), which suggests that the coverage probability of the belief-plausibility intervals is
actually larger than the 90% specified level.
Figure 8 shows the obtained credal partition encoded in fit$Clus. We can see that the
setosa group, which is well separated from the other two, has a precise representation (for
that cluster, the lower and upper approximations are equal). In contrast, the other two groups
are overlapping, and assigning some instances to only one group would be highly uncertain.
Some instances are thus assigned to the meta-cluster formed by the union of the versicolor
and virginica groups, and belong to the upper approximations of these two clusters.
The following confusion matrix shows that five objects from the versicolor group are misclas-
sified into the virginica group in the initial partition created by mclust():

R> table(iris[,5],fit$clus$classification)

1 2 3
setosa 50 0 0
versicolor 0 45 5

24 evclust: An R Package for Evidential Clustering

Sepal.Length

2.
0

3.
0

4.
0

4.5 6.0 7.5

0.
5

1.
5

2.
5

2.0 3.0 4.0

Sepal.Width

Petal.Length

1 3 5 7

0.5 1.5 2.5

4.
5

6.
0

7.
5

1
3

5
7

Petal.Width

Figure 8: Plots of the Iris dataset with the credal partitions generated by bootclus(). The
true groups are represented by different symbols (o: setosa; triangle: versicolor; +: virginica),
and the maximum-plausibility groups are represented by different colors. The solid and broken
lines represent, respectively, the convex hulls of the lower and upper approximation of each
cluster.

virginica 0 0 50

In contrast, after summarizing the credal partition into a rough partition by approximating
each mass function by a set using (8), nine instances from the versicolor class and one instance
from the virginica class are assigned to the meta-cluster formed by the union of the versicolor
and virginica groups, and ony one instance from the versicolor is incorrectly assigned to the
virginica group:

Thierry Denœux 25

R> rough_partition<-apply(fit$Clus$Y,1,paste,collapse="")
R> table(iris[,5],rough_partition)

rough_partition
001 010 100 101

setosa 0 50 0 0
versicolor 40 0 1 9
virginica 0 0 49 1

(In the above table, sets are represented in binary notation, i.e., ‘100’ represents {ω1}, ‘101’
represents {ω1, ω3}, etc.).

4.4. Bananas dataset

Discovering clusters with complex shapes is a challenging task for clustering algorithms. For
instance, function bananas() generates two banana-shaped clusters:

R> data<-bananas(300)
R> x<-data$x
R> y<-data$y

Clustering algorithms such as ECM or EVCLUS do not perform well on these data, as they
are implicitly based on the definition of a cluster as a set of objects similar to each other. To
detect the two clusters, we need additional information, such as must-link and cannot link
constraints. Given the true class labels, function create_MLCL() generates such constraints
by randomly picking pairs of objects from the same class and from different classes with equal
probabilities. Here, we use it to generate 400 constraints:

R> const<-create_MLCL(y,400)

The output const is a list with two components: a matrix ML of must-link constraints, and a
matrix CL of cannot-link constraints, both with two columns and as many rows as constraints.
Note that these 400 pairwise constraints (some of which represented in Figure 9a) represent
less than 1% of the 44850 object pairs.
There are two main complementary approaches to exploit such additional information. The
first one is to account for the constraints in the cost function; this is the approach used in
the CECM and CEVCLUS algorithms. For instance, we can run the cecm() function as

R> clus.cecm <- cecm(x, c=2, ML=const$ML, CL=const$CL, ntrials=5, xi=0.9,
+ distance=1, disp=FALSE)

where xi is the hyperparameter in (18), and the algorithm is run ntrials=5 times. The
resulting credal partition is plotted in Figure 9b. The adjusted Rand index (ARI) between the
maximum-plausibility hard partition and the true partition can be computed using function
adjustedRandIndex() of package mclust as

R> library("mclust")
R> print(adjustedRandIndex(clus.cecm$y.pl, y))

26 evclust: An R Package for Evidential Clustering

−10 −5 0 5

−
10

−
5

0
5

x1

x 2

(a)

−10 −5 0 5

−
10

−
5

0
5

x1

x 2

(b)

Figure 9: (a): Bananas dataset with 20 must-link constraints (solid lines) and 20 cannot-link
constraints (broken lines) out of the 400 constraints generated by function create_MLCL()
for the bananas dataset; (b): credal partition generated by cecm() using the 400 pairwise
constraints.

