Package ‘gRbase’

November 29, 2023

Version 2.0.1

Title A Package for Graphical Modelling in R

Author Sgren Hgjsgaard <sorenh@math.aau.dk>

Maintainer Sgren Hgjsgaard <sorenh@math.aau.dk>

Description The 'gRbase' package provides graphical modelling features
used by e.g. the packages 'gRain’, 'gRim' and 'gRc'. 'gRbase’ implements
graph algorithms including (i) maximum cardinality search (for marked
and unmarked graphs).
(i1) moralization, (iii) triangulation, (iv) creation of junction tree.
'gRbase’ facilitates array operations,
'gRbase’ implements functions for testing for conditional independence.
'gRbase’ illustrates how hierarchical log-linear models may be
implemented and describes concept of graphical meta
data.
The facilities of the package are documented in the book by Hgjsgaard,
Edwards and Lauritzen (2012,
<doi:10.1007/978-1-4614-2299-0>) and in the paper by
Dethlefsen and Hgjsgaard, (2005, <doi:10.18637/jss.v014.i117>).
Please see 'citation(""gRbase")' for citation details.

LazyData true
License GPL (>=2)

URL https://people.math.aau.dk/~sorenh/software/gR/
ByteCompile Yes

Encoding UTF-8

VignetteBuilder knitr

Depends R (>= 3.6.0), methods

Imports stats4, igraph, magrittr, Matrix, Repp (>=0.11.1)
Suggests testthat (>= 2.1.0), microbenchmark, knitr

LinkingTo Rcpp (>=0.11.1), ReppEigen, RecppArmadillo
RoxygenNote 7.2.3

NeedsCompilation yes

https://doi.org/10.1007/978-1-4614-2299-0
https://doi.org/10.18637/jss.v014.i17
https://people.math.aau.dk/~sorenh/software/gR/

2 R topics documented:

Repository CRAN
Date/Publication 2023-11-29 14:00:05 UTC

R topics documented:

all_pairs 3
all_subsets e 4
api-array-07 L. 4
api-array-properties e e e e e e e e e 6
api-cell . . . L e 7
api-cell_ L 8
API-PATTAY .« o o v v e e e e e e e e e e e e e e 9
API-PCL-OPETAtIONS v v v v v e e e e e e e e e e e e e e e e e 11
api-tabDist. L. 12
api-tabNew L e e e 14
api-tabX . . L e e e 15
api-tabX_ . . . L e 16
api_tabSlice e e e 17
array-simulate L L oL e e e 18
compareModels 20
COVZPCOT v v v v v e 20
dag2chol e e 21
data-ashtrees L. e e e e 22
data-BodyFat e 23
data-breastcancer e e e e e e 24
data-carcass e e e e e e e e e e 25
data-chestSim 26
data-dietoX e e 27
data-dumping L 27
data-lizard 28
data-mathmark oL 29
data-mildew e e e e 30
data-milkcomp e e e e e 30
data-Nutrimouse e e e e e 31
data-personality L. 32
data-rats e e 33
data-reinis e e e e e e e e e e e e e e 34
data-wine e e e e e e e e e 34
data_cad e 35
downstream-aliases e e e e e e e e e e 37
fastcombn L e e e e 37
emwr_booK e e e e 38
graph-clique L 39
graph-COCTCE o i i it e e 40
Graph-COGTCE-APT v v v v v e i e e e e e e e e e e e e e 41
graph-Create e e e e e e 42

graph-edgelist L 43

all_pairs 3
graph-geproperties o e e e e e e e e e 44
graph-mCs e e 46
graph-min-triangulate 48
graph-moralize 49
graph-mpd e 51
graph-randomdag L 52
graph-rip e 53
graph-triangulate L. e e 55
graph_coerce_list L 57
graph_iplot 59
graph_iS L e e 60
Sraph_qUETY o e e e e e e e 62
graph_topo_SOrt L e e 64
graph_vpar e e 65
gRbase e 66
grbase-utilities 67
grbase_@eNneriCso e 69
internal L e e e 70
SEL-OPETALIONS . .+ . v v v v v e e e e e e e e e e e e e e e e e e e 70
ug2dag 72

Index 73

all_pairs Create all possible pairs

Description

Create all possible pairs of two character vectors.

Usage
all_pairs(x, y = character(@), sort = FALSE, result = "matrix")
names2pairs(x, y = NULL, sort = TRUE, result = "list")
Arguments
X,y Character vectors.
sort Logical.
result A list or a matrix.
Details

NOTICE: If y is not NULL then x and y must be disjoint (no checks are made); otherwise pairs of
identical elements wil also be obtained.

4 api-array-07

Author(s)

Segren Hgjsgaard, <sorenh@math.aau.dk>

Examples

x <- letters[1:4]
y <- letters[5:7]

all_pairs(x)
all_pairs(x, result="matrix")

all_pairs(x, y)
all_pairs(x, y, result="matrix")

all_subsets Create all subsets

Description

Create all subsets of a vector

Usage
all_subsets(x)
all_subsets@(x)

Arguments

X Vector

Author(s)

Sgren Hgjsgaard, <sorenh@math.aau.dk>

api-array-o7 Array operations (2007)

Description

Array operations; created to facilitate the gRain package in 2007. Now largely replaceable by other
(often faster) functions implemented in Repp.

api-array-07 5
Usage
tablePerm(tab, perm, resize = TRUE, keep.class = FALSE)
tableMult(tabl, tab2)
tableDiv(tabl, tab2)
tableOp(tab1, tab2, op = "*x")
tableOp2(tab1, tab2, op = “*‘, restore = FALSE)
tableOp@(tabl, tab2, op = “*%)
tableSlice(tab, margin, level, impose)
tableSlicePrim(tab, mar.idx, lev.idx)
tableMargin(tab, margin, keep.class = FALSE)

FALSE)

tableGetSliceIndex(tab, margin, level, complement

tableSetSliceValue(tab, margin, level, complement = FALSE, value = 0)

Arguments

tab, tab1, tab2 Arrays with named dimnames.

perm A permutation; either indices or names.
resize A flag indicating whether the vector should be resized as well as having its
elements reordered (default TRUE).

keep.class Obsolete argument.
op The operation; choices are "x", "/", "+" "-".
restore Not so clear anymore.
margin Index or name of margin.
level Corresponding level of margin.
impose Value to be imposed.
mar.idx Index of margin
lev.idx Index of level
complement Should values be set for the complement?
value Which value should be set

Details

tableOp® is brute force implementation based on dataframes. It is very slow, but useful for error
checking.

6 api-array-properties

api-array-properties Check if object is array

Description

Check if object is array (that it is a vector with a dim attribute) and that the object has dimnames
and that dimnames are named.

Usage

is.named.array(obj)
is_named_array_(obj)
is_number_vector_(obj)
is_dimnames_(obj)

dimnames_match(al, a2)

Arguments

obj Some R object.

al, a2 Arrays with named dimnames.
Author(s)

Sgren Hgjsgaard, <sorenh@math.aau.dk>

Examples

is.named.array(HairEyeColor)
is.named.array(matrix(1:4, nrow=2))
is_named_array_(HairEyeColor)
is_named_array_(matrix(1:4, nrow=2))
is_number_vector_(1:4)
is_number_vector_(list(1:4))

ar1l = tabNew(c("a", "b"), levels=c(2, 3))
ar2 = tabNew(c("c", "a"), levels=c(2, 2))
arl
ar2

dimension a has levels al,a2 in both arl and ar2.
Hence we have a match.
dimnames_match(ar1, ar2)

ar1l = tabNew(c("a", "b"), levels=c(2, 3))
ar2 = tabNew(c("c", "a"), levels=c(2, 3))
arl

api-cell

ar2

dimension a has levels al,a2 in arl and levels al,a2,a3 in ar2.
Hence we do not have a match.

dimnames_match(ar1, ar2)

ar2 = tabNew(c("c", "a"), levels=list(c=c("c1", "c2"), a=c("a2", "al")))
ar2

dimension a has levels al,a2 in arl and levels a2,al in ar2.

Hence we do not have a match.

dimnames_match(ar1, ar2)

api-cell Table cell operations.

Description

Low level table cell operations.

Usage

cell2entry(cell, dim)

entry2cell(entry, dim)

next_cell(cell, dim)

next_cell2(cell, dim)
next_cell_slice(cell, dim, slice_marg)
slice2entry(slice_cell, slice_marg, dim)
cell2entry_perm(cell, dim, perm)
perm_cell_entries(perm, dim)

fact_grid(dim, slice_cell = NULL, slice_marg = NULL)

Arguments
cell Vector giving the cell, e.g. c(1, 1, 2) in 3-way table.
dim Vector giving array dimension, eg c(2, 2, 2).
entry An entry in an array (a number indexing a vector).
slice_marg Vector giving the margin of a table, eg. c(2, 3)
slice_cell Vector giving the corresponding cell of marginal table, e.g. c(1, 2)

perm Vector giving permutaion of array, eg. c(1, 3, 2).

8 api-cell_

Examples

di <- c(2, 2, 3)

cell2entry(c(1, 1, 1), dim=di)
cell2entry(c(2, 2, 3), dim=di)

entry2cell (1, dim=di)
entry2cell(12, dim=di)

next_cell(c(1, 1, 1), dim=di)
next_cell(c(2, 1, 1), dim=di)

The first two entries are kept fixed
next_cell_slice(c(2, 1, 1), dim=di, slice_marg=c(1, 2))
next_cell_slice(c(2, 1, 2), dim=di, slice_marg=c(1, 2))

Cell (2, 2, 1) corresponds to entry 4
cell2entry(c(2, 2, 1), dim=di)

Same as

cell2entry_perm(c(2, 2, 1), dim=di, perm=c(1, 2, 3))
If the table dimensions are permuted as (3, 1, 2)
the entry becomes

cell2entry_perm(c(2, 2, 1), dim=di, perm=c(3, 1, 2))

api-cell_ Low level table cell operations implemented in c++

Description

Corresponding R functions without the trailing underscore exist.
Usage

cell2entry_(cell, dim)

make_plevels_(dim)

entry2cell_(entry, dim)

next_cell_(cell, dim)

next_cell2_(cell, dim)

next_cell_slice_(cell, dim, slice_marg)

slice2entry_(slice_cell, slice_marg, dim)

api-parray

cell2entry_perm_(cell, dim, perm)

perm_cell_entries_(perm, dim)

Arguments

cell Vector giving the cell, e.g. c(1, 1, 2) in 3-way table.

dim Vector giving array dimension, eg c(2, 2, 2).

entry An entry in an array (a number indexing a vector).

slice_marg Vector giving the margin of a table, eg. c(2, 3)

slice_cell Vector giving the corresponding cell of marginal table, e.g. c(1, 2)

perm Vector giving permutaion of array, eg. c(1, 3, 2).

api-parray Representation of and operations on multidimensional arrays

Description

General representation of multidimensional arrays (with named dimnames, also called named ar-

rays.)
Usage
parray(varNames, levels, values = 1, normalize = "none”, smooth = 0)
as.parray(values, normalize = "none"”, smooth = @)
data2parray(data, varNames = NULL, normalize = "none", smooth = @)
makeDimNames(varNames, levels, sep = "")
Arguments
varNames Names of variables defining table; can be a right hand sided formula.
levels Either 1) a vector with number of levels of the factors in varNames or 2) a
list with specification of the levels of the factors in varNames. See ’examples’
below.
values Values to go into the array
normalize Either "none", "first" or "all". Should result be normalized, see ’Details’ below.
smooth Should values be smoothed, see ’Details’ below.
data Data to be coerced to a parray; can be data. frame, table, xtabs, matrix.
sep Desired separator in dim names; defaults to "".

10 api-parray

Details

A named array object represents a table defined by a set of variables and their levels, together with
the values of the table. E.g. f(a,b,c) can be a table with a,b,c representing levels of binary variable

If normalize="first" then for each configuration of all other variables than the first, the proba-
bilities are normalized to sum to one. Thus f(a,b,c) becomes a conditional probability table of the
form p(alb,c).

If normalize="all" then the sum over all entries of f(a,b,c) is one.

If smooth is positive then smooth is added to values before normalization takes place.

Value

A anamed array.

