Package ‘tHMM’

February 24, 2024

Type Package
Title Fitting Hidden Markov Models to Financial Data
Version 1.2.2

Description Fitting (hierarchical) hidden Markov models to financial data
via maximum likelihood estimation. See Oelschlédger, L. and Adam, T.
““Detecting bearish and bullish markets in financial time series using
hierarchical hidden Markov models" (2021, Statistical Modelling)
<doi:10.1177/1471082X211034048> for a reference.

Language en-US
URL https://loelschlaeger.de/fHMM/

BugReports https://github.com/loelschlaeger/fHMM/issues
License GPL-3

Encoding UTF-8

Depends R (>=4.0.0)

Imports checkmate, cli, foreach, graphics, grDevices, MASS, oeli (>=
0.3.0), padr, progress, Rcpp, stats, utils

LinkingTo Rcpp, ReppArmadillo

Suggests covr, doSNOW, knitr, parallel, rmarkdown, testthat (>=
3.0.0), tseries

RoxygenNote 7.3.1
VignetteBuilder knitr
Config/testthat/edition 3
LazyData true
LazyDataCompression xz
NeedsCompilation yes

Author Lennart Oelschlidger [aut, cre]
(<https://orcid.org/0000-0001-5421-9313>),
Timo Adam [aut] (<https://orcid.org/0000-0001-9079-3259>),
Rouven Michels [aut] (<https://orcid.org/0000-0002-5433-6197>)

1

https://doi.org/10.1177/1471082X211034048
https://loelschlaeger.de/fHMM/
https://github.com/loelschlaeger/fHMM/issues
https://orcid.org/0000-0001-5421-9313
https://orcid.org/0000-0001-9079-3259
https://orcid.org/0000-0002-5433-6197

2 compare_models

Maintainer Lennart Oelschldger <oelschlaeger.lennart@gmail.com>

Repository CRAN

Date/Publication 2024-02-24 21:20:03 UTC

R topics documented:
compare_models L 2
compute_residualso 3
dax . . . e e 4
dax_model_2n. e 5
dax_model 3t e 5
dax_vw_model e 6
decode_states e e e e e e e e e 7
download data e 8
fHMM data s 10
THMM_EVENLS o o o e e e e e e e e e 11
fHMM_ _model e e 12
fHMM_parameters o v v v i e it e e e e e e e e 14
fit model e 16
Hohmm ... e e e 18
plotfHMM data e 20
plotfHMM_model e 21
prepare_data L. L e e e e e e e e 22
reorder_StateS e e e e e 22
SEt_CONtIOIS e 23
simulate_hmm e e 28
sim_model_2gamma e 31
sim_model_4lnorm L e 32
SPX v o e e e e e e e e e e e e e e e 32
L83 1C) 01 o 33
unemp_spx_model_3_2 34
VW o o e e e e e e e e e e e e e e e 35

Index 36

compare_models Compare multiple models
Description

This function performs model comparison by comparing multiple fHMM_model objects with respect

to

the number of model parameters,
the log-likelihood value,

the AIC value,

the BIC value.

compute_residuals

Usage

compare_models(...)

Arguments

A list of one or more objects of class fHMM_model.

Value

A data. frame with models in rows and comparison criteria in columns.

Examples

3-state HMM with t-distributions is preferred over 2-state HMM with
normal distributions for the DAX data based on AIC and BIC
compare_models(dax_model_2n, dax_model_3t)

compute_residuals Compute (pseudo-) residuals

Description

This function computes (pseudo-) residuals of an fHMM_model object.

Usage

compute_residuals(x, verbose = TRUE)

Arguments

X An object of class fHMM_model.

verbose Set to TRUE (default) to print progress messages.
Value

An object of class fHMM_model with residuals included.

Examples

compute_residuals(dax_model_3t)
summary(residuals(dax_model_3t))

4 dax

dax Deutscher Aktienindex (DAX) index data

Description

Deutscher Aktienindex (DAX) index data from 1988 to 2022 from Yahoo Finance.

Usage

dax

Format

A data. frame with 9012 rows and the following 7 columns:

* Date: The date.

* Open: Opening price.

* High: Highest price.

* Low: Lowest price.

* Close: Close price adjusted for splits.

* Adj.Close: Close price adjusted for dividends and splits.

e Volume: Trade volume.

Details

The data was obtained via:

dax <- download_data(

symbol = "~GDAXI", # DAX identifier on Yahoo Finance
from = "1988-01-01", # first observation
to = "2022-12-31" # last observation

The data is also available as . csv file via:

system.file("extdata”, "dax.csv", package = "fHMM")

Source

https://finance.yahoo.com/quote/%5EGDAXI

https://finance.yahoo.com/quote/%5EGDAXI

dax_model 2n 5

dax_model_2n DAX 2-state HMM with normal distributions

Description

A pre-computed HMM on closing prices of the DAX from 2000 to 2022 with two hidden states and
normal state-dependent distributions for demonstration purpose.

Usage

data("dax_model_2n")

Format

An object of class fHMM_model.

Details

The model was estimated via:

controls <- set_controls(

states = 2,

sdds = "t(df = normal)”,

data = list(
file = dax,
date_column = "Date”,
data_column = "Close”,
logreturns = TRUE,
from = "2000-01-03",
to = "2022-12-31"

),

fit = list(runs = 100)

)

dax_data <- prepare_data(controls)
dax_model_2n <- fit_model(dax_data)

dax_model_3t DAX 3-state HMM with t-distributions

Description

A pre-computed HMM on closing prices of the DAX from 2000 to 2022 with three hidden states
and state-dependent t-distributions for demonstration purpose.

Usage

data("dax_model_3t")

Format

An object of class fHMM_model.

Details

The model was estimated via:

controls <- set_controls(

states = 3,

sdds = "t",

data = list(
file = dax,
date_column = "Date”,

data_column "Close",
logreturns = TRUE,

from = "2000-01-03",
to = "2022-12-31"
),
fit = list(runs = 200)

)

dax_data <- prepare_data(controls)
dax_model_3t <- fit_model(dax_data)

dax_vw_model

dax_vw_model DAX/VW hierarchical HMM with t-distributions

Description

A pre-computed HHMM with monthly averaged closing prices of the DAX from 2010 to 2022 on
the coarse scale, Volkswagen AG stock data on the fine scale, two hidden fine-scale and coarse-scale

states, respectively, and state-dependent t-distributions for demonstration purpose.

