
Google Summer of Code 2017 Additions

Vandit Jain

August 2017

Expected Hitting Time using CTMC

The package provides ExpectedTime function to calculate average hitting time from one state to another. Let
the final state be j, then for every state i ∈ I, where I is the set of all possible states and holding time qi > 0
for every i ̸= j. Assuming the conditions to be true, expected hitting time is equal to minimal non-negative
solution vector p to the system of linear equations (Norris 1998):

pk = 0 k = j
−

∑

l∈I qklpk = 1 k ̸= j
(1)

For example, consider the continuous time markovchain which is as follows:

library(markovchain)

states <- c("a","b","c","d")

byRow <- TRUE

gen <- matrix(data = c(-1, 1/2, 1/2, 0, 1/4, -1/2, 0, 1/4, 1/6, 0, -1/3, 1/6, 0, 0, 0, 0),

nrow = 4,byrow = byRow, dimnames = list(states,states))

ctmc <- new("ctmc",states = states, byrow = byRow, generator = gen, name = "testctmc")

The generator matrix of the ctmc is:

M =









−1 1/2 1/2 0
1/4 −1/2 1/4 1/6
1/6 0 −1/3 1/6
0 0 0 0









Now if we have to calculate expected hitting time the process will take to hit state d if we start from a, we
apply the ExpectedT ime function. ExpectedT ime function takes four inputs namely a ctmc class object,
initial state i, the final state j that we have to calculate expected hitting time and a logical parameter whether
to use RCpp implementation. By default, the function uses RCpp as it is faster and takes lesser time.

ExpectedTime(ctmc,1,4)

[1] 7

We find that the expected hitting time for process to be hit state d is 7 units in this case.

Calculating Probability at time T using ctmc

The package provides a function probabilityatT to calculate probability of every state according to given
ctmc object. The Kolmogorov’s backward equation gives us a relation between transition matrix at any time
t with the generator matrix(Dobrow 2016):

P ′(t) = QP (t) (2)

1

Here we use the solution of this differential equation P (t) = P (0)etQ for t ≥ 0 and P (0) = I. In this equation,
P (t) is the transition function at time t. The value P (t)[i][j] at time P (t) describes the conditional probability
of the state at time t to be equal to j if it was equal to i at time t = 0. It takes care of the case when ctmc

object has a generator represented by columns. If initial state is not provided, the function returns the whole
transition matrix P (t).

Also to mention is that the function is also implemented using RCpp and can be used used to lessen the time
of computation. It is used by default. Next, We consider both examples where initial state is given and case
where initial state is not given.

In the first case, the function takes two inputs, first of them is an object of the S4 class ‘ctmc’ and second is
the final time t.

probabilityatT(ctmc,1)

a b c d

a 0.41546882 0.24714119 0.2703605 0.06702946

b 0.12357060 0.63939068 0.0348290 0.20220972

c 0.09012017 0.02321933 0.7411205 0.14553997

d 0.00000000 0.00000000 0.0000000 1.00000000

Here we get an output in the form of a transition matrix.

If we take the second case i.e. considering some initial input:

probabilityatT(ctmc,1,1)

[1] 0.41546882 0.24714119 0.27036052 0.06702946

In this case we get the probabilities corresponding to every state. this also includes probability that the
process hits the same state a after time t = 1.

Plotting generator matrix of continuous-time markovchains

The package provides a plot function for plotting a generator matrix Q in the form of a directed graph where
every possible state is assigned a node. Edges connecting these nodes are weighted. Weight of the edge going
from a state i to state j is equal to the value Qij . This gives a picture of the generator matrix.

For example, we build a ctmc-class object to plot it.

energyStates <- c("sigma", "sigma_star")

byRow <- TRUE

gen <- matrix(data = c(-3, 3,

1, -1), nrow = 2,

byrow = byRow, dimnames = list(energyStates, energyStates))

molecularCTMC <- new("ctmc", states = energyStates,

byrow = byRow, generator = gen,

name = "Molecular Transition Model")

Now if we plot this function we get the following graph:

plot(molecularCTMC)

Warning in v(graph): Non-positive edge weight found, ignoring all weights

during graph layout.

2

−3

−1

3

1

sigma

sigma_star

The figure shown is built using the igraph package. The package also provides options of plotting graph
using diagram and DiagrameR package. Plot using these packages can be built using these commands:

if(requireNamespace(package='ctmcd', quietly = TRUE)) {

plot(molecularCTMC,package = "diagram")

} else {

print("diagram package unavailable")

}

[1] "diagram package unavailable"

Similarly, one can easily replace diagram package with DiagrammeR.