Author(s)

Sg¢ren Hgjsgaard, <sorenh@math.aau.dk>

See Also

is.named.array

Examples

non

t1 <- parray(c("gender”,"answer"), list(c('male','female'),c('yes','no')), values=1:4)
t1 <- parray(~gender:answer, list(c('male', 'female'),c('yes','no')), values=1:4)

t1 <- parray(~gender:answer, c(2,2), values=1:4)

t2 <- parray(c("answer”,"category"), list(c('yes','no'),c(1,2)), values=1:4+10)

t3 <- parray(c(”category"”,"foo"), c(2,2), values=1:4+100)

varNames(t1)
nLevels(t1)
valuelabels(t1)

Create 1-dimensional vector with dim and dimnames
x1 <- 1:5

as.parray(x1)

x2 <- parray("x", levels=length(x1), values=x1)
dim(x2)

dimnames(x2)

Matrix

x1 <- matrix(1:6, nrow=2)

as.parray(x1)

parray(~a:b, levels=dim(x1), values=x1)

Extract parrays from data
1) a dataframe
data(cadl)

api-pct-operations 11

data2parray(cadl, ~Sex:AngPec:AMI)

data2parray(cadl, c("Sex","AngPec”,"AMI"))
dataz2parray(cadil, c(1,2,3))

2) a table

data2parray(UCBAdmissions,c(1,2), normalize="first")

api-pct-operations Array algebra

Description

Addition, subtraction etc. of arrays

Usage

al %a+% a2

al %a-% a2

al %a*% a2

al %a/% a2

al %a/0% a2

tab1 %a_% marg

tab1 %a==% tab2
tabl %a*% extra
tab1 %aperm% perm
tab1 %aalign% tab2
tab1 %aslice% slice
tab1 %aslice*% slice

tab1l %amarg% marg

Arguments
tab1, tab2 Multidimensional arrays with named dimnames (we call them 'named arrays’).
marg A vector of indices or dimnames or a right hand sided formula giving the desired

marginal.

extra List defining the extra dimensions.

12 api-tabDist

perm A vector of indices or dimnames or a right hand sided formula giving the desired
permutiation.
slice A list of the form name=value.
a, al, a2 Arrays (with named dimnames)
Author(s)

Segren Hgjsgaard, <sorenh@math.aau.dk>

Examples

hec <- HairEyeColor

al <- tabMarg(hec, c("Hair", "Eye"))
a2 <- tabMarg(hec, c("Hair", "Sex"))
a3 <- tabMarg(hec, c("Eye"”, "Sex"))

Binary operations
al %a+% a2
al %a-% a2
al %a*% a2
al %a/% a2

api-tabDist Marginalize and condition in multidimensional array.

Description
Marginalize and condition in a multidimensional array which is assumed to represent a discrete
multivariate distribution.

Usage
tabDist(tab, marg = NULL, cond = NULL, normalize = TRUE)

Arguments
tab Multidimensional array with dimnames.
marg A specification of the desired margin; a character vector, a numeric vector or a
right hand sided formula.
cond A specification of what is conditioned on. Can take two forms: Form one is a a
character vector, a numeric vector or a right hand sided formula. Form two is as
a simple slice of the array, which is a list of the form varl=valuel, var2=value2
etc.
normalize Should the result be normalized to sum to 1.
Value

A multidimensional array.

api-tabDist

Author(s)

Segren Hgjsgaard, <sorenh@math.aau.dk>

Examples

hec <- HairEyeColor

is.named.array(hec)
We need dimnames, and names on the dimnames

Marginalize:

tabDist(hec,
tabDist(hec,
tabDist (hec,
tabDist (hec,

tabDist(hec,

Condition
tabDist(hec,
tabDist (hec,
tabDist(hec,
tabDist(hec,

tabDist(hec,
tabDist(hec,

Not run:

This will
tabDist (hec,
tabDist(hec,

marg= ~Hair + Eye)
marg= ~Hair:Eye)

marg= c("Hair", "Eye"))
marg= 1:2)

marg= ~Hair + Eye, normalize=FALSE)

cond= ~Sex + Hair)
cond= ~Sex:Hair)

cond= c("Sex", "Hair"))
cond= c(3,1))

cond= list(Hair="Black"))
cond= list(Hair=1))

fail
cond= list(Hair=c("”"Black"”, "Brown")))
cond= list(Hair=1:2))

End(Not run)

But this will do the trick

a <- tabSlice(hec, slice=list(Hair=c("Black"”, "Brown")))
tabDist(a, cond=~Hair)

Combined
tabDist(hec,
tabDist(hec,

tabDist (hec,
tabDist(hec,

tabDist(hec,
tabDist(hec,

marg=~Hair+Eye, cond=~Sex)
marg=~Hair+Eye, cond="Sex")

marg=~Hair+Eye, cond=list(Sex="Male"))
marg=~Hair+Eye, cond=list(Sex="Male"), normalize=FALSE)

cond=1list(Sex="Male"))
cond=list(Sex="Male"), normalize=FALSE)

13

14 api-tabNew

api-tabNew Create multidimensional arrays

Description

Alternative ways of creating arrays

Usage
tabNew(names, levels, values, normalize = "none"”, smooth = @)

Arguments
names Names of variables defining table; either a character vector or a right hand sided

formula.
levels 1. a list with specification of the levels of the factors in names or 2) a vector
with number of levels of the factors in names. See "examples’ below.

values values to go into the array.
normalize Either "none", "first" or "all". Should result be normalized, see ’Details’ below.
smooth Should values be smoothed, see ’Details’ below.

Details

1. If normalize="first" then for each configuration of all other variables than the first, the
probabilities are normalized to sum to one. Thus f(a, b, ¢) becomes a conditional probability
table of the form p(a | b, ¢).

2. If normalize="all" then the sum over all entries of f(a,b,c) is one.
3. If smooth is positive then smooth is added to values BEFORE normalization takes place.
Value

An array.

Author(s)

Segren Hgjsgaard, <sorenh@math.aau.dk>

Examples
universe <- list(gender=c('male', 'female'),
answer=c('yes', 'no'),
rain=c('yes', 'no'))
t1 <- tabNew(c("gender”, "answer"), levels=universe, values=1:4)
t1

t2 <- tabNew(~gender:answer, levels=universe, values=1:4)
t2

api-tabX

t3 <- tabNew(~gender:answer, c(2, 2), values=1:4)
t3

api-tabX Interface - operations on multidimensional arrays.

Description

Interface functions and minor extensions to cpp functions.
Usage

tabAdd(tab1, tab2)

tabAlign(tab1, tab2)

tabDiv(tab1l, tab2)

tabDiv@(tab1, tab2)

tabOp(tabl1, tab2, op = "x")

tabEqual(tab1, tab2, eps = 1e-12)

tabExpand(tab, aux, type = QL)
tabMult(tab1, tab2)
tabSubt(tab1, tab2)
tabListMult(1st)
tabListAdd(1st)

tabPerm(tab, perm)
tabMarg(tab, marg = NULL)
tabSum(tab, ...)

tabProd(tab, ...)

tabNormalize(tab, type = "none")

Arguments

op The algebraic operation to be carried out.

16 api-tabX_

eps Criterion for checking equality of two arrays.
tab, tab1, tab2, ...
Arrays with named dimnames (we call them "named arrays’).

aux Either a list with names and dimnames or a named array from which such a list
can be extracted.

type If O then entries are duplicated. If 3 then averages are computed. If 2 then 0
slices are inserted.

1st List of arrays.

perm, marg A vector of indices or dimnames or a right hand sided formula giving the desired
permutation/margin.

api-tabX_ Table operations implemented in c++
Description

Table operations implemented in c++. Corresponding R functions without the trailing underscore
exist.

Usage

tab_perm_(tab, perm)
tab_expand_(tab, aux, type = 0L)
tab_align_(tab1, tab2)
tab_marg_(tab, marg)
tab_op_(tab1, tab2, op = "*")
tab_add_(tab1, tab2)
tab_subt_(tab1, tab2)
tab_mult_(tabl, tab2)
tab_div_(tab1, tab2)
tab_dive_(tabl, tab2)
tab_equal_(tabl, tab2, eps = 1e-12)
tab_list_mult_(1lst)

tab_list_add_(1lst)

api_tabSlice

Arguments

tab, tab1, tab2

perm, marg
aux

type

op

eps

1st

17

Tables (arrays)

A vector of indices or dimnames or a right hand sided formula giving the desired
permutation/margin.

Either a list with names and dimnames or a named array from which such a list
can be extracted.

If O then entries are duplicated. If 3 then averages are computed. If 2 then 0
slices are inserted.

The operation to be carried out; "+", "-", "*" "/".
Criterion for checking equality of two arrays.

List of arrays.

api_tabSlice

Array slices

Description

Functions for extracting slices of arrays

Usage

tabSlice(
tab,
slice = NULL,

margin = names(slice),

drop = TRUE,

as.array = FALSE

)

tabSlice2(tab, slice, margin.idx, drop = TRUE, as.array = FALSE)

tabSlicePrim(tab, slice, drop = TRUE)

tabSliceMult(tab, slice, val = 1, comp = @)

tabSlice2Entries(tab, slice, complement = FALSE)

Arguments
tab
slice
margin

drop

An array with named dimnames.
A list defining the slice.
Names of variables in slice.

If TRUE then dimensions with only one level will be dropped from the output.

18

as.array

margin.idx
val

comp
complement

Author(s)

array-simulate

If the resulting array is one-dimensional the result will by default be a vector

with no dim attribute unless as.array is TRUE.
Indec of variables in slice.

The values that entries in the slice will be multiplied with.
The values that entries NOT in the slice will be multiplied with.

If TRUE the complement of the entries are returned.

Sgren Hgjsgaard, <sorenh@math.aau.dk>

Examples

n X
n o1

= HairEyeColor
list(Hair=c("Black”, "Brown"), Eye=c("Brown”, "Blue"))

s1 = tabSlice(x, slice=s); sl

tabSlice2Entries(x, slice=s)
tabSlice2Entries(x, slice=s, complement=TRUE)

tabSliceMult

s2 = tabSliceMult(x, slice=s); s2

sp = list(c(1,2), c(1,2), TRUE)
tabSlicePrim(x, slice=sp)
tabSlice(x, slice=s)

array-simulate

Simulate data from array.

Description

Simulate data (slice of) an array: Simulate n observations from the array x conditional on the

variables in margin (a vector of indices) takes values given by margin.value

Usage

simulateArray(x,

S3 method for class 'table'

simulate(object, nsim = 1, seed

S3 method for class 'xtabs'

simulate(object, nsim = 1, seed = NULL, margin, value.margin,

S3 method for class 'array'

simulate(object, nsim = 1, seed

nsim = 1, margin, value.margin, seed = NULL)

NULL, margin, value.margin,

NULL, margin, value.margin,

array-simulate 19

Arguments
X, object An array.
nsim Number of cases to simulate.

margin, value.margin
Specification of slice of array to simulate from.

seed Seed to be used for random number generation.

Additional arguments, currently not used.

Value

A matrix.

Note

The current implementation is fragile in the sense that it is not checked that the input argument x is
an array.

Author(s)

Sgren Hgjsgaard, <sorenh@math.aau.dk>

Examples

2x2 array
x <- parray(c("a", "b"), levels=c(2, 2), values=1:4)

Simulate from entire array
s <- simulateArray(x, 1000)
xtabs(~., as.data.frame(s))

Simulate from slice defined by that dimension 1 is fixed at level 2
s <-simulateArray(x, 6000, 1, 2)
xtabs(~., as.data.frame(s))

2 x 2 x 2 array

x <- parray(c("a", "b", "c"), levels=c(2, 2, 2), values=1:8)
Simulate from entire array

s <-simulateArray(x, 36000)

xtabs(~., as.data.frame(s))

Simulate from slice defined by that dimension 3 is fixed at level 1
s <-simulateArray(x, 10000, 3, 1)
xtabs(~., as.data.frame(s))

20 cov2pcor

compareModels Generic function for model comparison

Description
compareModels is a generic functions which invoke particular methods which depend on the class
of the first argument

Usage

compareModels(object, object2, ...)

Arguments

object, object2
Model objects

Additional arguments

Value

The value returned depends on the class of the first argument.

Author(s)

Segren Hgjsgaard, <sorenh@math.aau.dk>

cov2pcor Partial correlation (matrix)

Description

cov2pcor calculates the partial correlation matrix from an (empirical) covariance matrix while
conc2pcor calculates the partial correlation matrix from a concentration matrix (inverse covariance
matrix).

Usage

cov2pcor (V)

conc2pcor (K)

Arguments

v Covariance matrix

K Concentration matrix

dag2chol 21

Value

A matrix with the same dimension as V.

Author(s)

Segren Hgjsgaard, <sorenh@math.aau.dk>

Examples

data(math)
S <- cov.wt(math)$cov
cov2pcor(S)

dag2chol Create regression matrix matrix from DAG A DAG can be represented
as a triangular matrix of regression coefficients.

Description

Create regression matrix matrix from DAG A DAG can be represented as a triangular matrix of
regression coefficients.

Usage

dag2chol (object)
Arguments

object A graph, either a graphNEL or an igraph object.
Examples

g <- dag(~x2|x1 + x3|x1:x2 + x4]|x3)
dag2chol(g)

22 data-ashtrees

data-ashtrees Crown dieback in ash trees

Description

This dataset comes from a study of symptoms of crown dieback, cankers and symptoms caused by
other pathogens and pests in ash trees (Fraxinus excelsior). In all 454 trees were observed in two
plots. There are 8 categorical variables, 6 of which are binary and two are trichotomous with values
representing increasing severity of symptoms, and one continuous variable, tree diameter at breast
height (DBH).