Usage

data("dax_vw_model")

Format

An object of class fHMM_model.

decode_states 7
Details
The model was estimated via:

controls <- set_controls(
hierarchy = TRUE,

states = c(2, 2),

sdds = c("t", "t"),

period = "m",

data = list(
file = list(dax, vw),
from = "2010-01-01",
to = "2022-12-31",
logreturns = c(TRUE, TRUE)

),

fit = list(
runs = 200

)

)
dax_vw_data <- prepare_data(controls)
dax_vw_model <- fit_model(dax_vw_data)

decode_states Decode the underlying hidden state sequence

Description

This function decodes the (most likely) underlying hidden state sequence by applying the Viterbi
algorithm for global decoding.

Usage

decode_states(x, verbose = TRUE)

viterbi(observations, nstates, sdd, Gamma, mu, sigma = NULL, df = NULL)

Arguments
X An object of class fHMM_model.
verbose Set to TRUE to print progress messages.

observations A numeric vector of state-dependent observations.
nstates The number of states.
sdd A character, specifying the state-dependent distribution. One of

e "normal” (the normal distribution),
* "lognormal” (the log-normal distribution),
e "t" (the t-distribution),

8 download_data

e "gamma” (the gamma distribution),

e "poisson” (the Poisson distribution).
Gamma A transition probability matrix of dimension nstates.

mu A numeric vector of expected values for the state-dependent distribution in the
different states of length nstates.

For the gamma- or Poisson-distribution, mu must be positive.

sigma A positive numeric vector of standard deviations for the state-dependent distri-
bution in the different states of length nstates.

Not relevant in case of a state-dependent Poisson distribution.

df A positive numeric vector of degrees of freedom for the state-dependent distri-
bution in the different states of length nstates.

Only relevant in case of a state-dependent t-distribution.

Value

An object of class fHMM_model with decoded state sequence included.

References

https://en.wikipedia.org/wiki/Viterbi_algorithm

Examples

decode_states(dax_model_3t)
plot(dax_model_3t, type = "ts")

viterbi(
observations = c(1, 1, 1, 10, 10, 10),
nstates =2,
sdd = "poisson”,
Gamma = matrix (0.5, 2, 2),
mu = c(1, 10)

)

download_data Download financial data from Yahoo Finance
Description

This function downloads financial data from https://finance.yahoo.com/ and returns it as a
data.frame.

https://en.wikipedia.org/wiki/Viterbi_algorithm
https://finance.yahoo.com/

download_data

Usage

download_data(

symbol,

from = "1902-01-01",

to = Sys.Date(),

fill_dates = FALSE,

columns = c("Date"”, "Open"”, "High", "Low"”, "Close"”, "Adj.Close"”, "Volume")

Arguments

symbol

from

to

fill_dates

columns

Details

A character, the stock’s symbol.

It must match the identifier on https://finance.yahoo.com/.

A character in the format "YYYY-MM-DD", setting the lower data bound.
Must not be earlier than "1902-01-01" (default).

A character in the format "YYYY-MM-DD", setting the upper data bound.
Default is the current date Sys.date().

Set to TRUE to fill missing dates (e.g., days at which the stock market is closed)
with NA’s.

By default, fill_dates = FALSE.

A character of requested data columns, see the details.

By default, all columns are returned.

Yahoo Finance provides historical daily data for stocks or indices. The following data columns are

available:

e Date: The date.

* Open: Opening price.

* High: Highest price.

* Low: Lowest price.

* Close: Close price adjusted for splits.

* Adj.Close: Close price adjusted for dividends and splits.

e Volume: Trade volume.

Value

A data.frame.

https://finance.yahoo.com/

10 fHMM _data

Examples

21st century DAX closing prices

data <- download_data(
symbol = "~GDAXI", from = "2000-01-01", columns = c("Date”, "Close"),
fill_dates = TRUE

)
head(data)

fHMM_data Constructor of an fHMM_data object

Description

This function constructs an object of class fHMM_data, which contains the financial data for model-
ing.

Usage

fHMM_data(
dates,
time_points,
markov_chain,
data,
time_series,
T_star,
controls,
true_parameters

)

S3 method for class 'fHMM_data'
print(x, ...)

S3 method for class 'fHMM_data'

summary (object, ...)

Arguments
dates The dates in the empirical case.
time_points The time points in the simulated case.

markov_chain The states in the simulated case.

data The data for modeling.
time_series The data before transformation.
T_star The fine-scale chunk sizes.

controls The fHMM_controls object.

fHMM_events 11

true_parameters

The fHMM_parameters object in the simulated case.

X An object of class fHMM_data.
Currently not used.
object An object of class fHMM_data.
Value

An object of class fHMM_data, which is a 1ist containing the following elements:

The matrix of the dates if simulated = FALSE and controls$data$data_column is speci-
fied,

the matrix of the time_pointsif simulated = TRUE or controls$data$data_column is not
specified,

the matrix of the simulated markov_chain if simulated = TRUE,
the matrix of the simulated or empirical data used for estimation,

the matrix time_series of empirical data before the transformation to log-returns if simulated
= FALSE,

the vector of fine-scale chunk sizes T_star if controls$hierarchy = TRUE,
the input controls,

the true_parameters.

fHMM_events Checking events

Description

This function checks the input events.

Usage

fHMM_events(events)

S3 method for class 'fHMM_events'

print(x, ...)
Arguments
events A list of two elements.
e The first element is named "dates” and contains a character vector in
format "YYYY-MM-DD".
e The second element is named "labels” and is a character vector of the
same length as "dates”.
X An object of class fHMM_events.

Currently not used.

12 fHMM_model

Value

An object of class fHMM_events.