Imprecise Continuous-Time Markov chains

Continuous-time Markov chains are mathematical models that are used to describe the state-evolution of
dynamical systems under stochastic uncertainty. However, building models using continuous time markovchains
take in consideration a number of assumptions which may not be realistic for the domain of application;
in particular; the ability to provide exact numerical parameter assessments, and the applicability of time-
homogeneity and the eponymous Markov property. Hence we take ICTMC into consideration.

More technically, an ICTMC is a set of “precise” continuous-time finite-state stochastic processes, and rather
than computing expected values of functions, we seek to compute lower expectations, which are tight lower
bounds on the expectations that correspond to such a set of “precise” models.

Types of ICTMCs

For any non-empty bounded set of rate matrices L, and any non-empty set M of probability mass functions
on X, we define the following three sets of stochastic processes that are jointly consistent with L and M :

• P W
L,M is the consistent set of all well-behaved stochastic processes;

• P W M
L,M is the consistent set of all well-behaved Markov chains;

• P W HM
L,M is the consistent set of all well-behaved homogeneous Markov chains(Thomas Krak 2017).

From a practical point of view, after having specified a (precise) stochastic process, one is typically interested
in the expected value of some function of interest, or the probability of some event. Similarly, in this work,
our main objects of consideration will be the lower probabilities that correspond to the ICTMCs.

3

Lower Transition Rate Operators for ICTMCs

A map Ql from L(X) to L(X) is called a lower transition rate operator if, for all f, g ∈ L(X), all λ ∈ R≥0,
all µ ∈ L(X), and all x ∈ X(Thomas Krak 2017):

1. [Qlm](x) = 0
2. [QlI](x) ≥ 0∀y ∈ X such that x ̸= y
3. [Ql(f + g)](x) ≥ [Qlf](x) + [Qlg](x)
4. [Ql(lf)](x) = λQlf [(x)]

Lower Transition Operators

A map Tl from L(X) to L(X) is called a lower transition operator if, for all f, g ∈ L(X), all λ ∈ R≥0, all
µ ∈ L(X), and all x ∈ X(Thomas Krak 2017):

1. [Tlf](x) ≥ min(f(y) : y ∈ L)
2. [Tl(f + g)](x) ≥ [Tlf](x) + [Tlg](x)
3. [Tl(λf)](x) = l[Tlf](x)

ImpreciseprobabilityatT function

Now I would like to come onto the practical purpose of using ICTMC classes. ICTMC classes in these
package are defined to represent a generator that is defined in such a way that every row of the generator
corresponding to every state in the process is governed by a separate variable. As defined earlier, an imprecise
continuous time markovchain is a set of many precise CTMCs. Hence this representation of set of precise
CTMCs can be used to calulate transition probability at some time in future. This can be seen as an analogy
with probabilityatT function. It is used to calculate the transition function at some later time t using
generatoe matrix.

For every generator matrix, we have a corresponding transition function. Similarly, for every Lower Transition
rate operator of an ICTMC, we have a corresponding lower transition operator denoted by Ls

t . Here t is the
initial time and s is the final time.

Now we mention a proposition(Thomas Krak 2017) which states that: Let Ql be a lower transition rate
operator, choose any time t and s both greater than 0 such that t ≤ s, and let Ls

t be the lower transition
operator corresponding to Ql. Then for any f ∈ L(X) and ϵ ∈ R>0, if we choose any n ∈ N such that:

n ≥ max((s − t) ∗ ♣♣Q♣♣,
1

2ϵ
(s − t)2♣♣Q♣♣2♣♣f ♣♣v)

with ♣♣f ♣♣v := max f - min f , we are guaranteed that(Thomas Krak 2017)

♣♣Ls
t −

n
∏

i=1

(I + ∆Ql)♣♣ ≤ ϵ

with ∆ := s−t
n

Simple put this equation tells us that, using Qlg for all g ∈ L(X) then we can also approximate the quantity
Ls

t to arbitrary precision, for any given f ∈ L(X).

To explain this approximate calculation, I would take a detailed example of a process containing two states
healthy and sick, hence X = (healthy, sick). If we represent in form of an ICTMC, we get:

Q =



−a a
b −b



4

for some a, b ∈ R≥0. The parameter a here is the rate at which a healthy person becomes sick. Technically,
this means that if a person is healthy at time t, the probability that he or she will be sick at time t + ∆, for
small ∆, is very close to ∆a. More intuitively, if we take the time unit to be one week, it means that he or
she will, on average, become sick after 1

a
weeks. The parameter b is the rate at which a sick person becomes

healthy again, and has a similar interpretation.