Usage

data(ashtrees)

Format

A data frame with 454 observations on the following 9 variables.

plot a factor with levels 2 6

dieback a factor with levels @ 1 2

dead50 a factor with levels 0 0.5 1

bushy a factor with levels 0 1

canker a factor with levels BRNCH MAIN NONE
wilt a factor with levels @ 1

roses a factor with levels @ 1

discolour afactor with levels @ 1

dbh a numeric vector

References

Skovgaard JP, Thomsen IM, Skovgaard IM and Martinussen T (2009). Associations among symp-
toms of dieback in even-aged stands of ash (Fraxinus excelsior L.). Forest Pathology.

Examples

data(ashtrees)
head(ashtrees)

data-BodyFat 23

data-BodyFat Body Fat Data

Description

Estimates of the percentage of body fat determined by underwater weighing and various body cir-
cumference measurements for 252 men.

Usage

data(BodyFat)

data(BodyFat)

Format

A data frame with 252 observations on the following 15 variables.

Density Density determined from underwater weighing, a numeric vector
BodyFat Percent body fat from Siri’s (1956) equation, a numeric vector
Age in years, a numeric vector

Weight in Ibs, a numeric vector

Height in inches, a numeric vector

Neck circumference in cm, a numeric vector

Chest circumference in cm, a numeric vector

Abdomen circumference in cm, a numeric vector

Hip circumference in cm, a numeric vector

Thigh circumference in cm, a numeric vector

Knee circumference in cm, a numeric vector

Ankle circumference in cm, a numeric vector

Biceps circumference in cm, a numeric vector

Forearm circumference in cm, a numeric vector

Wrist circumference in cm, a numeric vector

Source

For more information see https://lib.stat.cmu.edu/datasets/bodyfat

24 data-breastcancer

References
Bailey, Covert (1994). Smart Exercise: Burning Fat, Getting Fit, Houghton-Mifflin Co., Boston,
pp- 179-186.

Behnke, A.R. and Wilmore, J.H. (1974). Evaluation and Regulation of Body Build and Composi-
tion, Prentice-Hall, Englewood Cliffs, N.J.

Siri, W.E. (1956), "Gross composition of the body", in Advances in Biological and Medical Physics,
vol. IV, edited by J.H. Lawrence and C.A. Tobias, Academic Press, Inc., New York.

Katch, Frank and McArdle, William (1977). Nutrition, Weight Control, and Exercise, Houghton
Mifflin Co., Boston.

Wilmore, Jack (1976). Athletic Training and Physical Fitness: Physiological Principles of the
Conditioning Process, Allyn and Bacon, Inc., Boston.

Examples
data(BodyFat)
head(BodyFat)
data-breastcancer Gene expression signatures for p53 mutation status in 250 breast can-
cer samples
Description

Perturbations of the p53 pathway are associated with more aggressive and therapeutically refractory
tumours. We preprocessed the data using Robust Multichip Analysis (RMA). Dataset has been
truncated to the 1000 most informative genes (as selected by Wilcoxon test statistics) to simplify
computation. The genes have been standardised to have zero mean and unit variance (i.e. z-scored).

Usage

data(breastcancer)

Format
A data frame with 250 observations on 1001 variables. The first 1000 columns are numerical
variables; the last column (named code) is a factor with levels case and control.

Details
The factor code defines whether there was a mutation in the p53 sequence (code=case) or not
(code=control).

Source

Dr. Chris Holmes, c.holmes at stats dot. ox . ac .uk

data-carcass 25

References

Miller et al (2005, PubMed ID:16141321)

Examples

data(breastcancer)
maybe str(breastcancer) ; plot(breastcancer) ...

data-carcass Lean meat contents of 344 pig carcasses

Description

Measurement of lean meat percentage of 344 pig carcasses together with auxillary information
collected at three Danish slaughter houses

Usage

data(carcass)

Format

carcassall: A data frame with 344 observations on the following 17 variables.

weight Weight of carcass

lengthc Length of carcass from back toe to head (when the carcass hangs in the back legs)
lengthf Length of carcass from back toe to front leg (that is, to the shoulder)

lengthp Length of carcass from back toe to the pelvic bone

Fat@2, Fat@3, Fat11, Fat12, Fat13, Fat14, Fat16 Thickness of fat layer at different locations
on the back of the carcass (FatXX refers to thickness at (or rather next to) rib no. XX. Notice
that 02 is closest to the head

Meat11, Meat12, Meat13 Thickness of meat layer at different locations on the back of the carcass,
see description above

LeanMeat Lean meat percentage determined by dissection
slhouse Slaughter house; a factor with levels a b c

sex Sex of the pig; a factor with a b c. Notice that it is no an error to have three levels; the third
level refers to castrates

Note

carcass: Contains only the variables Fatl1, Fatl2, Fatl3, Meatl1, Meatl2, Meat13, LeanMeat

26 data-chestSim

Source
Busk, H., Olsen, E. V., Brgndum, J. (1999) Determination of lean meat in pig carcasses with the
Autofom classification system, Meat Science, 52, 307-314

Examples

data(carcass)
head(carcass)

data-chestSim Simulated data from the Chest Clinic example

Description

Simulated data from the Chest Clinic example (also known as the Asia example) from Lauritzen
and Spiegelhalter, 1988 (see reference below).

Usage

data(chestSim500)

Format

A data frame with 500 observations on the following 8 variables.

asia Recent visit to Asia?; a factor with levels yes no

tub Has tuberculosis?; a factor with levels yes no

smoke Is a smoker?; a factor with levels yes no

lung Has lung cancer?; a factor with levels yes no

bronc Has bronchitis?; a factor with levels yes no

either Either lung cancer or tuberculosis?; a factor with levels yes no
xray Positive x-ray? a factor with levels yes no

dysp Dyspnoea (shortness of breath)?; a factor with levels yes no

Details
Notice that the chest clinic example is a contrieved example; it does not originate from an empirical
study.

References

Lauritzen and Spiegelhalter (1988) Local Computations with Probabilities on Graphical Structures
and their Application to Expert Systems (with Discussion). J. Roy. Stat. Soc. 50, p. 157-224.

data-dietox 27

Examples

data(chestSim500)
maybe str(chestSim500) ; plot(chestSim500) ...

data-dietox Growth curves of pigs in a 3x3 factorial experiment

Description

The dietox data frame has 861 rows and 7 columns.

Usage

data(dietox)

Format

This data frame contains the following columns: Weight, Feed, Time, Pig, Evit, Cu, Litter.

Source

Lauridsen, C., Hgjsgaard, S., Sgrensen, M.T. C. (1999) Influence of Dietary Rapeseed Oli, Vitamin
E, and Copper on Performance and Antioxidant and Oxidative Status of Pigs. J. Anim. Sci.77:906-
916

Examples

data(dietox)

data-dumping Gastric Dumping

Description
A contingency table relating surgical operation, centre and severity of gastric dumping, a syndrome
associated with gastric surgery.

Usage
data(dumping)

28 data-lizard

Format

A 3x4x4 table of counts cross-classified by Symptom (none/slight/moderate), Operation (Vd/Va/Vh/Gr)
and Centre (1:4).

Details

Gastric dumping syndrome is a condition where ingested foods bypass the stomach too rapidly and
enter the small intestine largely undigested. It is an undesirable side-effect of gastric surgery. The
table summarizes the results of a study comparing four different surgical operations on patients with
duodenal ulcer, carried out in four centres, as described in Grizzle et al (1969). The four operations
were: vagotomy and drainage, vagotomy and antrectomy (removal of 25\ (removal of 50\ 75\

Source

Grizzle JE, Starmer CF, Koch GG (1969) Analysis of categorical data by linear models. Biometrics
25(3):489-504.

Examples

data(dumping)
plot(dumping)

data-lizard Lizard behaviour

Description

In a study of lizard behaviour, characteristics of 409 lizards were recorded, namely species (S),
perch diameter (D) and perch height (H). Perch means preferred place to settle down (a branch on
a tree). The focus of interest is in how the propensities of the lizards to choose perch height and
diameter are related, and whether and how these depend on species.

Usage

data(lizard)

Format
A 3—dimensional array with factors diam: "<=4" ">4" height: ">4.75" "<=4.75" species: "anoli"
"dist"

References

Schoener TW (1968) The anolis lizards of bimini: Resource partitioning in a complex fauna. Ecol-
ogy 49:704-726

data-mathmark 29

Examples

data(lizard)

Datasets lizardRAW and lizardDF are generated with the following code
#1izardAGG <- as.data.frame(lizard)

#f <- lizardAGG$Freq

#idx <- unlist(mapply(function(i, n) rep(i, n), 1:8, f))
#set.seed(0805)

#idx <- sample(idx)

#lizardRAW <- as.data.frame(lizardAGG[idx, 1:31)

#trownames (lizardRAW) <- 1:NROW(lizardRAW)

data-mathmark Mathematics marks for students

Description

The mathmark data frame has 88 rows and 5 columns.

Usage

data(mathmark)

Format

This data frame contains the following columns: mechanics, vectors, algebra, analysis, statistics.

Author(s)

S¢ren Hgjsgaard, <sorenh@math.aau.dk>

References

David Edwards, An Introduction to Graphical Modelling, Second Edition, Springer Verlag, 2000

Examples

data(mathmark)

30 data-milkcomp

data-mildew Mildew fungus

Description

The data stem from a cross between two isolates of the barley powdery mildew fungus. For each
offspring 6 binary characteristics, each corresponding to a single locus, were recorded. The object
of the analysis is to determine the order of the loci along the chromosome.

Usage

data(mildew)

Format
A 6 dimensional array where each variable has levels "1" and "2". The variables are: 1a10, locc,
mp58, c365, p53a and a365.

References
Christiansen, S.K., Giese, H (1991) Genetic analysis of obligate barley powdery mildew fungus
based on RFLP and virulence loci. Theor. Appl. Genet. 79:705-712

Examples

data(mildew)
maybe str(mildew) ; plot(mildew) ...

data-milkcomp Milk composition data

Description

Data from an experiment on composition of sow milk. Milk composition is measured on four
occasions during lactation on a number of sows. The treatments are different types of fat added to
the sows feed.

Usage

data(milkcomp)

data-Nutrimouse 31

Format
A data frame with 214 observations on the following 7 variables.

Sow a numeric vector

lactime a numeric vector

treat afactor withlevelsabcdef g
fat anumeric vector

protein a numeric vector

dm (dry matter) a numeric vector

lactose a numeric vector

Details

a is the control, i.e. no fat has been added.

fat + protein + lactose almost add up to dm (dry matter)

References

Charlotte Lauridsen and Viggo Danielsen (2004): Lactational dietary fat levels and sources influ-
ence milk composition and performance of sows and their progeny Livestock Production Science
91 (2004) 95-105

Examples

data(milkcomp)
maybe str(milk) ; plot(milk) ...

data-Nutrimouse The Nutrimouse Dataset

Description
The data come from a study of the effects of five dietary regimens with different fatty acid compo-
sitions on liver lipids and hepatic gene expression in 40 mice.

Usage

data(Nutrimouse)

Format

A data frame with 40 observations on 143 variables of which two are factors and 141 are numeric.

genotype a factor with levels wt ppar

diet a factor with levels coc fish 1lin ref sun

32 data-personality

Details

The data come from a study of the effects of five dietary regimens with different fatty acid com-
positions on liver lipids and hepatic gene expression in wild-type and PPAR-alpha-deficient mice
(Martin et al., 2007).

There were 5 replicates per genotype and diet combination.

There are two design variables: (i) genotype, a factor with two levels: wild-type (wt) and PPAR-
alpha-deficient (ppar), and (ii) diet, a factor with five levels. The oils used for experimental diet
preparation were: corn and colza oils (50/50) for a reference diet (ref); hydrogenated coconut oil
for a saturated fatty acid diet (coc); sunflower oil for an Omega6 fatty acid-rich diet (sun); linseed
oil for an Omega3-rich diet (lin); and corn/colza/enriched (43/43/14) fish oils (fish).

There are 141 response variables: (i) the log-expression levels of 120 genes measured in liver cells,
and (ii) the concentrations (in percentages) of 21 hepatic fatty acids measured by gas chromatogra-

phy.
Source

The data were provided by Pascal Martin from the Toxicology and Pharmacology Laboratory, Na-
tional Institute for Agronomic Research, France.

References

Martin, P. G. P., Guillou, H., Lasserre, F., D’jean, S., Lan, A., Pascussi, J.-M., San Cristobal, M.,
Legrand, P., Besse, P. and Pineau, T. (2007). Novel aspects of PPARa-mediated regulation of lipid
and xenobiotic metabolism revealed through a multrigenomic study. Hepatology 54, 767-777.

Examples

data(Nutrimouse)

data-personality Personality traits

Description

The peronality dataframe has 240 rows and 32 columns

Usage

data(personality)

Format

This dataframe has recordings on the following 32 variables: distant, talkatv, carelss, hardwrk,
anxious, agreebl, tense, kind, opposng, relaxed, disorgn, outgoin, approvn, shy, discipl, harsh, per-
sevr, friendl, worryin, respnsi, contrar, sociabl, lazy, coopera, quiet, organiz, criticl, lax, laidbck,
withdrw, givinup, easygon

data-rats 33

Author(s)

S¢ren Hgjsgaard, <sorenh@math.aau.dk>

References

Origin unclear

Examples

data(personality)
str(personality)

data-rats Weightloss of rats

Description

An artificial dataset. 24 rats (12 female, 12 male) have been randomized to use one of three drugs
(products for loosing weight). The weightloss for each rat is noted after one and two weeks.