Examples

events <- list(
dates = c("2001-09-11", "2008-09-15", "2020-01-27"),
labels = c(
"9/11 terrorist attack”, "Bankruptcy Lehman Brothers”,
"First COVID-19 case Germany"
)
)

events <- fHMM_events(events)

fHMM_model Constructor of a model object

Description

This function constructs an object of class fHMM_model, which contains details about the fitted
(hierarchical) Hidden Markov model.

Usage

fHMM_model (
data,
estimate,
nlm_output,
estimation_time,
11,
11s,
gradient,
hessian,
decoding

)

S3 method for class 'fHMM_model'
print(x, ...)

S3 method for class 'fHMM_model'
residuals(object, ...)

S3 method for class 'fHMM_model'
summary(object, alpha = 0.05, ...)

S3 method for class 'fHMM_model'

fHMM_model

estimation_time

coef(object, alpha = 0.05, digits = 2, ...)
S3 method for class 'fHMM_model'
AIC(object, ., k=2)
S3 method for class 'fHMM_model’
BIC(object, ...)
S3 method for class 'fHMM_model'
nobs(object, ...)
S3 method for class 'fHMM_model'
loglLik(object, ...)
npar(object, ...)
S3 method for class 'fHMM_model'
npar(object, ...)
S3 method for class 'fHMM_model'
predict(object, ahead = 5, alpha = 0.05, ...)
Arguments
data An object of class fHMM_data.
estimate A numeric vector of unconstrained model estimates.
nlm_output The output of nlm for the selected optimization run.

A diff.time object, the total estimation time.

11 A numeric, the model log-likelihood.
11s A numeric vector, the model log-likelihoods in all optimization runs.
gradient A numeric vector, the gradient at the optimum.
hessian A matrix, the Hessian at the optimum.
decoding A numeric vector, the decoded time series.
X, object An object of class fHMM_model.
Currently not used.
alpha A numeric between O and 1, the confidence level.
digits The number of decimal places.
k Passed on to AIC.
ahead The number of time points to predict ahead.

Value

An object of class fHMM_model.

13

14

fHMM_ parameters

fHMM_parameters

Set and check model parameters

Description

This function sets and checks model parameters. Unspecified parameters are sampled.

Usage

fHMM_parameters(

controls = list(),

hierarchy = FALSE,

states = if (!hierarchy) 2 else c(2, 2),

sdds = if (!hierarchy) "normal” else c("normal”, "normal”),

Gamma = NULL,
mu = NULL,
sigma = NULL,
df = NULL,

Gamma_star = NULL,

mu_star = NULL,

sigma_star = NULL,

df_star = NULL,
scale_par = c(1,
seed = NULL,
check_controls =

)

M,

TRUE

S3 method for class 'fHMM_parameters'

print(x, ...)

Arguments

controls Either a 1ist or an object of class fHMM_controls.

The 1ist can contain the following elements, which are described in more detail
below:

hierarchy, defines an hierarchical HMM,

states, defines the number of states,

sdds, defines the state-dependent distributions,

horizon, defines the time horizon,

period, defines a flexible, periodic fine-scale time horizon,
data, a 1ist of controls that define the data,

fit, a list of controls that define the model fitting

Either none, all, or selected elements can be specified.

Unspecified parameters are set to their default values, see below.

Specifications in controls override individual specifications.

fHMM_parameters

hierarchy

states

sdds

15

A logical, set to TRUE for an hierarchical HMM.

If hierarchy = TRUE, some of the other controls must be specified for the coarse-
scale and the fine-scale layer.

By default, hierarchy = FALSE.

An integer, the number of states of the underlying Markov chain.

If hierarchy = TRUE, states must be a vector of length 2. The first entry
corresponds to the coarse-scale layer, while the second entry corresponds to the
fine-scale layer.

By default, states = 2if hierarchy = FALSE and states = c(2, 2) ifhierarchy
= TRUE.
A character, specifying the state-dependent distribution. One of

e "normal” (the normal distribution),

e "lognormal” (the log-normal distribution),
e "t" (the t-distribution),

e "gamma” (the gamma distribution),

¢ "poisson” (the Poisson distribution).

The distribution parameters, i.e. the

* mean mu,

« standard deviation sigma (not for the Poisson distribution),

¢ degrees of freedom df (only for the t-distribution),
can be fixed via, e.g., "t(df =1)" or "gamma(mu = @, sigma=1)". To fix dif-
ferent values of a parameter for different states, separate by "I", e.g. "poisson(mu
=11213)".
If hierarchy = TRUE, sdds must be a vector of length 2. The first entry cor-

responds to the coarse-scale layer, while the second entry corresponds to the
fine-scale layer.

By default, sdds = "normal” if hierarchy = FALSE and sdds = c("normal”,
"normal”) if hierarchy = TRUE.

Gamma, Gamma_star

mu, mu_star

A transition probability matrix.
It should have dimension states[1].

Gamma_star is a list of fine-scale transition probability matrices. The list
must be of length states[1]. Each transition probability matrix must be of
dimension states[2].

A numeric vector of expected values for the state-dependent distribution in the
different states.

For the gamma- or Poisson-distribution, mu must be positive.

It should have length states[1].

mu_star is a 1list of vectors with fine-scale expectations. The 1ist must be
of length states[1]. Each vector must be of length states[2].

sigma, sigma_star

A positive numeric vector of standard deviations for the state-dependent distri-
bution in the different states.

16

df, df_star

scale_par

seed

check_controls

Details

fit_model

It should have length states[1].

sigma_starisalist of vectors with fine-scale standard deviations. The list
must be of length states[1]. Each vector must be of length states[2].

A positive numeric vector of degrees of freedom for the state-dependent distri-
bution in the different states.

It should have length states[1].

Only relevant in case of a state-dependent t-distribution.

df_star is a list of vectors with fine-scale degrees of freedom. The list
must be of length states[1]. Each vector must be of length states[2]. Only
relevant in case of a fine-scale state-dependent t-distribution.

A positive numeric vector of length two, containing scales for sampled expec-
tations and standard deviations.

The first entry is the scale for mu and sigma, the second entry is the scale for
mu_star and sigma_star (if any).

Sets a seed for the sampling of parameters.