Now to completely represent the ICTMC we take an example and write the generator as:

Q =



−a a
b −b



: a ∈ [
1

52
,

3

52
], b ∈ [

1

2
, 2]

Now suppose we know the initial state of the patient to be sick, hence this is represented in the form of a
function by:

Is =



0
1



We observe that the ♣♣Is♣♣ = 1. Now to use the proposition mentioned above, we use the definition to calculate
the lower transition operator Ql Next we calculate the norm of the lower transition rate operator and use it
in the preposition. Also we take value of ϵ to be 0.001.

Using the preposition we can come up to an algorithm for calculating the probability at any time s given
state at initial time t and a ICTMC generator(Thomas Krak 2017).

The algorithm is as follows:

Input: A lower transition rate operator Q, two time points t, s such that t ≤ s, a function f ∈ L(X) and a
maximum numerical error ϵ ∈ R>0.

Algorithm:

1. n = max((s − t)♣♣Q♣♣, 1
2ϵ

(s − t)2♣♣Q♣♣2♣♣f ♣♣v)
2. ∆ = s−t

n

3. g0 = Is

4. for i ∈ (1,, n) do gi = gi−1 + ∆Qlgi−1

5. end for
6. return gn

Output:

The conditional probability vector after time t with error ϵ. Hence, after applying the algorithm on above
example we get the following result:

$ g_{n} = 0.0083$ if final state is healthy and gn = 0.141 if the final state is sick. The probability calculated
is with an error equal to ϵ i.e. 0.001.

Now we run the algorithm on the example through R code.

states <- c("n","y")

Q <- matrix(c(-1,1,1,-1),nrow = 2,byrow = TRUE,dimnames = list(states,states))

range <- matrix(c(1/52,3/52,1/2,2),nrow = 2,byrow = 2)

name <- "testictmc"

ictmc <- new("ictmc",states = states,Q = Q,range = range,name = name)

impreciseProbabilityatT(ictmc,2,0,1,10ˆ-3,TRUE)

[1] 0.008259774 0.140983476

The probabilities we get are with an error of 10−3

5

Continuous time markovchain generator using frequency Matrix

The package provides freq2Generator function. It takes in a matrix representing relative frequency values
along with time taken to provide a continuous time markovchain generator matrix. Here, frequency matrix is
a 2-D matrix of dimensions equal to relative number of possible states describing the number of transitions
from a state i to j in time t, which is another parameter to be provided to the function. The function also
allows to chose among three methods for calculation of the generator matrix (Alexander Kreinin 2001). It
requires the (Pfeuffer 2017) package.

Three methods are as follows:

1. Quasi Optimization - “QO”
2. Diagonal Adjustment - “DA”
3. Weighted Adjustment - “WA”

See reference for details about the methods.

Here is an example matrix on which freq2Generator function is run:

if(requireNamespace(package='ctmcd', quietly = TRUE)) {

sample <- matrix(c(150,2,1,1,1,200,2,1,2,1,175,1,1,1,1,150),nrow = 4,byrow = TRUE)

sample_rel = rbind((sample/rowSums(sample))[1:dim(sample)[1]-1,],c(rep(0,dim(sample)[1]-1),1))

freq2Generator(sample_rel,1)

} else {

print('ctmcd unavailable')

}

[1] "ctmcd unavailable"

Committor of a markovchain

Consider set of states A,B comprising of states from a markovchain with transition matrix P. The committor
vector of a markovchain with respect to sets A and B gives the probability that the process will hit a state
from set A before any state from set B.

Committor vector u can be calculated by solving the following system of linear equations(StackOverflow
2015):

Lu(x) = 0, x /∈ A ∪ B
u(x) = 1, x ∈ A
u(x) = 0, x ∈ B

where L = P − I.

Now we apply the method to an example:

transMatr <- matrix(c(0,0,0,1,0.5,0.5,0,0,0,0,0.5,0,0,0,0,0,0.2,0.4,0,0,0,0.8,0.6,0,0.5),nrow = 5)

object <- new("markovchain", states=c("a","b","c","d","e"),transitionMatrix=transMatr, name="simpleMc")

committorAB(object,c(5),c(3))

Here we get probability that the process will hit state “e” before state “c” given different initial states.

First Passage probability for set of states

Currently computation of the first passage time for individual states has been implemented in the package.
firstPassageMultiple function provides a method to get first passage probability for given provided set of
states.