Usage

data(rats)

Format

A dataframe with 4 variables. Sex: "M" (male), "F" (female). Drug: "D1", "D2", "D3" (three
types). W1 weightloss, week one. W2 weightloss, week 2.

References

Morrison, D.E. (1976). Multivariate Statistical Methods. McGraw-Hill, USA.

Edwards, D. (1995). Introduction to Graphical Modelling, Springer-Verlag. New York.

34 data-wine

data-reinis Risk factors for coronary heart disease.

Description

Data collected at the beginning of a 15 year follow-up study of probable risk factors for coronary
thrombosis. Data are from all men employed in a car factory.

Usage

data(reinis)

Format

A table with 6 discrete variables. A: smoking, B: strenous mental work, D: strenuous physical work,
E: systolic blood pressure, F: ratio of lipoproteins, G: Family anamnesis of coronary heart disease.

References

Edwards and Havranek (1985): A fast procedure for model search in multidimensional contingency
tables. Biometrika, 72: 339-351.

Reinis et al (1981): Prognostic significance of the risk profile in the prevention of coronary heart
disease. Bratis. lek. Listy. 76: 137-150.

data-wine Chemical composition of wine

Description

Using chemical analysis determine the origin of wines

Usage

data(wine)

Format

A data frame with 178 observations on the following 14 variables.

Cult a factor with levels v1 v2 v3: 3 different graph varieties
Alch Alcohol

Mlca Malic acid

Ash Ash

Aloa Alcalinity of ash

data_cad 35

Mgns Magnesium

Ttlp Total phenols

Flvn Flavanoids

Nnfp Nonflavanoid phenols

Prnt Proanthocyanins

Clri Color intensity

Hue Hue

Oodw OD280/0D315 of diluted wines

Prln Proline

Details

Data comes from the UCI Machine Learning Repository. The grape variety Cult is the class iden-
tifier.

Source

Frank, A. & Asuncion, A. (2010). UCI Machine Learning Repository https://archive.ics.
uci.edu/ml/. Irvine, CA: University of California, School of Information and Computer Science.

References

See references at https://archive.ics.uci.edu/ml/datasets/Wine/
Examples

data(wine)
maybe str(wine) ; plot(wine) ...

data_cad Coronary artery disease data

Description
A cross classified table with observational data from a Danish heart clinic. The response variable is
CAD (coronary artery disease, some times called heart attack).

Usage

data(cad1)

https://archive.ics.uci.edu/ml/
https://archive.ics.uci.edu/ml/
https://archive.ics.uci.edu/ml/datasets/Wine/

36 data_cad

Format
A data frame with 236 observations on the following 14 variables.

Sex Sex; a factor with levels Female Male
AngPec Angina pectoris (chest pain attacks); a factor with levels Atypical None Typical
AMI Acute myocardic infarct; a factor with levels Definite NotCertain

QWave A reading from an electrocardiogram; a factor with levels No Yes; Yes means pathological
and is a sign of previous myocardial infarction.

QWavecode a factor with levels Nonusable Usable. An assesment of whether QWave is reliable.
STcode a factor with levels Nonusable Usable. An assesment of whether STchange is reliable.

STchange A reading from an electrocardiogram; a factor with levels No Yes. An STchange indi-
cates a blockage of the coronary artery.

SuffHeartF Sufficient heart frequency; a factor with levels No, Yes

Hypertrophi a factor with levels No, Yes. Hypertrophy refers to an increased size of the heart
muscle due to exercise.

Hyperchol a factor with levels No Yes. Hypercholesterolemia, also called high cholesterol, is the
presence of high levels of cholesterol in the blood.

Smoker Is the patient a smoker; a factor with levels No, Yes.
Inherit Hereditary predispositions for CAD; a factor with levels No, Yes.
Heartfail Previous heart failures; a factor with levels No Yes

CAD Coronary Artery Disease; a factor with levels No Yes. CAD refers to a reduction of blood flow
to the heart muscle (commonly known as a heart attack). The diagnosis made from biopsies.

Details

Notice that data are collected at a heart clinic, so data do not represent the population, but are
conditional on patients having ended up at the clinic.
 cadl: Complete dataset, 236 cases.

e cad2: Incomplete dataset, 67 cases. Information on (some of) the variables "Hyperchol’,
’Smoker’ and ’Inherit’ is missing.

References

Hansen, J. F. (1980). The clinical diagnoisis of ichaeme heart disease du to coronary artery disease.
Danish Medical Bulletin

Hgjsgaard, S¢ren and Thiesson, Bo (1995). BIFROST - Block recursive models Induced From
Relevant knowledge, Observations and Statistical Techniques. Computational Statistics and Data
Analysis, vol. 19, p. 155-175

Examples

data(cadl)
maybe str(cadl) ; plot(cadl) ...

downstream-aliases 37

downstream-aliases Downstream aliases

Description

Downstream aliases for other graphical modelling packages. Will be deprecated in due course.

fastcombn Generate All Combinations of n Elements Taken m at a Time

Description

Generate all combinations of the elements of x taken m at a time. If x is a positive integer, returns
all combinations of the elements of seq(x) taken m at a time.

Usage
fastcombn(x, m, FUN = NULL, simplify = TRUE, ...)

combn_prim(x, m, simplify = TRUE)

Arguments
X vector source for combinations, or integer n for x <- seq(n).
m number of elements to choose.
FUN function to be applied to each combination; default ‘NULL’ means the identity,
i.e., to return the combination (vector of length ‘m’).
simplify logical indicating if the result should be simplified to a matrix; if FALSE, the
function returns a list.
Further arguments passed on to FUN.
Details

* Factors x are accepted.

* combn_primis a simplified (but faster) version of the combn function. Does nok take the FUN
argument.

e fastcombn is intended to be a faster version of the combn function.

Value

A matrix or a list.

Author(s)
Sgren Hgjsgaard

38

See Also

combn

Examples

x <- letters[1:5]; m <- 3

fastcombn(x, m)
combn(x, m)
combn_prim(x, m)

x <- letters[1:4]1; m <- 3
fastcombn(x, m, simplify=FALSE)
combn(x, m, simplify=FALSE)
combn_prim(x, m, simplify=FALSE)

X <= 1:10; m<- 3
fastcombn(x, m, min)
combn(x, m, min)

x <- factor(letters[1:8]); m <- 5

if (require(microbenchmark)){
microbenchmark(
combn(x, m, simplify=FALSE),
combn_prim(x, m, simplify=FALSE),
fastcombn(x, m, simplify=FALSE),
times=50

gmwr_book

gmwr_book Functions from Graphical Modelling with R book

Description

Functions that must be retained to make code from gmwr-book work

Usage
as.adjMAT (object)

Arguments

object An object to be coerced.

graph-clique 39

graph-clique Get cliques of an undirected graph

Description

Return a list of (maximal) cliques of an undirected graph.

Usage

get_cliques(object)

max_cliqueMAT (amat)

getCliques(object)
maxCliqueMAT (amat)
maxClique(object)
Arguments
object An undirected graph represented either as a graphNEL object, an igraph object,
a (dense) matrix, a (sparse) dgCMatrix
amat An adjacency matrix.
Details

In graph theory, a clique is often a complete subset of a graph. A maximal clique is a clique which
can not be enlarged. In statistics (and that is the convention we follow here) a clique is usually
understood to be a maximal clique.

Finding the cliques of a general graph is an NP complete problem. Finding the cliques of trian-
gualted graph is linear in the number of cliques.

The workhorse is the max_cliqueMAT function which calls the maxClique function in the RBGL
package.
Value

A list.

Synonymous functions

For backward compatibility with downstream packages we have the following synonymous func-
tions:

» getCliques = get_cliques
* maxCliqueMAT = max_cliqueMAT

40 graph-coerce

Author(s)

Sgren Hgjsgaard, <sorenh@math. aau.dk>

See Also

ug, dag, mcs, mcsMAT, rip, ripMAT, moralize, moralizeMAT

Examples

graphNEL
uGd <- ug(~a:b + b:c + c:d + d:e + e:f + f:a) # a graphNEL object
get_cliques(uGo)

uGl <- as(uGe, "igraph")
get_cliques(uGl)

uG2 <- as(uGe, "matrix")
get_cliques(uG2)

uG3 <- as(uGl, "dgCMatrix")
get_cliques(uG3)

graph-coerce Graph coercion

Description

Methods for changing graph representations

Usage

coerceGraph(object, class)

graph_as(object, outtype, intype = NULL)

Arguments

object A graph object

class The desired output class

outtype The desired output outtype

intype The desired output outtype (only relevant if object is a list)
Details

coerceGraph is used in the book "Graphical models with R". A more generic approach is as().

graph-coerce-api 41
Examples

gl <- ug(~a:btb:c)
as(gl, "igraph")
as(gl, "matrix")
as(gl, "Matrix")
as(gl, "dgCMatrix")

graph_as(gl, "uglList") ## Fails
getCliques(gl) ## Works

11 <= list(c(”a” ,"b"y, c("b”, "c"))
graph_as(11, "graphNEL", "uglList")

graph-coerce-api API for coercing graph representations

Description

API for coercing graph representations.

Usage
g_dm2sm_(object)

g_dm2ig_(object)
g_sm2dm_(object)
g_sm2ig_(object)
g_ig2dm_(object)
g_ig2sm_(object)
g_xm2ig_(object)
g_xm2dm_(object)

g_xm2sm_(object)

g_xm2xm_(object, result = "matrix")
Arguments
object An object representing a graph

result Either 'matrix’ (dense) or ’dgCMatrix’ (sparse, can be abbreviated to ’Matrix’).

42 graph-create

Details
No checking is made. In the function the following names are used:

st n

* "ig": "igraph";

e "gn": "graphNEL";

e "sm": "dgCMatrix" (sparse matrix);

e "dm": "matrix" (dense matrix)
Author(s)

Sgren Hgjsgaard, <sorenh@math.aau.dk>

See Also

ug, dag

graph-create Create undirected and directed graphs

Description

These functions are wrappers for creation of graphs as implemented by graphNEL objects in the
graph package.

Usage
ug(..., result = "igraph")

ugi(...)

uglList(x, result = "igraph”)

dag(..., result = "igraph"”, forceCheck = FALSE)
dagi(..., forceCheck = FALSE)

dagList(x, result = "igraph", forceCheck = FALSE)

Arguments
e A generating class for a graph, see examples below
result The format of the graph. The possible choices are "graphNEL" (for a graphNEL
object), "igraph" (for an igraph object), "matrix" (for an adjacency matrix),
"dgCMatrix" (for a sparse matrix).
X A list or individual components from which a graph can be created.
forceCheck Logical determining if it should be checked if the graph is acyclical. Yes, one

can specify graphs with cycles using the dag() function.

graph-edgeList 43

Value

Functions ug(), and dag() can return a graphNEL object, an igraph object, a sparse or a dense
adjacency matrix.

Author(s)

Sgren Hgjsgaard, <sorenh@math.aau.dk>

Examples

The following specifications of undirected graphs are equivalent:
uGl <- ug(~ a:b:c + c:d)

UGZ <_ ug(c(llall’ Hbll’ “C”), C(IICII’ Hdll))

uG3 <- ug(c(”a”, "b"), c(”a", "c"), c("b", "c"), c(’c", "d"))

The following specifications of directed acyclig graphs are equivalent:
daG1 <- dag(~ a:b:c + b:c + c:d)
daG2 <- dag(c(”a”, "b", "c"y, c("b", "c"y, c("c", "d"))

dag() allows to specify directed graphs with cycles:
daG4 <- dag(~ a:b + b:c + c:a) # A directed graph but with cycles

A check for acyclicity can be done with
daG5 <- dag(~ a:b + b:c + c:a, forceCheck=TRUE)

A check for acyclicity is provided by topoSort
topo_sort(daG2)
topo_sort(daG4)

Different representations

uG7 <- ug(~a:b:c + c:d, result="igraph") # igraph

uG8 <- ug(~a:b:c + c:d, result="matrix") # dense matrix
uG9 <- ug(~a:b:c + c:d, result="dgCMatrix") # sparse matrix

graph-edgelList Find edges in a graph and edges not in a graph.

Description

Returns the edges of a graph (or edges not in a graph) where the graph can be either a graphNEL
object, an igraph object or an adjacency matrix.