Either TRUE to check the defined controls or FALSE to not check them (which
saves computation time), else.

An object of class fHMM_parameters.

Currently not used.

See the vignette on the model definition for more details.

Value

An object of class fHMM_parameters.

Examples
parameters <- fHMM_parameters(states = 2, sdds = "normal")
parameters$Gamma
fit_model Model fitting
Description

This function fits a HMM to fHMM_data via numerical likelihood maximization.

Usage

fit_model(data,

ncluster = 1, seed = NULL, verbose = TRUE, init = NULL)

https://loelschlaeger.de/fHMM/articles/

fit_model 17

Arguments
data An object of class fHMM_data.
ncluster Set the number of clusters for parallelization. By default, ncluster = 1.
seed Set a seed for the sampling of initial values. No seed by default.
verbose Set to TRUE to print progress messages.
init Optionally an object of class parUncon for initialization. This can for example
be the estimate of a previously fitted model model, i.e. the element model$estimate.
The initial values are computed via replicate(n, jitter(init, amount =1),
simplify = FALSE), where n <- data$controls$fit$runs.
Details

The function is parallelized if ncluster > 1.

Value

An object of class fHMM_model.

Examples

2-state HMM with normal distributions

define model
controls <- set_controls(states = 2, sdds = "normal”, horizon = 100, runs = 20)

define parameters
parameters <- fHMM_parameters(controls, mu = c(-1, 1), seed = 1)

sample data
data <- prepare_data(controls, true_parameter = parameters, seed = 1)

fit model
model <- fit_model(data, seed = 1)

inspect fit
summary (model)
plot(model, "sdds")

decode states
model <- decode_states(model)

predict
predict(model, ahead = 5)

18 1l hmm
11_hmm Log-likelihood function of an (H)HMM
Description
This function computes the log-likelihood value of a (hierarchical) hidden Markov model for given
observations and parameter values.
Usage
11_hmm(
parUncon,
observations,
controls = list(),
hierarchy = FALSE,
states = if ('hierarchy) 2 else c(2, 2),
sdds = if (!hierarchy) "normal” else c("normal”, "normal”),
negative = FALSE,
check_controls = TRUE
)
Arguments
parUncon An object of class parUncon, which is a numeric vector with identified and
unconstrained model parameters in the following order:
1. non-diagonal transition probabilities gammasUncon
2. expectations muUncon
3. standard deviations sigmaUncon (if any)
4. degrees of freedom dfUncon (if any)
5. fine-scale parameters for each coarse-scale state, in the same order (if any)

observations A numeric vector of time-series data.

In the hierarchical case (hierarchy = TRUE), a matrix with coarse-scale data in
the first column and corresponding fine-scale data in the rows.

controls Either a 1ist or an object of class fHMM_controls.

The 1ist can contain the following elements, which are described in more detail
below:

hierarchy, defines an hierarchical HMM,

states, defines the number of states,

sdds, defines the state-dependent distributions,

horizon, defines the time horizon,

period, defines a flexible, periodic fine-scale time horizon,
data, a 1ist of controls that define the data,

fit, a list of controls that define the model fitting

1l hmm

hierarchy

states

sdds

negative

check_controls

Value

19

Either none, all, or selected elements can be specified.
Unspecified parameters are set to their default values, see below.

Specifications in controls override individual specifications.

A logical, set to TRUE for an hierarchical HMM.

If hierarchy = TRUE, some of the other controls must be specified for the coarse-
scale and the fine-scale layer.

By default, hierarchy = FALSE.

An integer, the number of states of the underlying Markov chain.

If hierarchy = TRUE, states must be a vector of length 2. The first entry
corresponds to the coarse-scale layer, while the second entry corresponds to the
fine-scale layer.

By default, states = 2if hierarchy = FALSE and states = c(2, 2) ifhierarchy
= TRUE.

A character, specifying the state-dependent distribution. One of

e "normal” (the normal distribution),

e "lognormal” (the log-normal distribution),
e "t" (the t-distribution),

e "gamma” (the gamma distribution),

e "poisson” (the Poisson distribution).
The distribution parameters, i.e. the

* mean mu,
 standard deviation sigma (not for the Poisson distribution),
* degrees of freedom df (only for the t-distribution),
can be fixed via, e.g., "t(df =1)" or "gamma(mu = @, sigma=1)". To fix dif-

ferent values of a parameter for different states, separate by "l", e.g. "poisson(mu
=1]2]3)".

If hierarchy = TRUE, sdds must be a vector of length 2. The first entry cor-
responds to the coarse-scale layer, while the second entry corresponds to the
fine-scale layer.

By default, sdds = "normal” if hierarchy = FALSE and sdds = c("normal”,
"normal”) if hierarchy = TRUE.

Either TRUE to return the negative log-likelihood value (useful for optimization)
or FALSE (default), else.

Either TRUE to check the defined controls or FALSE to not check them (which
saves computation time), else.

The (negative) log-likelihood value.

20 plot. fHMM_ data

Examples

HMM log-likelihood

controls <- set_controls(states = 2, sdds = "normal")
parameters <- fHMM_parameters(controls)

parUncon <- par2parUncon(parameters, controls)
observations <- 1:10

11_hmm(parUncon, observations, controls)

HHMM log-likelihood
controls <- set_controls(
hierarchy = TRUE, states = c(2, 2), sdds = c("normal”, "normal")
)
parameters <- fHMM_parameters(controls)
parUncon <- par2parUncon(parameters, controls)
observations <- matrix(dnorm(11@), ncol = 11, nrow = 10)
11_hmm(parUncon, observations, controls)

plot.fHMM_data Plot method for an object of class fHMM_data

Description

This function is the plot method for an object of class fHMM_data.

Usage
S3 method for class 'fHMM_data’
plot(x, events = NULL, title = NULL, from = NULL, to = NULL, ...)
Arguments
X An object of class fHMM_data.
events An object of class fHMM_events.
title Optionally a character for a custom title.
from Optionally a character, a date in format "YYYY-MM-DD", setting the lower date

bound for plotting. By default, from = NULL, i.e. no lower bound.

to Optionally a character, a date in format "YYYY-MM-DD", setting the upper date
bound for plotting. By default, to = NULL, i.e. no upper bound.