Consider this example markovchain object:

6

statesNames <- c("a", "b", "c")

testmarkov <- new("markovchain", states = statesNames, transitionMatrix =

matrix(c(0.2, 0.5, 0.3,

0.5, 0.1, 0.4,

0.1, 0.8, 0.1), nrow = 3, byrow = TRUE,

dimnames = list(statesNames, statesNames)

))

Now we apply firstPassageMultiple function to calculate first passage probabilities for set of states ”b”, ”c”
when initial state is ”a”.

firstPassageMultiple(testmarkov,"a",c("b","c"),4)

set

1 0.8000

2 0.6000

3 0.2540

4 0.1394

This shows us the probability that the process will hit any of the state from the set after n number of steps
for instance, as shown, the probability of the process to hit any of the states among ”b”, ”c” after 2 steps is
0.6000.

Joint PDF of number of visits to the various states of a markovchain

The package provides a function noofVisitsDist that returns the PDF of the number of visits to the various
states of the discrete time markovchain during the first N steps, given initial state of the process.

We will take an example to see how to use the function on a markovchain-class object:

transMatr<-matrix(c(0.4,0.6,.3,.7),nrow=2,byrow=TRUE)

simpleMc<-new("markovchain", states=c("a","b"),

transitionMatrix=transMatr,

name="simpleMc")

noofVisitsDist(simpleMc,5,"a")

a b

0.348148 0.651852

The output clearly shows the probabilities related to various states of the process.

Expected Rewards for a markovchain

The package provides a function expectedRewards that returns a vector of expected rewards for different
initial states. The user provides reward values, a vector r of size equal to number of states having a value
corresponding to every state. Given a transition matrix [P], we get the vector of expected rewards v after n
transitions according to the equation as follows(Gallager 2013):

v[n] = r + [P] ∗ v[n − 1]

Applying this equation on a markovchain-class object

transMatr<-matrix(c(0.99,0.01,0.01,0.99),nrow=2,byrow=TRUE)

simpleMc<-new("markovchain", states=c("a","b"),

transitionMatrix=transMatr)

expectedRewards(simpleMc,1,c(0,1))

7

[1] 0.01 1.99

Expected Rewards for a set of states in a markovchain process

The package provides a function expectedRewardsBeforeHittingA that returns the value of expected first
passage rewards E given rewards corresponding to every state, an initial state. This means the function
returns expected reward for given initial state s0, number of transitions n and for a set of states A with a
constraint such that the process does not hit any of the states that belong to state A. S is the set of all
possible states.

The function uses an equation which is as follows:

E =

n
∑

i=1

1s0
P i

S−ARS−A

here 1s0
= [0, 0, ...0, 1, 0, ..., 0, 0, 0], 1 being on s0 position and RS−A being the rewards vector for S − A state.

Checking Irreducibly of a CTMC

The package provides a function is.CTMCirreducible that returns a Boolean value stating whether the ctmc
object is irreducible. We know that a continuous time markovchain is irreducible if and only if its embedded
chain is irreducible(Sigman 2009).

We demonstrate an example running the function:

energyStates <- c("sigma", "sigma_star")

byRow <- TRUE

gen <- matrix(data = c(-3, 3,

1, -1), nrow = 2,

byrow = byRow, dimnames = list(energyStates, energyStates))

molecularCTMC <- new("ctmc", states = energyStates,

byrow = byRow, generator = gen,

name = "Molecular Transition Model")

is.CTMCirreducible(molecularCTMC)

[1] TRUE

Simulation of Higher Order Multivariate Markovchains

The package provides predictHommc function. This function provides a simulation system for higher order
multivariate markovchains. The function assumes that the state probability distribution of the jth sequence
at time r + 1 depends on the state probability distribution of all the sequences at n previous mon=ments of
time i.e. t = r to t = r − n + 1 . Hence the proposed model takes the form mathematically as:(Ching, Ng,
and Fung 2008)

Xj
r+1 =

s
∑

k=1

n
∑

h=1

λ
(h)
jk P

(jk)
h X

(k)
r−h+1, j = 1, 2,s, r = n − 1, n, ...

with initals X
(k)
0 , X

(k)
1 ,, X

(k)
n−1 (k = 1, 2, ...s). Here,

λ
(k)
jk , 1 ≤ j, k ≤ s, 1 ≤ h ≤ n and

∑s

k=1

∑n

h=1 λ
(h)
jk = 1, j = 1, 2,s.

Now we run an example on sample hommc object for simulating next 3 steps using predictHommc function.
The function provides a choice of entering initial states according to the hommc object. In case the user does
not enter initial states, the function takes all initial states to be the first state from the set of states.