Usage

edgelList(object, matrix = FALSE)

edgeListMAT(adjmat, matrix = FALSE)

44 graph-gcproperties

nonEdgelList(object, matrix = FALSE)

nonEdgelListMAT (adjmat, matrix = FALSE)

Arguments
object A graphNEL object, an igraph object, a dense matrix or a sparse dgCMatrix
(the two latter representing an adjacency matrix).
matrix If TRUE the result is a matrix; otherwise the result is a list.
adjmat An adjacency matrix.
Examples

A graph with edges

g <- ug(~a:b + b:c + c:d)
gm <- as(g, "matrix")
edgelList(g)

edgelList(gm)
edgelListMAT (gm)
edgelList(g, matrix=TRUE)
edgelList(gm, matrix=TRUE)
edgelListMAT(gm, matrix=TRUE)
nonEdgelList(g)
nonEdgelList(gm)
nonEdgelistMAT (gm)

A graph without edges

g <-ug(ra+b+c)

gm <- as(g, "matrix")
edgelList(g)

edgelList(gm)
edgelListMAT (gm)
edgelList(g, matrix=TRUE)
edgelList(gm, matrix=TRUE)
edgeListMAT(gm, matrix=TRUE)
nonEdgelList(g)
nonEdgelList(gm)

nonEdgel istMAT (gm)

graph-gcproperties Properties of a generating class (for defining a graph).

Description

A set of generators define an undirected graph, here called a dependence graph. Given a set of
generators it is checked 1) if the dependence dependence graph is in 1-1-correspondance with the
genrators (such that the corresponding model is graphical) and 2) if the dependence graph is chordal
(triangulated) (such that the corresponding model is decomposable).

graph-gcproperties 45

Usage
isGraphical (x)
isDecomposable(x)
Arguments
X A generating class given as right hand sided formula or a list; see examples
below.
Details

A set of sets of variables, say A_1, A_2, ... A_K s called a generating class for a graph with vertices
V and edges E. If two variables a,b are in the same generator, say A_j, then a and b are vertices in
the graph and there is an undirected edge between a and b.

The graph induced by \code{gl = ~a:b + a:c + b:c + c:d} has
edges \code{ab, ac, bc, cd}. The

cliques of this graph are \code{abc, cd}. Hence there is not a
1-1-correspondance between the graph and the generators.

On the other hand, \code{g2 <- ~a:b:c + c:d} induces the same
graph in this case there is a 1-1-correspondance.

The graph induced by \code{g3 <- ~a:b + b:c + c:d + d:a} is in
1-1-correspondance with its dependence graph, but the graph is
not chordal.

Value

TRUE or FALSE

Author(s)

Sgren Hgjsgaard, <sorenh@math.aau.dk>

See Also

mcs, rip
Examples

gl <- ~a:b + a:c + b:c + c:d
g2 <- ~a:b:c + c:d
g3 <- ~a:b + b:c + c:d + d:a

isGraphical(g1) # FALSE
isGraphical(g2) # TRUE
isGraphical(g3) # TRUE

46

graph-mcs

isDecomposable(g1) # FALSE
isDecomposable(g2) # TRUE
isDecomposable(g3) # TRUE

A generating class can be given as a list:
f’ <_ liSt(C(”a",”b”), c(”bll’llcll), C("a”,”C"))
isGraphical(f)

isDecomposable(f)

graph-mcs Maximum cardinality search on undirected graph.

Description

Returns (if it exists) a perfect ordering of the vertices in an undirected graph.

Usage

mcs(object, root = NULL, index = FALSE)

Default S3 method:
mcs(object, root = NULL, index = FALSE)

mcsMAT (amat, vn = colnames(amat), root = NULL, index = FALSE)

mcs_marked(object, discrete = NULL, index = FALSE)
Default S3 method:
mcs_marked(object, discrete = NULL, index = FALSE)

mcs_markedMAT (amat, vn = colnames(amat), discrete = NULL, index = FALSE)

Arguments

object An undirected graph represented either as a graphNEL object, an igraph, a
(dense) matrix, a (sparse) dgCMatrix.

root A vector of variables. The first variable in the perfect ordering will be the first
variable on ‘root’. The ordering of the variables given in root” will be followed
as far as possible.

index If TRUE, then a permutation is returned

amat Adjacency matrix

vn Nodes in the graph given by adjacency matrix

discrete A vector indicating which of the nodes are discrete. See ’details’ for more infor-

mation.

graph-mcs 47

Details

An undirected graph is decomposable iff there exists a perfect ordering of the vertices. The max-
imum cardinality search algorithm returns a perfect ordering of the vertices if it exists and hence
this algorithm provides a check for decomposability. The mcs() functions finds such an ordering if
it exists.

The notion of strong decomposability is used in connection with
e.g. mixed interaction models where some vertices represent
discrete variables and some represent continuous
variables. Such graphs are said to be marked. The
\code{mcsmarked()} function will return a perfect ordering iff
the graph is strongly decomposable. As graphs do not know about
whether vertices represent discrete or continuous variables,
this information is supplied in the \code{discrete} argument.
Value
A vector with a linear ordering (obtained by maximum cardinality search) of the variables or char-
acter(0) if such an ordering can not be created.

Note

The workhorse is the mcsMAT function.

Author(s)

Sgren Hgjsgaard, <sorenh@math.aau.dk>

See Also

moralize, junction_tree, rip, ug, dag

Examples

uG <- ug(~ me:ve + me:al + ve:al + al:an + al:st + an:st)

mcs (uG)

mcsMAT (as(uG, "matrix"))

Same as

uG <- ug(~ me:ve + me:al + ve:al + al:an + al:st + an:st, result="matrix")
mcsMAT (uG)

Marked graphs

uGl <- ug(~ a:b + b:c + c:d)

uG2 <- ug(~ a:b + a:d + c:d)

Not strongly decomposable:
mcs_marked(uG1, discrete=c("”a","d"))
Strongly decomposable:
mcs_marked(uG2, discrete=c(”a","d"))

48 graph-min-triangulate

graph-min-triangulate Minimal triangulation of an undirected graph

Description

An undirected graph uG is triangulated (or chordal) if it has no cycles of length >= 4 without a
chord which is equivalent to that the vertices can be given a perfect ordering. Any undirected graph
can be triangulated by adding edges to the graph, so called fill-ins which gives the graph TuG. A
triangulation TuG is minimal if no fill-ins can be removed without breaking the property that TuG
is triangulated.

Usage

minimal_triang(
object,
tobject = triangulate(object),
result = NULL,
details = 0
)

minimal_triangMAT(amat, tamat = triangulateMAT(amat), details = @)

Arguments
object An undirected graph represented either as a graphNEL object, a (dense) matrix,
a (sparse) dgCMatrix.
tobject Any triangulation of object; must be of the same representation.
result The type (representation) of the result. Possible values are "graphNEL", "matrix”,
"dgCMatrix". Default is the same as the type of object.
details The amount of details to be printed.
amat The undirected graph which is to be triangulated; a symmetric adjacency matrix.
tamat Any triangulation of object; a symmetric adjacency matrix.
Details

For a given triangulation tobject it may be so that some of the fill-ins are superflous in the sense that
they can be removed from tobject without breaking the property that tobject is triangulated. The
graph obtained by doing so is a minimal triangulation.

Notice: A related concept is the minimum

triangulation, which is the the graph with the smallest number
of fill-ins. The minimum triangulation is unique. Finding the
minimum triangulation is NP-hard.

graph-moralize 49

Value
minimal_triang() returns a graphNEL object while minimal_triangMAT () returns an adjacency
matrix.

Author(s)

Clive Bowsher C.Bowsher @statslab.cam.ac.uk with modifications by Sgren Hgjsgaard, <sorenh@math.aau. dk>

References

Kristian G. Olesen and Anders L. Madsen (2002): Maximal Prime Subgraph Decomposition of
Bayesian Networks. IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS, PART
B: CYBERNETICS, VOL. 32, NO. 1, FEBRUARY 2002

See Also

mpd, rip, triangulate

Examples

An igraph object
gl <- ug(~a:b + b:c + c:d + d:e + e:f + a:f + b:e, result="igraph")
x <- minimal_triang(gl)

tt <- ug(~a:b:e:f + b:e:c:d, result="igraph")
x <- minimal_triang(gl, tobject=tt)

g2 is a triangulation of gl but it is not minimal
g2 <- ug(~a:b:e:f + b:c:d:e, result="igraph")
x <- minimal_triang(gl, tobject=g2)

An adjacency matrix
gim <- ug(~a:b + b:c + c:d + d:e + e:f + a:f + b:e, result="matrix")
X <- minimal_triangMAT(g1m)

graph-moralize Moralize a directed acyclic graph

Description

Moralize a directed acyclic graph which means marrying parents and dropping directions.

Usage

moralize(object, ...)

Default S3 method:
moralize(object, result = NULL, ...)

mailto:C.Bowsher@statslab.cam.ac.uk

50

Arguments

object

result

Value

graph-moralize

A directed acyclic graph represented either as a graphNEL object, an igraph, a
(dense) matrix, a (sparse) dgCMatrix.

Additional arguments, currently not used

The representation of the moralized graph. When NULL the representation will
be the same as the input object.

A moralized graph represented either as a graphNEL, a dense matrix or a sparse dgCMatrix.

Note

The workhorse is the moralizeMAT function.

Author(s)

Sgren Hgjsgaard, <sorenh@math.aau.dk>

See Also

mcs, junction_tree, rip, ug, dag

Examples

daG <- dag(~met+ve,~me+al,~ve+al,~al+an,~al+st,~an+st)

moralize(daG)

daG <- dag(~met+ve,~me+al,~ve+al,~al+an,~al+st,~an+st, result="matrix")

moralizeMAT (daG)

if (require(igraph)){
M <- matrix(c(1,2,3,3), nrow=2)
G <- graph.edgelist(M)

G
V(G) $name
moralize(G)

3

graph-mpd 51

graph-mpd Maximal prime subgraph decomposition

Description

Finding a junction tree representation of the MPD (maximal prime subgraph decomposition) of an
undirected graph The maximal prime subgraph decomposition of a graph is the smallest subgraphs
into which the graph can be decomposed.

Usage
mpd(object, tobject = minimal_triang(object), details = @)

Default S3 method:
mpd(object, tobject = triangulate(object), details = 0)

mpdMAT (amat, tamat = minimal_triangMAT(amat), details = @)

Arguments
object An undirected graph; a graphNEL object, an igraph or an adjacency matrix.
tobject Any minimal triangulation of object; a graphNEL object, an igraph or an adja-
cency matrix.
details The amount of details to be printed.
amat An undirected graph; a symmetric adjacency matrix
tamat Any minimal triangulation of object; a symmetric adjacency matrix
Value

non non non non

A list with components "nodes", "cliques", "separators", "parents",
component "cliques" defines the subgraphs.

non

children", "nLevels". The

Author(s)

Clive Bowsher <C.Bowsher@statslab.cam.ac.uk> with modifications by Sgren Hgjsgaard, <sorenh@math.aau. dk>

References
Kristian G. Olesen and Anders L. Madsen (2002): Maximal Prime Subgraph Decomposition of
Bayesian Networks. IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS, PART
B: CYBERNETICS, VOL. 32, NO. 1, FEBRUARY 2002

See Also

mcs, mcsMAT, minimal_triang, minimal_triangMAT, rip, ripMAT, triangulate, triangulateMAT

52 graph-randomdag

Examples

Maximal prime subgraph decomposition - a graphNEL object
gl <- ug(~ a:b + b:c + c:d + d:e + e:f + a:f + b:e)

if (interactive()) plot(gl)

X <- mpd(gl)

Maximal prime subgraph decomposition - an adjacency matrix

gim <- ug(~ a:b + b:c + c:d + d:e + e:f + a:f + b:e, result="matrix")
if (interactive()) plot(as(gim, "graphNEL"))

X <- mpdMAT(g1m)

graph-randomdag Random directed acyclic graph

Description

Generate a random directed acyclic graph (DAG)

Usage

random_dag(V, maxpar = 3, wgt = 0.1)

Arguments
\ The set of vertices.
maxpar The maximum number of parents each node can have
wgt A parameter controlling how likely it is for a node to have a certain number of
parents; see ’Details’.
Details

If the maximum number of parents for a node is, say 3 and wgt=0.1, then the probability of the node
ending up with 0,1,2,3 parents is proportional to 0.1°0, 0.1°1, 0.122, 0.1/3.

Value

A graphNEL object.

Author(s)

Sgren Hgjsgaard, <sorenh@math.aau.dk>

graph-rip

Examples

dg <- random_dag(1:1000, maxpar=5, wgt=.9)
table(sapply(vpar(dg),length))

dg <- random_dag(1:1000, maxpar=5, wgt=.5)
table(sapply(vpar(dg),length))

dg <- random_dag(1:1000, maxpar=5, wgt=.1)
table(sapply(vpar(dg),length))

53

graph-rip Create RIP ordering of the cliques of an undirected graph, create junc-
tion tree.

Description

A RIP (running intersection property) ordering of the cliques is also called a perfect ordering. If the

graph is not chordal, then no such ordering exists.
Usage
rip(object, ...)

Default S3 method:
rip(object, root = NULL, nLevels = NULL, ...)

ripMAT(amat, root = NULL, nLevels = rep(2, ncol(amat)))
junction_tree(object, ...)

Default S3 method:

junction_tree(object, nLevels = NULL, ...)

junction_treeMAT (amat, nLevels = rep(2, ncol(amat)), ...)

jTree(object, ...)

Arguments

object An undirected graph represented either as a graphNEL object, an igraph, a
(dense) matrix, a (sparse) dgCMatrix.
Additional arguments; currently not used

root A vector of variables. The first variable in the perfect ordering will be the first

variable on ’root’. The ordering of the variables given in root” will be followed
as far as possible.