Currently not used.

Value

No return value. Draws a plot to the current device.

Examples

plot(dax_model_3t$data, title = "DAX time series”)

plot.tHMM_model

21

plot.fHMM_model

Plot method for an object of class THMM_model

Description

This function is the plot method for an object of class fHMM_model.

Usage

S3 method for class 'fHMM_model'

plot(
X’

plot_type = "ts",

events = NULL
colors = NULL
11_relative =
title = NULL,
from = NULL,
to = NULL,

Arguments

X

plot_type

events

colors

11_relative

title

from

to

’

’

TRUE,

An object of class fHMM_model.
A character (vector), specifying the type of plot and can be one (or more) of

e "11" for a visualization of the likelihood values in the different optimization
runs,

* "sdds" for a visualization of the estimated state-dependent distributions,
* "pr" for a visualization of the model’s (pseudo-) residuals,
e "ts" for a visualization of the financial time series.

An object of class fHMM_events.

Either NULL (default) or a character vector of color names or hexadecimal
RGB triplets.

A logical, set to TRUE (default) to plot the differences from the best log-
likelihood value. Set to FALSE to plot the absolute values.

Optionally a character for a custom title.

Optionally a character, a date in format "YYYY-MM-DD", setting the lower date
bound for plotting. By default, from = NULL, i.e. no lower bound.

Optionally a character, a date in format "YYYY-MM-DD", setting the upper date
bound for plotting. By default, to = NULL, i.e. no upper bound.

Currently not used.

22 reorder_states

Value

No return value. Draws a plot to the current device.

prepare_data Prepare data

Description

This function simulates or reads financial data for the {fHMM} package.

Usage

prepare_data(controls, true_parameters = NULL, seed = NULL)

Arguments

controls An object of class fHMM_controls.

true_parameters
An object of class fHMM_parameters, used as simulation parameters. By de-
fault, true_parameters = NULL, i.e., sampled true parameters.

seed Set a seed for the data simulation. No seed per default.

Value

An object of class fHMM_data.

Examples

controls <- set_controls()
data <- prepare_data(controls)
class(data)

summary (data)

reorder_states Reorder estimated states

Description
This function reorders the estimated states, which can be useful for a comparison to true parameters
or the interpretation of states.

Usage

reorder_states(x, state_order)

set_controls

Arguments

X

state_o

Value

rder

23

An object of class fHMM_model.
A vector or a matrix which determines the new ordering.

e If x$data$controls$hierarchy = FALSE, state_order must be a vector
of length x$data$controls$states with integer values from 1 to x$data$controls$states.

If the old state number x should be the new state number y, put the value
x at the position y of state_order. E.g. for a 2-state HMM, specifying
state_order = c(2,1) swaps the states.

If x$data$controls$hierarchy = TRUE, state_order must be a matrix
of dimension x$data$controls$states[1] x x$data$controls$states[2]
+ 1. The first column orders the coarse-scale states with the logic as de-
scribed above. For each row, the elements from second to last position
order the fine-scale states of the coarse-scale state specified by the first ele-
ment. E.g. for an HHMM with 2 coarse-scale and 2 fine-scale states, spec-
ifying state_order =matrix(c(2,1,2,1,1,2),2,3) swaps the coarse-
scale states and the fine-scale states of coarse-scale state 2.

An object of class fHMM_model, in which states are reordered.

Examples

reorder_states(dax_model_3t, state_order = 3:1)

set_controls

Define and validate model specifications

Description

This function defines and validates specifications for model estimation.

Usage

set_con
contr

trols(
ols =

list(),

hierarchy = FALSE,

s = if (!hierarchy) 2 else c(2, 2),

sdds = if (!hierarchy) "normal” else c("normal”, "normal”),
on = if (!hierarchy) 100 else c(100, 30),

d = if (hierarchy && is.na(horizon[2])) "m"” else NA,

state

horiz
perio
data
file
date_
data_

= NA,
= NA,
column
column

if (!'hierarchy) "Date" else c("Date”, "Date”),
if (!'hierarchy) "Close"” else c("Close”, "Close"),

24 set_controls

from = NA,
to = NA,
logreturns = if (!hierarchy) FALSE else c(FALSE, FALSE),
merge = function(x) mean(x),
fit = list(Q),
runs = 100,
origin = FALSE,
accept 1:3,
gradtol = 1e-06,
iterlim = 200,
print.level = 0,
steptol = 1e-06
)

validate_controls(controls)

S3 method for class 'fHMM_controls'
print(x, ...)

S3 method for class 'fHMM_controls'

summary (object, ...)
Arguments
controls Either a 1ist or an object of class fHMM_controls.

The 1ist can contain the following elements, which are described in more detail
below:
¢ hierarchy, defines an hierarchical HMM,
e states, defines the number of states,
* sdds, defines the state-dependent distributions,
¢ horizon, defines the time horizon,
* period, defines a flexible, periodic fine-scale time horizon,
e data, a 1ist of controls that define the data,
e fit,alist of controls that define the model fitting
Either none, all, or selected elements can be specified.
Unspecified parameters are set to their default values, see below.
Specifications in controls override individual specifications.
hierarchy A logical, set to TRUE for an hierarchical HMM.
If hierarchy = TRUE, some of the other controls must be specified for the coarse-
scale and the fine-scale layer.
By default, hierarchy = FALSE.
states An integer, the number of states of the underlying Markov chain.
If hierarchy = TRUE, states must be a vector of length 2. The first entry

corresponds to the coarse-scale layer, while the second entry corresponds to the
fine-scale layer.

By default, states = 2if hierarchy = FALSE and states = ¢(2, 2) ifhierarchy
= TRUE.

set_controls

sdds

horizon

period

data

25

A character, specifying the state-dependent distribution. One of

* "normal” (the normal distribution),

e "lognormal” (the log-normal distribution),
e "t" (the t-distribution),

e "gamma” (the gamma distribution),

e "poisson” (the Poisson distribution).