[1] 0.9472012

The other approach is to map the data to a new feature space in which pairs of objects known
to belong to the same cluster are close to each other, while pairs of objects known to belong
to different clusters are far apart. One such method is the kernel pairwise constrained com-
ponent analysis (KPCCA) algorithm proposed by Mignon and Jurie (2012) and implemented
in evclust as function kpca(); this function takes as input a kernel matrix, which can be
generated by function kernelMatrix() of package kernlab:

R> library(kernlab)
R> rbf <- rbfdot(sigma = 0.2)
R> K <- kernelMatrix(rbf, x)
R> res.kpcca <- kpcca(K, d1=2, ML=const$ML, CL=const$CL, epsi=1e-3,
+ disp=FALSE)

where K is a kernel matrix, d1 is the number of extracted features, and the algorithm stops
when the rate of change of the cost function is less than epsi. Function kpca() returns a list
with three components: the new feature matrix z of size n × d1, the projection matrix A of
size d1 × n, and the Euclidean distance matrix D in the new feature space.
Having extracted d_1=2 features, we can run function ecm() in the new feature space:

R> clus.ecm<-ecm(res.kpcca$z,c=2,disp=FALSE)

Thierry Denœux 27

−1.5 −1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x1

x 2

(a)

−10 −5 0 5

−
10

−
5

0
5

x1

x 2

(b)

Figure 10: Credal partition generated by ecm() for the bananas dataset in the transformed
feature space, with 400 randomly generated pairwise contraints. The partition is shown in
the transformed (a) and original (b) feature spaces.

The generated partition is diplayed in the transformed and original feature spaces, respec-
tively, in Figures 10a and 10b. The result is similar to that obtained with the previous method
according to the ARI of the maximum-plausibility partition:

R> print(adjustedRandIndex(clus.ecm$y.pl, y))

[1] 0.9342245

Combining the two methods further improves result in terms of ARI:

R> clus.cecm1 <- cecm(res.kpcca$z, c=2, ML=const$ML, CL=const$CL, ntrials=5,
+ xi=0.9, distance=1, disp=FALSE)
R> print(adjustedRandIndex(clus.cecm1$y.pl, y))

[1] 0.9734222

5. Conclusions
Evidential clustering is a new approach to clustering in which uncertainty about cluster
membership is described by Dempster-Shafer mass functions. Evidential clustering algorithms
compute credal partitions defined as tuples of mass functions over the set Ω of clusters. For
each object i, the mass mi(A) assigned to nonempty set A of clusters reflects ambiguity in
the assignment of the object to clusters in A, while the mass mi(∅) assigned to the empty

28 evclust: An R Package for Evidential Clustering

set reflects the possibility that the object might not belong to any of the clusters and allows
us to detect outliers. This representation is very general and encompasses other approaches
such a fuzzy, possibilistic and rough clustering as special cases.
The evclust package described in this paper implements a set of efficient evidential clustering
algorithms, as well as functions to display, evaluate and exploit credal partitions. These
algorithms are based on different principles and make it possible to address a variety of
clustering problems, including difficult ones such as clustering nonmetric dissimilarity data,
discovering complex-shaped clusters, and constrained clustering. For lack of space, we did
not address the important problem of determining the number of clusters. Whereas the EK-
NNclus algorithm does not require to specify that number, other algorithms do. In the case
of the Bootclus algorithm relying on model-based clustering, analytical criteria such as AIC
can be used. For the other algorithms, the nonspecifity of the credal partition can be used
to select a good credal partition (Masson and Denoeux 2008). Another approach is to use
generic indices such as implemented in the NbClust package (Charrad et al. 2014).
Whereas evclust is dedicated to clustering, a companion package evclass focusses on evidential
supervised classification (Denœux 2017). The author hopes that the availability of these
packages will contribute to a more widespread dissemination of tools based on belief functions
in data analysis and machine learning, and draw the attention of an increasing number of
data scientists to this new research direction.

References

Antoine V, Quost B, Masson MH, Denoeux T (2012). “CECM: Constrained evidential c-
means algorithm.” Computational Statistics & Data Analysis, 56(4), 894–914.

Antoine V, Quost B, Masson MH, Denoeux T (2014). “CEVCLUS: evidential clustering with
instance-level constraints for relational data.” Soft Computing, 18(7), 1321–1335.

Azzalini A, Menardi G (2014). “Clustering via Nonparametric Density Estimation: The R
Package pdfCluster.” Journal of Statistical Software, Articles, 57(11), 1–26. ISSN 1548-
7660. doi:10.18637/jss.v057.i11. URL https://www.jstatsoft.org/v057/i11.

Bezdek J (1981). Pattern Recognition with fuzzy objective function algorithm. Plenum Press,
New-York.

Borg I, Groenen P (1997). Modern multidimensional scaling. Springer, New-York.

Charrad M, Ghazzali N, Boiteau V, Niknafs A (2014). “NbClust: An R Package for
Determining the Relevant Number of Clusters in a Data Set.” Journal of Statistical
Software, Articles, 61(6), 1–36. ISSN 1548-7660. doi:10.18637/jss.v061.i06. URL
https://www.jstatsoft.org/v061/i06.