54 graph-rip

nLevels Typically, the number of levels of the variables (nodes) when these are discrete.
Used in determining the triangulation using a "minimum clique weight heuris-
tic". See section ’details’.

amat Adjacency matrix

Details

The RIP ordering of the cliques of a decomposable (i.e. chordal) graph is obtained by first ordering
the variables linearly with maximum cardinality search (by mcs). The root argument is transfered to
mcs as a way of controlling which clique will be the first in the RIP ordering. The junction_tree()
(and junction_tree()) (for "junction tree") is just a wrapper for a call of triangulate() followed
by a call of rip().

Value

rip returns a list (an object of class ripOrder. A print method exists for such objects.)

Synonymous functions

For backward compatibility with downstream packages we have the following synonymous func-
tions:

* jTree = junction_tree (Used in rags2ridges)

* junctionTree = junction_tree

Note
The workhorse is the ripMAT() function. The nLevels argument to the rip functions has no
meaning.

Author(s)

Segren Hgjsgaard, <sorenh@math.aau.dk>

See Also

mcs, triangulate, moralize, ug, dag

Examples

graphNEL

uG <- ug(~me:ve + me:al + ve:al + al:an + al:st + an:st)
mcs (uG)

rip(uG)

junction_tree(uG)

Adjacency matrix

uG <- ug(~me:ve:al + al:an:st, result="matrix")
mcs (uG)

rip(uG)

graph-triangulate

junction_tree(uG)

Sparse adjacency matrix

uG <- ug(c("me", "ve", "al"), c("al", "an", "st"), result="dgCMatrix")
mcs (uG)

rip(uG)

junction_tree(uG)

Non--decomposable graph

uG <- ug(~1:2 + 2:3 + 3:4 + 4:5 + 5:1)
mcs (uG)

rip(uG)

junction_tree(uG)

graph-triangulate Triangulation of an undirected graph

Description

This function will triangulate an undirected graph by adding fill-ins.
Usage
triangulate(object, ...)

Default S3 method:
triangulate(object, nLevels = NULL, result = NULL, check = TRUE,

triang_mcwh(object, ...)
triang_elo(object, ...)
triang(object, ...)

Default S3 method:
triang(object, control = list(), ...)

Default S3 method:
triang_mcwh(object, nLevels = NULL, result = NULL, check = TRUE,

Default S3 method:
triang_elo(object, order = NULL, result = NULL, check = TRUE, ...)

triangulateMAT (amat, nLevels = rep(2, ncol(amat)), ...)

triang_mcwhMAT_(amat, nLevels = rep(2, ncol(amat)), ...)

56 graph-triangulate

triang_eloMAT_(amat, order)

triang_eloMAT (amat, order = NULL)

Arguments
object An undirected graph represented either as a graphNEL object, an igraph, a
(dense) matrix, a (sparse) dgCMatrix.
Additional arguments, currently not used.
nLevels The number of levels of the variables (nodes) when these are discrete. Used in
determining the triangulation using a "minimum clique weight heuristic". See
section ’details’.
result The type (representation) of the result. Possible values are "graphNEL", "igraph”,
"matrix”, "dgCMatrix". Default is the same as the type of object.
check If TRUE (the default) it is checked whether the graph is triangulated before doing
the triangulation; gives a speed up if FALSE
control A list controlling the triangulation; see ’examples’.
order Elimation order; a character vector or numeric vector.
amat Adjacency matrix; a (dense) matrix, or a (sparse) dgCMatrix.
Details

There are two type of functions: triang and triangulate
The workhorse is the triangulateMAT function.

The triangulation is made so as the total state space is kept low by applying a minimum clique
weight heuristic: When a fill-in is necessary, the algorithm will search for an edge to add such that
the complete set to be formed will have as small a state-space as possible. It is in this connection
that the nLevels values are used.

Default (when nLevels=NULL) is to take nLevels=2 for all nodes. If nLevels is the same for all
nodes then the heuristic aims at keeping the clique sizes small.
Value

A triangulated graph represented either as a graphNEL, a (dense) matrix or a (sparse) dgCMatrix.

Note

Care should be taken when specifying nLevels for other representations than adjacency matrices:
Since the triangulateMAT function is the workhorse, any other representation is transformed to
an adjacency matrix and the order of values in nLevels most come in the order of the nodes in the
adjacency matrix representation.

Currently there is no check for that the graph is undirected.

Author(s)

Sgren Hgjsgaard, <sorenh@math.aau.dk>

graph_coerce_list

See Also

ug, dag, mcs, mcsMAT, rip, ripMAT, moralize, moralizeMAT

Examples

graphNEL

uGl <- ug(~a:b + b:c + c:d + d:e + e:f + f:a)

uG2 <- ug(~a:b + b:c + c:d + d:e + e:f + f:a, result="matrix")
uG3 <- ug(~a:b + b:c + c:d + d:e + e:f + f:a, result="dgCMatrix")

Default triangulation: minimum clique weight heuristic
(default is that each node is given the same weight):

tuGl <- triang(uG1)
Same as
triang_mcwh(uG1)

Alternative: Triangulation from a desired elimination order
(default is that the order is order of the nodes in the graph):

triang(uGl, control=1list(method="elo"))
Same as:
triang_elo(uG1)

More control: Define the number of levels for each node:
tuGl <- triang(uGl, control=list(method="mcwh", nLevels=c(2, 3, 2, 6, 4, 9)))
tuGl <- triang_mcwh(uG1, nLevels=c(2, 3, 2, 6, 4, 9))

tuGl <- triang(uGl, control=list(method="elo", order=c("a", "e", "f")))
tuGl <- triang_elo(uGl, order=c("a", "e", "f"))

graphNEL
uGl <- ug(~a:b + b:c + c:d + d:e + e:f + f:a)
tuGl <- triangulate(uG1)

adjacency matrix
uG2 <- ug(~a:b + b:c + c:d + d:e + e:f + f:a, result="matrix")
tuG2 <- triangulate(uG2)

adjacency matrix (sparse)
uG2 <- ug(~a:b + b:c + c:d + d:e + e:f + f:a, result="dgCMatrix")
tuG2 <- triangulate(uG2)

graph_coerce_list Coercion of graphs represented as lists

Description

Coercion of graphs represented as lists to various graph formats.

58 graph_coerce_list

Usage

g_ugl2ig_(zz, vn = NULL)

g_ugl2dm_(zz, vn NULL)

NULL)

g_ugl2sm_(zz, vn
g_ugl2XX_(zz, outtype, vn = NULL)

NULL)

g_dagl2ig_(zz, vn

g_dagl2dm_(zz, vn = NULL)

g_dagl2sm_(zz, vn = NULL)

g_dagl2XX_(zz, outtype, vn = NULL)
g_adl2ig_(zz)

g_adl2dm_(zz)

g_adl2sm_(zz)

g_adl2XX_(zz, outtype)

g_M2adl_(amat)

g_M2ugl_(amat)

g_M2dagl_(amat)

g_ugl2M_(glist, vn = NULL, result = "matrix")
g_dagl2M_(glist, vn = NULL, result = "matrix")

g_adl2M_(alist, result = "matrix”)

Arguments
zz An object representing a graph.
vn The names of the vertices in the graphs. These will be the row and column
names of the matrix.
outtype What should a list be coerced to.
amat Adjacency matrix (dense or sparse dgCMatrix).
glist A list of generators where a generator is a character vector. If interpreted as

generators of an undirected graph, a generator is a complete set of vertices in

graph_iplot 59

the graph. If interpreted as generators of a dag, a generator (vl,...,vn) means
that there will be arrows from v2,...,vn to v1.

result A graph object.
alist An adjacency list.
Examples

Sparse and dense adjacency matrices converted to adjacency list
gl <- ug(~a:b + b:c + c:d, result="matrix")

g2 <- ug(~a:b + b:c + c:d, result="dgCMatrix")

g _M2adl_(g1)

Sparse and dense adjacency matrices converted to cliques
g-M2ugl_(g1)

Sparse and dense adjacency matrices converted to cliques
g_M2dagl_(g1)

g M2adl_(g2) ## FIXME FAILS for sparse matrix
g _M2ugl_(g2) ## FIXME Is there an issue here??
g_M2daglist(g2) ## Fails for sparse matrix

graph_iplot Function for plotting graphs using the ’igraph’ package.

Description

Generic function for plotting graphs using the ’igraph’ package and a plot method for graphNEL
objects.

Usage

iplot(x, ...)

S3 method for class 'igraph'

iplot(x, ...)
Arguments
X A graph object to be plotted.
Additional arguments
Author(s)

Sgren Hgjsgaard, <sorenh@math.aau.dk>

60 graph_is

Examples

UG <- ug(~a:btb:c:d)
iplot (UG)

graph_is Check properties of graphs.

Description

Check if a graph is 1) a directed acyclic graph (DAG), 2) a directed graph (DG), 3) an undirected
graph (UG), 4) a triangulated (chordal) undirected graph (TUG).

Usage

is_dag(object)
is_dagMAT (object)
is_ug(object)
is_ugMAT(object)
is_tug(object)
is_tugMAT (object)
is_dg(object)
is_dgMAT(object)
is_adjMAT (object)

is.adjMAT (object)

Arguments
object A graph represented as a graphNEL (graph package), an igraph (igraph pack-
age), an adjacency matrix or a sparse adjacency matrix (a dgCMatrix from the
Matrix package).
Details

* A non-zero value at entry (i,j) in an adjacency matrix A for a graph means that there is an
edge from i to j. If also (j,i) is non-zero there is also an edge from j to i. In this case we may
think of a bidirected edge between i and j or we may think of the edge as being undirected.

graph_is 61

We do not distinguish between undirected and bidirected edges in the gRbase package. On the
other hand, graphNEL objects from the graph package makes such a distinction (the function
edgemode () will tell if edges are "directed" or "undirected" in a graphNEL object).

* The function is_ug() checks if the adjacency matrix is symmetric (If applied to a graphNEL,
the adjacency matrix is created and checked for symmetry.)

* The function is_tug() checks if the graph is undirected and triangulated (also called chordal)
by checking if the adjacency matrix is symmetric and the vertices can be given a perfect
ordering using maximum cardinality seach.

* The function is_dg() checks if a graph is directed, i.e., that there are no undirected edges.
This is done by computing the elementwise product of A and the transpose of A; if there are
no non—zero entries in this product then the graph is directed.

* The function is_dag() will return TRUE if all edges are directed and if there are no cycles in
the graph. (This is checked by checking if the vertices in the graph can be given a topological
ordering which is based on identifying an undirected edge with a bidrected edge).

 There is a special case, namely if the graph has no edges at all (such that the adjacency matrix
consists only of zeros). Such a graph is both undirected, triangulated, directed and directed
acyclic.
Synonymous functions
The functions
e is.TUG/is.DAG/is.DG/is.UG/is.adjMAT
are synonymous with
e is_tug/is_dag/is_dg/is_ug/is_adjMAT.

The is.X group of functions will be deprecated.

Author(s)

Sgren Hgjsgaard, <sorenh@math.aau.dk>

See Also

dag, ug
Examples

DAGs
dag_ <- dag(~ a:b:c + c:d:e)

Undirected graphs
ug_ <- ug(~a:b:c + c:d:e)

Is graph a DAG?
is_dag(dag_)
is_dag(ug_)

62 graph_query

Is graph an undirected graph
is_ug(dag_)
is_ug(ug_)

Is graph a triangulated (i.e. chordal) undirected graph
is_tug(dag_)
is_tug(ug_)

Example where the graph is not triangulated
ug2_ <- ug(~ a:b + b:c + c:d + d:a)
is_tug(ug2_)

graph_query Query a graph

Description

Unified approach to query a graph about its properties (based partly on functionality from gRbase
and functionality imported from RBGL).

Usage
querygraph(object, op, set = NULL, set2 = NULL, set3 = NULL)

ggraph(object, op, set = NULL, set2 = NULL, set3 = NULL)
ancestors(set, object)

subGraph(set, object)

is.triangulated(object)

connComp (object)

ancestralSet(set, object)

ancestralGraph(set, object)

parents(set, object)

children(set, object)

separates(set, set2, set3, object)

closure(set, object)

graph_query
adj(object, set)
is.simplicial(set, object)
simplicialNodes(object)
is.complete(object, set = NULL)
is.decomposition(set, set2, set3, object)
nodes_(object)
nodes(object, ...)

S4 method for signature 'igraph'
nodes(object, ...)

edges(object)
edges_(object)
addeEdge(v1, v2, object)

removeEdge(v1l, v2, object)

Arguments
object A graph.
op The operation or query.

set, set2, set3 Sets of nodes in graph.
additional arguments

vl, v2 Vertex names

Examples

ugd <- ug(~a:b + b:c:d + e)

separates(”a”, "d”, c("b", "c"), ugo)

separates(”a”, "d", "c", ug@)
is.simplicial("b", ug®)
simplicialNodes(ugd)

simplicialNodes(ug@)

64 graph_topo_sort

graph_topo_sort Topological sort of vertices in directed acyclic graph

Description

A topological ordering of a directed graph is a linear ordering of its vertices such that, for every
edge (u->v), u comes before v in the ordering. A topological ordering is possible if and only if the
graph has no directed cycles, that is, if it is a directed acyclic graph (DAG). Any DAG has at least
one topological ordering. Can hence be used for checking if a graph is a DAG.