The distribution parameters, i.e. the

* mean mu,
e standard deviation sigma (not for the Poisson distribution),
* degrees of freedom df (only for the t-distribution),
can be fixed via, e.g., "t(df =1)" or "gamma(mu = @, sigma =1)". To fix dif-
ferent values of a parameter for different states, separate by "I", e.g. "poisson(mu
=11213)".
If hierarchy = TRUE, sdds must be a vector of length 2. The first entry cor-

responds to the coarse-scale layer, while the second entry corresponds to the
fine-scale layer.

By default, sdds = "normal” if hierarchy = FALSE and sdds = c("normal”,
"normal”) if hierarchy = TRUE.
A numeric, specifying the length of the time horizon.

If hierarchy = TRUE, horizon must be a vector of length 2. The first entry
corresponds to the coarse-scale layer, while the second entry corresponds to the
fine-scale layer.

By default, horizon = 100 if hierarchy = FALSE and horizon = c(100, 30) if
hierarchy = TRUE.

If data is specified (i.e., not NA), the first entry of horizon is ignored and the
(coarse-scale) time horizon is defined by available data.
Only relevant if hierarchy = TRUE and horizon[2] = NA.
In this case, a character which specifies a flexible, periodic fine-scale time
horizon and can be one of

e "w" for a week,

e "m" for a month,

e "q" for a quarter,

e "y" for a year.

By default, period = "m" if hierarchy = TRUE and horizon[2] = NA, and NA
else.

Either NA, in which case data is simulated (the default), or a 1ist of controls
specifying the empirical data set.
The 1ist can contain the following elements, which are described in more detail
below:

» file, defines the data set,

* date_column, defines the date column,

¢ data_column, defines the data column,

26

file

date_column

data_column

from

to

logreturns

merge

set_controls

e from, defines a lower date limit,

* to, defines an upper date limit,

* logreturns, defines a data transformation to log-returns,
* merge, defines the merging for coarse-scale observations.

Either none, all, or selected elements can be specified.
Unspecified parameters are set to their default values, see below.
Specifications in data override individual specifications.

A data.frame with data and dates for modeling.

If hierarchy = TRUE, file can be a list of length 2. The first entry is a
data.frame and provides the data for the coarse-scale layer, while the second
entry corresponds to the fine-scale layer. If file is a single data.frame, then
the same data. frame is used for both layers.

Alternatively, it can be a character (of length two), the path to a .csv-file with
financial data.

A character, the name of the column in file with dates.

If hierarchy = TRUE and file is a 1list of two data.frames, data_column
must be a vector of length 2. The first entry corresponds to the coarse-scale
layer, while the second entry corresponds to the fine-scale layer.

By default, date_column = "Date”.

A character, the name of the column in file with observations.

If hierarchy = TRUE, data_column must be a vector of length 2. The first
entry corresponds to the coarse-scale layer, while the second entry corresponds
to the fine-scale layer.

By default, data_column = "Close"” if hierarchy = FALSE and data_column =
c("Close"”, "Close") if hierarchy = TRUE.

A character of the format "YYYY-MM-DD", setting a lower date limit. No lower
limit if from = NA (default).

A character of the format "YYYY-MM-DD", setting an upper date limit. No lower
limit if to = NA (default).

A logical, if TRUE the data is transformed to log-returns.

If hierarchy = TRUE, logreturns must be a vector of length 2. The first entry
corresponds to the coarse-scale layer, while the second entry corresponds to the
fine-scale layer.

By default, logreturns = FALSE if hierarchy = FALSE and logreturns = c(FALSE,

FALSE) if hierarchy = TRUE.

Only relevant if hierarchy = TRUE.
In this case, a function which merges an input numeric vector of fine-scale data
x into one coarse-scale observation. For example,
e merge = function(x) mean(x) (default) defines the mean of the fine-scale
data as the coarse-scale observation,
¢ merge = function(x) mean(abs(x)) for the mean of the absolute values,
e merge = function(x) sum(abs(x)) for the sum of the absolute values,
* merge = function(x) (tail(x, 1) - head(x, 1)) / head(x, 1) for the rel-
ative change of the first to the last fine-scale observation.

set_controls

fit

runs

origin

accept

gradtol

iterlim

print.level

steptol

X, object

Details

27

A list of controls specifying the model fitting.
The 1ist can contain the following elements, which are described in more detail
below:
* runs, defines the number of numerical optimization runs,
* origin, defines initialization at the true parameters,
* accept, defines the set of accepted optimization runs,
* gradtol, defines the gradient tolerance,
e iterlim, defines the iteration limit,
* print.level, defines the level of printing,
* steptol, defines the minimum allowable relative step length.
Either none, all, or selected elements can be specified.
Unspecified parameters are set to their default values, see below.
Specifications in fit override individual specifications.
An integer, setting the number of randomly initialized optimization runs of the
model likelihood from which the best one is selected as the final model.
By default, runs = 100.
Only relevant for simulated data, i.e., if data is NA.

In this case, a logical. If origin = TRUE the optimization is initialized at the
true parameter values. This sets run = 1 and accept = 1:5.

By default, origin = FALSE.

An integer (vector), specifying which optimization runs are accepted based on
the output code of nlm.

By default, accept = 1:3.

A positive numeric value, specifying the gradient tolerance, passed on to nlm.
By default, gradtol = 1e-6.

A positive integer value, specifying the iteration limit, passed on to nlm.
By default, iterlim = 200.

One of 9, 1, and 2 to control the verbosity of the numerical likelihood optimiza-
tion, passed on to nlm.

By default, print.level = 0.

A positive numeric value, specifying the step tolerance, passed on to nlm.
By default, gradtol = 1e-6.

An object of class fHMM_controls.

Currently not used.

See the vignette on controls for more details.