Dempster AP (1967). “Upper and lower probabilities induced by a multivalued mapping.”
Annals of Mathematical Statistics, 38, 325–339.

Denœux T (1995). “A k-nearest neighbor classification rule based on Dempster-Shafer The-
ory.” IEEE Trans. on Systems, Man and Cybernetics, 25(05), 804–813.

https://doi.org/10.18637/jss.v057.i11
https://www.jstatsoft.org/v057/i11
https://doi.org/10.18637/jss.v061.i06
https://www.jstatsoft.org/v061/i06

Thierry Denœux 29

Denœux T (2001). “Inner and outer approximation of belief structures using a hierarchical
clustering approach.” International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, 9(4), 437–460.

Denœux T (2017). evclass: Evidential Distance-Based Classification. R package version 1.1.1,
URL https://CRAN.R-project.org/package=evclass.

Denœux T (2019). “Decision-Making with Belief Functions: a Review.” International Journal
of Approximate Reasoning, 109, 87–110.

Denœux T (2020). “Calibrated model-based evidential clustering using bootstrapping.” In-
formation Sciences, 528, 17–45.

Denœux T (2021). “NN-EVCLUS: Neural Network-based Evidential Clustering.” Information
Sciences, 572, 297–330.

Denœux T, Dubois D, Prade H (2020). “Representations of Uncertainty in Artificial Intel-
ligence: Beyond Probability and Possibility.” In P Marquis, O Papini, H Prade (eds.), A
Guided Tour of Artificial Intelligence Research, volume 1, chapter 4, pp. 119–150. Springer
Verlag.

Denoeux T, Kanjanatarakul O (2016). “Beyond Fuzzy, Possibilistic and Rough: An Investi-
gation of Belief Functions in Clustering.” In Soft Methods for Data Science (Proc. of the
8th International Conference on Soft Methods in Probability and Statistics SMPS 2016),
volume AISC 456 of Advances in Intelligent and Soft Computing, pp. 157–164. Springer-
Verlag, Rome, Italy.

Denœux T, Kanjanatarakul O, Sriboonchitta S (2015). “EK-NNclus: a clustering procedure
based on the evidential K-nearest neighbor rule.” Knowledge-based Systems, 88, 57–69.

Denœux T, Li S, Sriboonchitta S (2018). “Evaluating and Comparing Soft Partitions: an
Approach Based on Dempster-Shafer Theory.” IEEE Transactions on Fuzzy Systems, 26(3),
1231–1244.

Denœux T, Masson MH (2004). “EVCLUS: Evidential Clustering of Proximity Data.” IEEE
Trans. on Systems, Man and Cybernetics B, 34(1), 95–109.

Denœux T, Sriboonchitta S, Kanjanatarakul O (2016). “Evidential clustering of large dissim-
ilarity data.” Knowledge-based Systems, 106, 179–195.

Ferraro MB, Giordani P, Serafini A (2019). “fclust: An R Package for Fuzzy Clustering.”
The R Journal, 11(1), 198–210. doi:10.32614/RJ-2019-017. URL https://doi.org/
10.32614/RJ-2019-017.

Fränti P, Sieranoja S (2018). “K-means properties on six clustering benchmark datasets.”
URL http://cs.uef.fi/sipu/datasets/.

Goodfellow I, Bengio Y, Courville A (2016). Deep Learning. MIT Press. URL http://www.
deeplearningbook.org.

Gustafson EE, Kessel W (1979). “Fuzzy clustering with a fuzzy covariance matrix.” In Proc.
IEEE Conf. on Decision and Control, pp. 761–766. IEEE, Piscataway, NJ.

https://CRAN.R-project.org/package=evclass
https://doi.org/10.32614/RJ-2019-017
https://doi.org/10.32614/RJ-2019-017
https://doi.org/10.32614/RJ-2019-017
http://cs.uef.fi/sipu/datasets/
http://www.deeplearningbook.org
http://www.deeplearningbook.org

30 evclust: An R Package for Evidential Clustering

Hopfield JJ (1982). “Neural networks and physical systems with emergent collective compu-
tational abilities.” Proceedings of the National Academy of Sciences, 79, 2554–2558.

Jain AK, Dubes RC (1988). Algorithms for clustering data. Prentice-Hall, Englewood Cliffs,
NJ.

Jousselme AL, Grenier D, Bossé E (2001). “A new distance between two bodies of evidence.”
Information Fusion, 2(2), 91–101.

Jousselme AL, Maupin P (2012). “Distances in evidence theory: Comprehensive survey and
generalizations.” International Journal of Approximate Reasoning, 53(2), 118–145.