Usage
topo_sort(object, index = FALSE)
topo_sortMAT(amat, index = FALSE)
topoSort(object, index = FALSE)

topoSortMAT (amat, index = FALSE)

Arguments
object An graph represented either as a graphNEL object, an igraph, a (dense) matrix,
a (sparse) dgCMatrix.
index If FALSE, an ordering is returned if it exists and character (@) otherwise. If
TRUE, the index of the variables in an adjacency matrix is returned and -1
otherwise.
amat Adjacency matrix.
Value

If FALSE, an ordering is returned if it exists and character (@) otherwise. If TRUE, the index of
the variables in an adjacency matrix is returned and -1 otherwise.

Synonymous functions

The functions topo_sort / topoSort are synonymous with topo_sortMAT / topoSortMAT. One of
the groups may be deprecated in the future.

Note

The workhorse is the topo_sortMAT function which takes an adjacency matrix as input.

Author(s)

Sgren Hgjsgaard, <sorenh@math.aau.dk>

graph_vpar 65

See Also

dag, ug

Examples

dagMAT <- dag(~a:b:c + c:d:e, result="matrix")
dagMATS <- as(dagMAT, "dgCMatrix")

topo_sort(dagMAT)
topo_sort(dagMATS)

graph_vpar List of vertices and their parents for graph.

Description

Get list of vertices and their parents for graph.

Usage
vchi(object, getv = TRUE, forceCheck = TRUE)
vchiMAT (object, getv = TRUE, forceCheck = TRUE)
vpar(object, getv = TRUE, forceCheck = TRUE)

vparMAT (object, getv = TRUE, forceCheck = TRUE)

Arguments
object An object representing a graph. Valid objects are an adjacency matrix or as a
graphNEL.
getv The result is by default a list of vectors of the form (v, pal, pa2, ... paN)
where pal, pa2, ... paN are the parents of v. If getv is FALSE then the vectors
will have the form (pal, pa2, ... paN)
forceCheck Logical indicating if it should be checked that the object is a DAG.
Value
A list of vectors where each vector will have the form (v, pal, pa2, ... paN) where pal, pa2,

... paN are the parents of v.

See Also

dag, ug

66 gRbase

Examples

DAGs

dag_mat <- dag(~a:b:c + c:d:e, result="matrix")
dag_ig <- dag(~a:b:c + c:d:e)

vpar (dag_mat)

vpar(dag_ig)

vpar (dag_mat, getv=FALSE)

vpar(dag_ig, getv=FALSE)

Undirected graphs

ug_mat <- ug(~a:b:c + c:d:e, result="matrix")
ug_ig <- ug(~a:b:c + c:d:e)

Not run:

This will fail because the adjacency matrix is symmetric and the
graphNEL has undirected edges

vpar (ug_mat)

vpar(ug_ig)

End(Not run)

When forceCheck is FALSE, it will not be detected that the
#g raphs are undirected.

vpar (ug_mat, forceCheck=FALSE)

vpar(ug_ig, forceCheck=FALSE)

gRbase The package ‘gRbase’: summary information

Description

This package provides a basis for graphical modelling in R and in particular for other graphical
modelling packages, most notably gRim, gRain and gRc.

Details

gRbase provides the following:
* Implementation of various graph algorithms, including maximum cardinality search, maximal
prime subgraph decomposition, triangulation. See the vignette graphs.

* Implementation of various "high level" array operations, including multiplication/division,
marginalization, slicing, permutation. See the vignette ArrayOps.

* Implementation of various "low level" array operations. See the vignette ArrayOpsPrim.
* A collection of datasets

* A general framework for setting up data and model structures and provide examples for fitting
hierarchical log linear models for contingency tables and graphical Gaussian models for the
multivariate normal distribution. (Notice: This last part is not maintained / developed further.)

grbase-utilities 67

Authors

Soren Hojsgaard, Department of Mathematical Sciences, Aalborg University, Denmark

Contributions from Claus Dethlefsen, Clive Bowsher, David Edwards.

Acknowledgements

Thanks to the other members of the gR initiative, in particular to David Edwards for providing
functions for formula-manipulation.

References

Hojsgaard, S., Edwards, D., Lauritzen, S. (2012) Graphical models with R. Springer. ISBN: 978-1-
4614-2298-3

Lauritzen, S. L. (2002). gRaphical Models in R. R News, 3(2)39.

grbase-utilities gRbase utilities

Description

Various utility functions for gRbase. Includes ’faster versions’ of certain standard R functions.
Usage
rhsFormula2list(form)
rhsf2list(form)
rhsf2vec(form)
listify_dots(dots)
list2rhsFormula(form)
list2rhsf(form)
rowmat2list(X)
colmat2list(X)
matrix2list(X, byrow = TRUE)
which.arr.index(X)

which_matrix_index(X)

68 grbase-utilities

rowSumsPrim(X)
colSumsPrim(X)
colwiseProd(v, X)
lapplyV2I(setlist, item)

lapplyI2V(setlist, item)

Arguments
form Formula specification (a right-hand sided formula, a numeric/character vector
or a list of vectors).
dots dot-arguments to be turned into a list
X A matrix.
byrow Should the split be by row or by column.
v A vector.
setlist A list of atomic vectors
item An atomic vector
Details

which.arr.ind: Returns matrix n x 2 matrix with indices of non-zero entries in matrix X. Notice
which_matrix_index__ is cpp implementation.

colwiseProd: multiplies a vector v and a matrix X columnwise (as opposed to rowwise which is
achieved by v * X). Hence colwiseProd does the same as t(v * t(X)) - but it does so faster for
numeric values.

* lapplyV2I: same as but much faster than lapply(setlist, function(elt) match(elt, item))
¢ lapplyI2V: same as but faster than lapply(setlist, function(elt) item[elt])

Author(s)

Sgren Hgjsgaard, <sorenh@math.aau.dk>

Examples

colwiseProd

X <- matrix(1:16, nrow=4)

v <- 1:4

t(v * t(X))

colwiseProd(v, X)

Not run:

system.time(for (ii in 1:100000) t(v * t(X)))
system.time(for (ii in 1:100000) colwiseProd(v, X))

End(Not run)

grbase_generics 69

setlist <- list(c(1,2,3), c(2,3,4), c(2,4,5))
item <- c(2,3)

lapplyV2I(setlist, item)
lapply(setlist, function(gg) match(gg, item))

lapplyI2V(setlist, item)
lapply(setlist, function(x) item[x])

if (require(microbenchmark)){
microbenchmark(
lapplyV2I(setlist, item),
lapply(setlist, function(elt) match(elt, item)))

microbenchmark: :microbenchmark(
lapplyI2V(setlist, item),
lapply(setlist, function(elt) item[elt]))
3

grbase_generics Compile and propagate functions

Description

compile and propagate are generic functions which invoke particular methods which depend on
the class of the first argument

Usage

fit(object, ...)

compile(object, ...)

propagate(object, ...)

stepwise(object, ...)
Arguments

object An object

Additional arguments which depends on the class of the object

Value

The value returned depends on the class of the first argument.

70 set-operations

Author(s)

Segren Hgjsgaard, <sorenh@math.aau.dk>

References

Hgjsgaard, Sgren; Edwards, David; Lauritzen, Steffen (2012): Graphical Models with R, Springer

internal Internal functions for the gRbase package

Description

These functions are not intended to be called directly.

set-operations Suite of set operations

Description

Set operations for gRbase and related packages.

Usage

maximal_sets(setlist, index = FALSE)
minimal_sets(setlist, index = FALSE)

remove_redundant (setlist, maximal = TRUE, index = FALSE)

is_inset(x, setlist, index = FALSE)

get_subset(x, setlist, all = FALSE)
get_superset(x, setlist, all = FALSE)
is_subsetof(set, set2)

is.subsetof (x, set)

subsetof (x, set)

set-operations

Arguments
setlist
index
maximal

X, set, set2
all

Details

List of vectors (representing a set of subsets)

Logical; should indices (in setlist) be returned or a set of subsets.

Logical; see section ’Details’ for a description.
Vector representing a set.

Logical; see section ’Details’ for a description.

71

’setlist’ is a list of vectors representing a set of subsets; i.e. V1,...VQ where Vk is a subset of some

base set V.

“all’ If true, get_superset will return index of all vectors containing the element; otherwise only
the first index is returned.

is_inset: Checks if the set x is in one of the VKk’s.

remove_redundant: Returns those Vk which are not contained in other subsets; i.e. gives the
maximal sets. If maximal is FALSE then returns the minimal sets; i.e. VK is returned if VK is
contained in one of the other sets V1 and there are no set Vn contained in Vk.

Notice that the comparisons are made by turning the elements into characters and then comparing
these. Hence 1 is identical to "1".

Author(s)

Segren Hgjsgaard, <sorenh@math.aau.dk>

Examples

set <- list(c(1

ell <- c(2, 1)
el2 <- c(2, 3)
el3 <- c(4, 3)

, 2), c(1, 2, 3), c(2, 3, 6), c(2, 4), c(5, 6), 5)

eld4 <- c(2, 1, 3)

maximal_sets(set)
minimal_sets(set)

remove_redundant(set)
remove_redundant(set, maximal=FALSE)

is_inset(ell, set)
is_inset(el2, set)
is_inset(el3, set)

get_subset(ell,
get_subset(ell,
get_subset(el2,
get_subset(el3,

set)
set)
set)
set)

72 ug2dag

get_superset(ell, set)
get_superset(ell, set, all=TRUE)
get_superset(el2, set)
get_superset(el3, set)

is_subsetof(ell, ell)
is_subsetof(ell, el2)
is_subsetof(ell, el4)

ug2dag Coerce between undirected and directed graphs when possible

Description

An undirected graph G can be converted to a dag if G is chordal.

Usage
ug2dag(object)

Arguments

object An igraph object.

Index

+ datasets
data-ashtrees, 22
data-BodyFat, 23
data-breastcancer, 24
data-carcass, 25
data-chestSim, 26
data-dietox, 27
data-dumping, 27
data-lizard, 28
data-mathmark, 29
data-mildew, 30
data-milkcomp, 30
data-Nutrimouse, 31
data-personality, 32
data-rats, 33
data-reinis, 34
data-wine, 34
data_cad, 35

* graphics
graph_iplot, 59

* graphs
gRbase, 66

+ models
graph-gcproperties, 44
gRbase, 66

+ multivariate
gRbase, 66

x utilities
api-parray, 9
api-tabDist, 12
api-tabNew, 14
array-simulate, 18
compareModels, 20
cov2pcor, 20
fastcombn, 37
graph-clique, 39
graph-coerce-api, 41
graph-create, 42
graph-gcproperties, 44

73

graph-mcs, 46
graph-min-triangulate, 48
graph-moralize, 49
graph-mpd, 51
graph-randomdag, 52
graph-rip, 53
graph-triangulate, 55
graph_is, 60
graph_topo_sort, 64
grbase_generics, 69
%>% (internal), 70
%ax% (api-pct-operations), 11
%a+% (api-pct-operations), 11
%a-% (api-pct-operations), 11
%a/0% (api-pct-operations), 11
%al% (api-pct-operations), 11
%a==% (api-pct-operations), 11
%a_% (api-pct-operations), 11
%a*% (api-pct-operations), 11
%aalign% (api-pct-operations), 11
%amarg% (api-pct-operations), 11
%aperm% (api-pct-operations), 11
%aslicex% (api-pct-operations), 11
%aslice% (api-pct-operations), 11

addEdge (graph_query), 62
addEdge.gModel (internal), 70
adj (graph_query), 62
all_pairs, 3

all_subsets, 4

all_subsets0 (all_subsets), 4
ancestors (graph_query), 62
ancestralGraph (graph_query), 62
ancestralSet (graph_query), 62
api-array-07,4
api-array-properties, 6
api-cell,7

api-cell_, 8

api-parray, 9
api-pct-operations, 11

74

api-tabDist, 12
api-tabNew, 14

api-tabX, 15

api-tabX_, 16
api_tabSlice, 17
array-simulate, 18
as.adjMAT (gmwr_book), 38
as.parray (api-parray), 9
ashtrees (data-ashtrees), 22