Value

An object of class fHMM_controls, which is a 1ist that contains model and estimation specifica-

tions.

https://loelschlaeger.de/fHMM/articles/

28 simulate_hmm

Examples

2-state HMM with t-distributions for simulated data
set_controls(

states = 2, # the number of states
sdds = "t", # the state-dependent distribution
runs = 50 # the number of optimization runs

3-state HMM with normal distributions for the DAX closing prices
set_controls(

states =3,

sdds = "normal”,

file = download_data(""“GDAXI"), # the data set

date_column = "Date”, # the column with the dates
data_column = "Close" # the column with the data

hierarchical HMM with Gamma and Poisson state distributions
set_controls(

hierarchy = TRUE, # defines a hierarchy

states = c(3, 2), # coarse scale and fine scale states
sdds = c("gamma”, "poisson”), # distributions for both layers

horizon = c(100, NA), # 100 simulated coarse-scale data points
period = "m" # monthly simulated fine-scale data

hierarchical HMM with data from .csv-file
set_controls(
hierarchy = TRUE,

states = c(3, 2),
sdds = c("t", "ty
file = c(

system.file("extdata”, "dax.csv"”, package = "fHMM"),
system.file("extdata”, "vw.csv", package = "fHMM")

) ’
date_column = c("Date”, "Date"),
data_column = c("Close”, "Close"),
logreturns = c(TRUE, TRUE)
)
simulate_hmm Simulate data
Description

This helper function simulates HMM data.

simulate_hmm 29

Usage

simulate_hmm(
controls = list(),
hierarchy = FALSE,
states = if (!hierarchy) 2 else c(2, 2),
sdds = if (!hierarchy) "normal” else c("normal”, "normal”),
horizon = if (!hierarchy) 100 else c(100, 30),
period = if (hierarchy && is.na(horizon[2])) "m" else NA,
true_parameters = fHMM_parameters(controls = controls, hierarchy = hierarchy, states =
states, sdds = sdds),
seed = NULL

Arguments

controls Either a 1ist or an object of class fHMM_controls.
The 1ist can contain the following elements, which are described in more detail
below:
¢ hierarchy, defines an hierarchical HMM,
e states, defines the number of states,
* sdds, defines the state-dependent distributions,
¢ horizon, defines the time horizon,
* period, defines a flexible, periodic fine-scale time horizon,
e data, a 1list of controls that define the data,
* fit, alist of controls that define the model fitting

Either none, all, or selected elements can be specified.
Unspecified parameters are set to their default values, see below.
Specifications in controls override individual specifications.

hierarchy A logical, set to TRUE for an hierarchical HMM.

If hierarchy = TRUE, some of the other controls must be specified for the coarse-
scale and the fine-scale layer.

By default, hierarchy = FALSE.

states An integer, the number of states of the underlying Markov chain.

If hierarchy = TRUE, states must be a vector of length 2. The first entry
corresponds to the coarse-scale layer, while the second entry corresponds to the
fine-scale layer.

By default, states = 2if hierarchy = FALSE and states = c(2, 2) ifhierarchy
= TRUE.
sdds A character, specifying the state-dependent distribution. One of
e "normal” (the normal distribution),
* "lognormal” (the log-normal distribution),
e "t" (the t-distribution),
e "gamma” (the gamma distribution),
e "poisson” (the Poisson distribution).

30

horizon

period

true_parameters

seed

Value

simulate_hmm

The distribution parameters, i.e. the

* mean mu,
* standard deviation sigma (not for the Poisson distribution),
* degrees of freedom df (only for the t-distribution),
can be fixed via, e.g., "t(df =1)" or "gamma(mu = @, sigma=1)". To fix dif-
ferent values of a parameter for different states, separate by "I", e.g. "poisson(mu
=112]3)".
If hierarchy = TRUE, sdds must be a vector of length 2. The first entry cor-

responds to the coarse-scale layer, while the second entry corresponds to the
fine-scale layer.

By default, sdds = "normal” if hierarchy = FALSE and sdds = c("normal”,
"normal”) if hierarchy = TRUE.
A numeric, specifying the length of the time horizon.

If hierarchy = TRUE, horizon must be a vector of length 2. The first entry
corresponds to the coarse-scale layer, while the second entry corresponds to the
fine-scale layer.

By default, horizon = 100 if hierarchy = FALSE and horizon = c(100, 30) if
hierarchy = TRUE.

If data is specified (i.e., not NA), the first entry of horizon is ignored and the
(coarse-scale) time horizon is defined by available data.
Only relevant if hierarchy = TRUE and horizon[2] = NA.
In this case, a character which specifies a flexible, periodic fine-scale time
horizon and can be one of

e "w" for a week,

* "m" for a month,

e "q" for a quarter,

e "y" for a year.

By default, period = "m" if hierarchy = TRUE and horizon[2] = NA, and NA
else.

An object of class fHMM_parameters, used as simulation parameters. By de-
fault, true_parameters = NULL, i.e., sampled true parameters.

Set a seed for the data simulation. No seed per default.

A list containing the following elements:

e time_points, the vector (or matrix in the hierarchical case) of time points,

¢ markov_chain, the vector (or matrix in the hierarchical case) of the simulated states,

* data, the vector (or matrix in the hierarchical case) of the simulated state-dependent obser-

vations,

e T_star, the numeric vector of fine-scale chunk sizes in the hierarchical case

sim_model_2gamma 31

Examples
simulate_hmm(states = 2, sdds = "normal”, horizon = 10)
sim_model_2gamma Simulated 2-state HMM with gamma distributions
Description

A pre-computed 2-state HMM with state-dependent gamma distributions with means fixed to 0.5
and 2 on 500 simulated observations.

Usage

data("sim_model_2gamma”)

Format

An object of class fHMM_model.

Details

The model was estimated via:

controls <- set_controls(

states = 2,

sdds = "gamma(mu = 1]2)",
horizon = 200,

fit = list(runs = 50)

)

pars <- fHMM_parameters(
controls = controls,
Gamma = matrix(c(0.9, 0.2, 0.1, 0.8), nrow = 2),
sigma = c(0.5, 1)
)
data_sim <- prepare_data(controls, true_parameters = pars, seed = 1)
sim_model_2gamma <- fit_model(data_sim, seed = 1)

32 spx

sim_model_4lnorm Simulated 4-state HMM with log-normal distributions

Description

A pre-computed 4-state HMM with state-dependent log-normal distributions on 1000 simulated
observations.

Usage

data(”sim_model_41lnorm™)

Format

An object of class fHMM_model.