Karatzoglou A, Smola A, Hornik K, Zeileis A (2004). “kernlab – An S4 Package for Kernel
Methods in R.” Journal of Statistical Software, 11(9), 1–20. URL http://www.jstatsoft.
org/v11/i09/.

Kaufman L, Rousseeuw PJ (1990). Finding groups in data. Wiley, New-York.

Klir GJ, Wierman MJ (1999). Uncertainty-Based Information. Elements of Generalized In-
formation Theory. Springer-Verlag, New-York.

Kondo Y, Salibian-Barrera M, Zamar R (2016). “RSKC: An R Package for a Robust and
Sparse K-Means Clustering Algorithm.” Journal of Statistical Software, Articles, 72(5), 1–
26. ISSN 1548-7660. doi:10.18637/jss.v072.i05. URL https://www.jstatsoft.org/
v072/i05.

Krishnapuram R, Keller J (1993). “A Possibilistic Approach to Clustering.” IEEE Trans. on
Fuzzy Systems, 1, 98–111.

Li F, Li S, Denœux T (2018). “k-CEVCLUS: Constrained evidential clustering of large
dissimilarity data.” Knowledge-Based Systems, 142, 29–44.

Lloyd S (1982). “Least squares quantization in PCM.” IEEE Transactions on Information
Theory, 28(2), 129–137. doi:10.1109/TIT.1982.1056489.

Masson MH, Denoeux T (2008). “ECM: An evidential version of the fuzzy c-means algorithm.”
Pattern Recognition, 41(4), 1384–1397.

Masson MH, Denœux T (2009). “RECM: Relational Evidential c-means algorithm.” Pattern
Recognition Letters, 30, 1015–1026.

McLachlan GJ, Basford KE (1988). Mixture Models: inference and applications to clustering.
Marcel Dekker, New York.

Mignon A, Jurie F (2012). “PCCA: A new approach for distance learning from sparse pairwise
constraints.” In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp.
2666–2672.

Peters G (2014). “Rough clustering utilizing the principle of indifference.” Information Sci-
ences, 277, 358 – 374.

Peters G (2019). SoftClustering: Soft Clustering Algorithms. R package version 1.1902.2,
URL https://CRAN.R-project.org/package=SoftClustering.

http://www.jstatsoft.org/v11/i09/
http://www.jstatsoft.org/v11/i09/
https://doi.org/10.18637/jss.v072.i05
https://www.jstatsoft.org/v072/i05
https://www.jstatsoft.org/v072/i05
https://doi.org/10.1109/TIT.1982.1056489
https://CRAN.R-project.org/package=SoftClustering

Thierry Denœux 31

Peters G, Crespo F, Lingras P, Weber R (2013). “Soft clustering: Fuzzy and rough approaches
and their extensions and derivatives.” International Journal of Approximate Reasoning,
54(2), 307–322.

Scrucca L, Fop M, Murphy TB, Raftery AE (2016). “mclust 5: clustering, classification and
density estimation using Gaussian finite mixture models.” The R Journal, 8(1), 289–317.
URL https://doi.org/10.32614/RJ-2016-021.

Shafer G (1976). A mathematical theory of evidence. Princeton University Press, Princeton,
N.J.

Smets P, Kennes R (1994). “The Transferable Belief Model.” Artificial Intelligence, 66,
191–243.

Su Z, Denœux T (2019). “BPEC: Belief-Peaks Evidential Clustering.” IEEE Transactions on
Fuzzy Systems, 27(1), 111–123.

Voorbraak F (1989). “A computationally efficient approximation of Dempster-Shafer theory.”
Int. J. Man-Machine Studies, 30, 525–536.

Xu R, Wunsch D (2009). Clustering. Wiley-IEEE Press, Hoboken, New Jersey.

Yang MS, Wu KL (2006). “Unsupervised possibilistic clustering.” Pattern Recognition, 39(1),
5–21.

Zadeh LA (1978). “Fuzzy sets as a basis for a theory of possibility.” Fuzzy Sets and Systems,
1, 3–28.

Affiliation:
Thierry Denœux
Université de technologie de Compiègne
Compiègne, France and
Institut universitaire de France
Paris, France
E-mail: tdenoeux@utc.fr
URL: https://www.hds.utc.fr/~tdenoeux/

https://doi.org/10.32614/RJ-2016-021
mailto:tdenoeux@utc.fr
https://www.hds.utc.fr/~tdenoeux/

	Introduction
	Evidential Clustering
	Theory of Belief Functions
	Credal Partition

	Evidential Clustering Algorithms
	Evidential c-Means and Variants
	EVCLUS and Variants
	Bootclus
	EK-NNclus

	Illustrations
	fourclass dataset
	S2 dataset
	Iris dataset
	Bananas dataset

	Conclusions