BodyFat (data-BodyFat), 23
breastcancer (data-breastcancer), 24

cadl (data_cad), 35

cad2 (data_cad), 35

carcass (data-carcass), 25
carcassall (data-carcass), 25
cell2entry (api-cell), 7
cell2entry_ (api-cell_), 8
cell2entry_perm(api-cell), 7
cell2entry_perm_ (api-cell_), 8
chestSim1000 (data-chestSim), 26
chestSim10000 (data-chestSim), 26
chestSim100000 (data-chestSim), 26
chestSim500 (data-chestSim), 26
chestSim50000 (data-chestSim), 26
children (graph_query), 62

closure (graph_query), 62
coerceGraph (graph-coerce), 40
colmat2list (grbase-utilities), 67
colSumsPrim (grbase-utilities), 67
colwiseProd (grbase-utilities), 67
combn, 38

combn_prim (fastcombn), 37
compareModels, 20

compile (grbase_generics), 69
conc2pcor (cov2pcor), 20

connComp (graph_query), 62
cov2pcor, 20

dag, 40, 42, 47, 50, 54, 57, 61, 65
dag (graph-create), 42
dag2chol, 21

dagi (graph-create), 42
daglList (graph-create), 42
data-ashtrees, 22
data-BodyFat, 23
data-breastcancer, 24
data-carcass, 25

INDEX

data-chestSim, 26
data-dietox, 27
data-dumping, 27
data-lizard, 28
data-mathmark, 29
data-mildew, 30
data-milkcomp, 30
data-Nutrimouse, 31
data-personality, 32
data-rats, 33

data-reinis, 34

data-wine, 34

data2parray (api-parray), 9
data_cad, 35

dietox (data-dietox), 27
dimnames_match (api-array-properties), 6
downstream-aliases, 37
dropEdge. gModel (internal), 70
dumping (data-dumping), 27

edgelList (graph-edgelist), 43
edgelListMAT (graph-edgelist), 43
edges (graph_query), 62

edges_ (graph_query), 62

ell (downstream-aliases), 37
ellK (downstream-aliases), 37
entry2cell (api-cell), 7
entry2cell_ (api-cell_), 8
extract.power (internal), 70

fact_grid (api-cell), 7
fastcombn, 37
fit (grbase_generics), 69

g_adl2dm_ (graph_coerce_list), 57
g_adl2ig_ (graph_coerce_list), 57
g_adl2M_ (graph_coerce_list), 57
g_adl2sm_ (graph_coerce_list), 57
g_adl2XX_ (graph_coerce_list), 57
g_dagl2dm_ (graph_coerce_list), 57
g_dagl2ig_(graph_coerce_list), 57
g_dagl2M_ (graph_coerce_list), 57
g_dagl2sm_ (graph_coerce_list), 57
g_dagl2XX_ (graph_coerce_list), 57
g_dm2ig_ (graph-coerce-api), 41
g_dm2sm_ (graph-coerce-api), 41
g_ig2dm_ (graph-coerce-api), 41
g_ig2sm_ (graph-coerce-api), 41
g_M2adl_ (graph_coerce_list), 57

INDEX

g_M2dagl_ (graph_coerce_list), 57
g_M2ugl_ (graph_coerce_list), 57
g_sm2dm_ (graph-coerce-api), 41
g_sm2ig_ (graph-coerce-api), 41
g_ugl2dm_ (graph_coerce_list), 57
g_ugl2ig_(graph_coerce_list), 57
g_ugl2M_ (graph_coerce_list), 57
g_ugl2sm_ (graph_coerce_list), 57
g_ugl2XX_ (graph_coerce_list), 57
g_xm2dm_ (graph-coerce-api), 41
g_xm2ig_ (graph-coerce-api), 41
g_xm2sm_ (graph-coerce-api), 41
g_xm2xm_ (graph-coerce-api), 41
get_cliques (graph-clique), 39
get_subset (set-operations), 70
get_superset (set-operations), 70
getCliques (graph-clique), 39

ggm (internal), 70

gmwr_book, 38

graph-clique, 39
graph-coerce, 40
graph-coerce-api, 41
graph-create, 42
graph-edgelist, 43
graph-gcproperties, 44
graph-mcs, 46
graph-min-triangulate, 48
graph-moralize, 49

graph-mpd, 51

graph-randomdag, 52

graph-rip, 53
graph-triangulate, 55

graph_as (graph-coerce), 40
graph_coerce_list, 57
graph_iplot, 59

graph_is, 60

graph_query, 62
graph_topo_sort, 64
graph_vpar, 65

gRbase, 66

grbase-utilities, 67
grbase_generics, 69

internal, 70

intersectPrim (internal), 70
iplot (graph_iplot), 59
is.adjMAT (graph_is), 60
is.complete (graph_query), 62
is.DAG (graph_is), 60

75

is.decomposition (graph_query), 62

is.DG (graph_is), 60

is.named.array, 10

is.named.array (api-array-properties), 6

is.simplicial (graph_query), 62

is.subsetof (set-operations), 70

is.triangulated (graph_query), 62

is.TUG (graph_is), 60

is.UG (graph_is), 60

is_adjMAT (graph_is), 60

is_dag (graph_is), 60

is_dagMAT (graph_is), 60

is_dg (graph_is), 60

is_dgMAT (graph_is), 60

is_dimnames_ (api-array-properties), 6

is_inset (set-operations), 70

is_named_array_ (api-array-properties),
6

is_number_vector_
(api-array-properties), 6

is_subsetof (set-operations), 70

is_tug (graph_is), 60

is_tugMAT (graph_is), 60

is_ug (graph_is), 60

is_ugMAT (graph_is), 60

isDecomposable (graph-gcproperties), 44

isGraphical (graph-gcproperties), 44

isGSD_glist (internal), 70

jTree (graph-rip), 53
junction_tree, 47, 50
junction_tree (graph-rip), 53
junction_treeMAT (graph-rip), 53
junctionTree (graph-rip), 53

lapplyI2V (grbase-utilities), 67
lapplyV2I (grbase-utilities), 67
list2rhsf (grbase-utilities), 67
list2rhsFormula (grbase-utilities), 67
listify_dots (grbase-utilities), 67
lizard (data-lizard), 28

lizardAGG (data-1lizard), 28

lizardRAW (data-lizard), 28

make_plevels_ (api-cell_), 8
makeDimNames (api-parray), 9
MAT2ftM_ (internal), 70
matchPrim (internal), 70
math (data-mathmark), 29

76

mathmark (data-mathmark), 29

matrix2list (grbase-utilities), 67

max_cliqueMAT (graph-clique), 39

maxClique (graph-clique), 39

maxCliqueMAT (graph-clique), 39

maximal_sets (set-operations), 70

mcs, 40, 45, 50, 51, 54, 57

mcs (graph-mcs), 46

mcs_marked (graph-mcs), 46

mcs_markedMAT (graph-mcs), 46

mcsMAT, 40, 51, 57

mcsMAT (graph-mcs), 46

mildew (data-mildew), 30

milkcomp (data-milkcomp), 30

milkcomp1 (data-milkcomp), 30

minimal_sets (set-operations), 70

minimal_triang, 51

minimal_triang (graph-min-triangulate),
48

minimal_triangMAT, 51/

minimal_triangMAT
(graph-min-triangulate), 48

moralize, 40, 47, 54, 57

moralize (graph-moralize), 49

moralizeMAT, 40, 57

moralizeMAT (graph-moralize), 49

mpd, 49

mpd (graph-mpd), 51

mpdMAT (graph-mpd), 51

names2pairs (all_pairs), 3
next_cell (api-cell), 7

next_cell2 (api-cell), 7
next_cell2_(api-cell_), 8
next_cell_ (api-cell_), 8
next_cell_slice (api-cell), 7
next_cell_slice_ (api-cell_), 8
nodes (graph_query), 62

nodes, igraph-method (graph_query), 62
nodes_ (graph_query), 62
nonEdgelist (graph-edgelList), 43
nonEdgel istMAT (graph-edgelList), 43
Nutrimouse (data-Nutrimouse), 31

outerPrim(internal), 70
pairs2num (grbase-utilities), 67

parents (graph_query), 62
parray (api-parray), 9

INDEX

perm_cell_entries (api-cell), 7
perm_cell_entries_ (api-cell_), 8
personality (data-personality), 32
processFormula (internal), 70
propagate (grbase_generics), 69

qggraph (graph_query), 62
querygraph (graph_query), 62

random_dag (graph-randomdag), 52
randomGraph (internal), 70

rats (data-rats), 33

reinis (data-reinis), 34
remove_redundant (set-operations), 70
removeEdge (graph_query), 62
rhsf2list (grbase-utilities), 67
rhsf2vec (grbase-utilities), 67
rhsFormula2list (grbase-utilities), 67
rip, 40,45, 47,49-51, 57

rip (graph-rip), 53

ripMAT, 40, 51, 57

ripMAT (graph-rip), 53

rowmat2list (grbase-utilities), 67
rowSumsPrim (grbase-utilities), 67

selectOrder (internal), 70
separates (graph_query), 62
set-operations, 70

setdiffPrim (internal), 70
simplicialNodes (graph_query), 62
simulate.array (array-simulate), 18
simulate.table (array-simulate), 18
simulate.xtabs (array-simulate), 18
simulateArray (array-simulate), 18
slice2entry (api-cell), 7
slice2entry_ (api-cell_), 8
solveSPD (internal), 70

stepwise (grbase_generics), 69
subGraph (graph_query), 62

subsetof (set-operations), 70
symMAT2ftM_ (internal), 70

tab_add_ (api-tabX_), 16
tab_align_ (api-tabX_), 16
tab_dive_ (api-tabX_), 16
tab_div_ (api-tabX_), 16
tab_equal_ (api-tabX_), 16
tab_expand_ (api-tabX_), 16
tab_list_add_ (api-tabX_), 16

INDEX

tab_list_mult_ (api-tabX_), 16
tab_marg_ (api-tabX_), 16

tab_mult_ (api-tabX_), 16

tab_op_ (api-tabX_), 16

tab_perm_ (api-tabX_), 16

tab_subt_ (api-tabX_), 16

tabAdd (api-tabX), 15

tabAlign (api-tabX), 15

tabDist (api-tabDist), 12

tabDiv (api-tabX), 15

tabDive (api-tabX), 15

tabEqual (api-tabX), 15

tabExpand (api-tabX), 15

tableDiv (api-array-07), 4
tableGetSliceIndex (api-array-07), 4
tableMargin (api-array-07), 4
tableMult (api-array-07), 4

tableOp (api-array-07), 4

tableOp® (api-array-07), 4

tableOp2 (api-array-07), 4
tablePerm (api-array-07), 4
tableSetSliceValue (api-array-07), 4
tableSlice (api-array-07), 4
tableSlicePrim (api-array-07), 4
tabListAdd (api-tabX), 15
tabListMult (api-tabX), 15

tabMarg (api-tabX), 15

tabMult (api-tabX), 15

tabNew (api-tabNew), 14
tabNormalize (api-tabX), 15

tabOp (api-tabX), 15

tabPerm (api-tabX), 15

tabProd (api-tabX), 15

tabSlice (api_tabSlice), 17
tabSlice2 (api_tabSlice), 17
tabSlice2Entries (api_tabSlice), 17
tabSliceMult (api_tabSlice), 17
tabSlicePrim (api_tabSlice), 17
tabSubt (api-tabX), 15

tabSum (api-tabX), 15

topo_sort (graph_topo_sort), 64
topo_sortMAT (graph_topo_sort), 64
topoSort (graph_topo_sort), 64
topoSortMAT (graph_topo_sort), 64
triang (graph-triangulate), 55
triang_elo (graph-triangulate), 55
triang_eloMAT (graph-triangulate), 55
triang_eloMAT_ (graph-triangulate), 55

77

triang_mcwh (graph-triangulate), 55
triang_mcwhMAT_ (graph-triangulate), 55
triangulate, 49, 51, 54

triangulate (graph-triangulate), 55
triangulateMAT, 51

triangulateMAT (graph-triangulate), 55

ug, 40, 42,47, 50, 54, 57, 61, 65
ug (graph-create), 42

ug2dag, 72

ugi (graph-create), 42
ugList (graph-create), 42
uniquePrim(internal), 70
unlistPrim(internal), 70

vchi (graph_vpar), 65
vchiMAT (graph_vpar), 65
vpar (graph_vpar), 65
vparMAT (graph_vpar), 65

which.arr.index (grbase-utilities), 67

which_matrix_index (grbase-utilities),
67

wine (data-wine), 34

	all_pairs
	all_subsets
	api-array-07
	api-array-properties
	api-cell
	api-cell_
	api-parray
	api-pct-operations
	api-tabDist
	api-tabNew
	api-tabX
	api-tabX_
	api_tabSlice
	array-simulate
	compareModels
	cov2pcor
	dag2chol
	data-ashtrees
	data-BodyFat
	data-breastcancer
	data-carcass
	data-chestSim
	data-dietox
	data-dumping
	data-lizard
	data-mathmark
	data-mildew
	data-milkcomp
	data-Nutrimouse
	data-personality
	data-rats
	data-reinis
	data-wine
	data_cad
	downstream-aliases
	fastcombn
	gmwr_book
	graph-clique
	graph-coerce
	graph-coerce-api
	graph-create
	graph-edgeList
	graph-gcproperties
	graph-mcs
	graph-min-triangulate
	graph-moralize
	graph-mpd
	graph-randomdag
	graph-rip
	graph-triangulate
	graph_coerce_list
	graph_iplot
	graph_is
	graph_query
	graph_topo_sort
	graph_vpar
	gRbase
	grbase-utilities
	grbase_generics
	internal
	set-operations
	ug2dag
	Index