Details

The model was estimated via:

controls <- set_controls(

states = 4,

sdds = "lognormal”,
horizon = 1000,

fit = list(runs = 50)

)

data_sim <- prepare_data(controls, seed = 1)
sim_model_4lnorm <- fit_model(data_sim, seed = 1)

Spx Standard & Poor’s 500 (S&P 500) index data

Description

Standard & Poor’s 500 (S&P 500) index data from 1928 to 2022 from Yahoo Finance.

Usage

Spx

unemp 33

Format

A data. frame with 23864 rows and the following 7 columns:
* Date: The date.
* Open: Opening price.
* High: Highest price.
* Low: Lowest price.
* Close: Close price adjusted for splits.
* Adj.Close: Close price adjusted for dividends and splits.

¢ Volume: Trade volume.

Details

The data was obtained via:

spx <- download_data(

symbol = "~GSPC", # S&P 500 identifier on Yahoo Finance
from = "1928-01-01", # first observation
to = "2022-12-31" # last observation

)

The data is also available as . csv file via:

system.file("extdata”, "spx.csv”, package = "fHMM")

Source

https://finance.yahoo.com/quote/%5EGSPC

unemp Unemployment rate data USA

Description

The monthly unemployment rate in the USA from 1955 to 2022 on a daily observation basis.

Usage

unemp

Format
A data. frame with 24806 rows and the following 3 columns:

* date: The date.
* rate: The unemployment rate.

* rate_diff: The difference rate to previous month.

https://finance.yahoo.com/quote/%5EGSPC

34

Source

OECD (2023), Unemployment rate (indicator). doi: 10.1787/52570002-en (Accessed on 18 January
2023) https://data.oecd.org/unemp/unemployment-rate.htm

unemp_spx_model_3_2 Unemployment rate and S&P 500 hierarchical HMM

Description

A pre-computed HHMM with monthly unemployment rate in the US on the coarse scale using 3
states and S&P 500 index data on the fine scale using 2 states from 1970 to 2020 for demonstration

purpose.

Usage

data("unemp_spx_model_3_2")

Format

An object of class fHMM_model.

Details

The model was estimated via:

controls <- set_controls(
hierarchy = TRUE,

states = ¢c(3, 2),

sdds = c("t", "t"),

period = "m",

data = list(
file = list(unemp, spx),
date_column = c("date”, "Date"),
data_column = c("rate_diff"”, "Close"),
from = "1970-01-01",
to = "2020-01-01",
logreturns = c(FALSE, TRUE)

),

fit = list(
runs = 200,
iterlim = 300

)

)

unemp_spx_data <- prepare_data(controls)

unemp_spx_model_3_2 <- fit_model (unemp_spx_data)

unemp_spx_model_3_2

https://data.oecd.org/unemp/unemployment-rate.htm

vw

35

VW

Volkswagen AG (VW) stock data

Description

Volkswagen AG (VW) stock data from 1998 to 2022 from Yahoo Finance.

Usage

VW

Format

A data. frame with 6260 rows and the following 7 columns:

Details

Date: The date.

Open: Opening price.

High: Highest price.

Low: Lowest price.

Close: Close price adjusted for splits.

Adj.Close: Close price adjusted for dividends and splits.

Volume: Trade volume.

The data was obtained via:

vw <- download_data(
symbol = "VOW3.DE", # Volkswagen AG identifier on Yahoo Finance
from = "1988-07-22", # first observation
to = "2022-12-31" # last observation

)

The data is also available as . csv file via:

system.file("extdata”, "vw.csv”, package = "fHMM")

Source

https://finance.yahoo.com/quote/vow3.de

https://finance.yahoo.com/quote/vow3.de

Index

+ data
dax, 4
spx, 32
unemp, 33
vw, 35

+ model
dax_model_2n, 5
dax_model_3t, 5
dax_vw_model, 6
sim_model_2gamma, 31
sim_model_41lnorm, 32
unemp_spx_model_3_2, 34

AIC, I3
AIC.fHMM_model (fHMM_model), 12

BIC.fHMM_model (fHMM_model), 12

coef. fHMM_model (fHMM_model), 12
compare_models, 2
compute_residuals, 3

dax, 4

dax_model_2n, 5
dax_model_3t, 5
dax_vw_model, 6
decode_states, 7
download_data, 8

fHMM_data, 10, 13, 16, 17, 22

fHMM_events, 11, 20, 21

fHMM_model, 2, 3, 5-8, 12,12, 13,17, 21, 23,
31, 32,34

fHMM_parameters, 14

fit_model, 16

11_hmm, 18
loglLik.fHMM_model (fHMM_model), 12

nlm, 13,27
nobs. fHMM_model (fHMM_model), 12

36

npar (fHMM_model), 12

plot.fHMM_data, 20

plot.fHMM_model, 21

predict.fHMM_model (fHMM_model), 12

prepare_data, 22

print.fHMM_controls (set_controls), 23

print.fHMM_data (fHMM_data), 10

print.fHMM_events (fHMM_events), 11

print.fHMM_model (fHMM_model), 12

print.fHMM_parameters
(fHMM_parameters), 14

reorder_states, 22
residuals. fHMM_model (fHMM_model), 12

set_controls, 23

sim_model_2gamma, 31
sim_model_41lnorm, 32

simulate_hmm, 28

spx, 32

summary . fHMM_controls (set_controls), 23
summary . fHMM_data (fHMM_data), 10
summary . fHMM_model (fHMM_model), 12

unemp, 33
unemp_spx_model_3_2, 34

validate_controls (set_controls), 23
viterbi (decode_states), 7
vw, 35

	compare_models
	compute_residuals
	dax
	dax_model_2n
	dax_model_3t
	dax_vw_model
	decode_states
	download_data
	fHMM_data
	fHMM_events
	fHMM_model
	fHMM_parameters
	fit_model
	ll_hmm
	plot.fHMM_data
	plot.fHMM_model
	prepare_data
	reorder_states
	set_controls
	simulate_hmm
	sim_model_2gamma
	sim_model_4lnorm
	spx
	unemp
	unemp_spx_model_3_2
	vw
	Index