8

if (requireNamespace("Rsolnp", quietly = TRUE)) {

statesName <- c("a", "b")

P <- array(0, dim = c(2, 2, 4), dimnames = list(statesName, statesName))

P[,,1] <- matrix(c(0, 1, 1/3, 2/3), byrow = FALSE, nrow = 2)

P[,,2] <- matrix(c(1/4, 3/4, 0, 1), byrow = FALSE, nrow = 2)

P[,,3] <- matrix(c(1, 0, 1/3, 2/3), byrow = FALSE, nrow = 2)

P[,,4] <- matrix(c(3/4, 1/4, 0, 1), byrow = FALSE, nrow = 2)

Lambda <- c(0.8, 0.2, 0.3, 0.7)

ob <- new("hommc", order = 1, states = statesName, P = P,

Lambda = Lambda, byrow = FALSE, name = "FOMMC")

predictHommc(ob,3)

} else {

print("Rsolnp unavailable")

}

[,1] [,2] [,3]

[1,] "b" "a" "b"

[2,] "a" "a" "a"

Check Time Reversibility of Continuous-time markovchains

A Continuous-time markovchain with generator Q and stationary distribution π is said to be time reversible
if:(Dobrow 2016)

πiqij = πjqji

Intuitively, a continuous-time Markov chain is time reversible if the process in forward time is indistinguishable
from the process in reversed time. A consequence is that for all states i and j, the long-term forward transition
rate from i to j is equal to the long-term backward rate from j to i.

The package provides is.TimeReversible function to check if a ctmc object is time-reversible. We follow
with an example run on a ctmc object.

energyStates <- c("sigma", "sigma_star")

byRow <- TRUE

gen <- matrix(data = c(-3, 3,

1, -1), nrow = 2,

byrow = byRow, dimnames = list(energyStates, energyStates))

molecularCTMC <- new("ctmc", states = energyStates,

byrow = byRow, generator = gen,

name = "Molecular Transition Model")

is.TimeReversible(molecularCTMC)

[1] TRUE

References
Alexander Kreinin, Marina Sidelnikova. 2001. “Regularization Algorithms for Transition Matrices.” Algo

Research Quarterly 4 (1/2): 23–40.
Ching, Wai-Ki, Michael K Ng, and Eric S Fung. 2008. “Higher-Order Multivariate Markov Chains and Their

Applications.” Linear Algebra and Its Applications 428 (2): 492–507.
Dobrow, Robert P. 2016. Introduction to Stochastic Processes with r. John Wiley & Sons.
Gallager, Robert G. 2013. Stochastic Processes: Theory for Applications. Cambridge University Press.
Norris, J. R. 1998. Markovchains. Cambridge University Press.

9

Pfeuffer, Marius. 2017. Ctmcd: Estimating the Parameters of a Continuous-Time Markov Chain from

Discrete-Time Data. https://CRAN.R-project.org/package=ctmcd.
Sigman, Karl. 2009. “Continuous Time Markovchains.” Columbia University.
StackOverflow. 2015. https://math.stackexchange.com/questions/1450399/probability-that-a-chain-will-

enter-state-5-before-it-enters-state-3?newreg=82f90b66b949495a91661caad24db915.
Thomas Krak, Arno Siebes, Jasper De Bock. 2017. “Imprecise Continuous Time Markov Chains.” Interna-

tional Journal of Approximate Reasoning 88: 452–528.

10

https://CRAN.R-project.org/package=ctmcd
https://math.stackexchange.com/questions/1450399/probability-that-a-chain-will-enter-state-5-before-it-enters-state-3?newreg=82f90b66b949495a91661caad24db915
https://math.stackexchange.com/questions/1450399/probability-that-a-chain-will-enter-state-5-before-it-enters-state-3?newreg=82f90b66b949495a91661caad24db915

	Expected Hitting Time using CTMC
	Calculating Probability at time T using ctmc
	Plotting generator matrix of continuous-time markovchains
	Imprecise Continuous-Time Markov chains
	Types of ICTMCs
	Lower Transition Rate Operators for ICTMCs
	Lower Transition Operators
	ImpreciseprobabilityatT function

	Continuous time markovchain generator using frequency Matrix
	Committor of a markovchain
	First Passage probability for set of states
	Joint PDF of number of visits to the various states of a markovchain
	Expected Rewards for a markovchain
	Expected Rewards for a set of states in a markovchain process

	Checking Irreducibly of a CTMC
	Simulation of Higher Order Multivariate Markovchains
	Check Time Reversibility of Continuous-time markovchains
	References

