
Package ‘quadrupen’
December 18, 2023

Type Package

Title Sparsity by Worst-Case Quadratic Penalties

Version 0.2-11

Date 2023-12-18

Description Fits classical sparse regression models with
efficient active set algorithms by solving quadratic problems as described by
Grandvalet, Chiquet and Ambroise (2017) <arXiv:1210.2077>. Also provides a few
methods for model selection purpose (cross-validation, stability selection).

License GPL (>= 3)

Depends Rcpp, ggplot2, Matrix

Imports reshape2, methods, scales, grid, parallel

Suggests testthat, spelling, lars, elasticnet, glmnet

LinkingTo Rcpp, RcppArmadillo

NeedsCompilation yes

Maintainer Julien Chiquet <julien.chiquet@inrae.fr>

URL https://github.com/jchiquet/quadrupenCRAN

BugReports https://github.com/jchiquet/quadrupenCRAN/issues

Encoding UTF-8

RoxygenNote 7.2.3

Language en-US

Author Julien Chiquet [aut, cre] (<https://orcid.org/0000-0002-3629-3429>)

Repository CRAN

Date/Publication 2023-12-18 09:50:02 UTC

R topics documented:
quadrupen-package . 2
bounded.reg . 4
crossval . 7

1

https://arxiv.org/abs/1210.2077
https://github.com/jchiquet/quadrupenCRAN
https://github.com/jchiquet/quadrupenCRAN/issues
https://orcid.org/0000-0002-3629-3429

2 quadrupen-package

cvpen-class . 9
elastic.net . 10
plot,cvpen-method . 12
plot,quadrupen-method . 14
plot,stability.path-method . 15
quadrupen-class . 17
stability . 18
stability.path-class . 20

Index 21

quadrupen-package Sparsity by Worst-Case Quadratic Penalties

Description

This package is designed to fit accurately several popular penalized linear regression models us-
ing the algorithm proposed in Grandvalet, Chiquet and Ambroise (submitted) by solving quadratic
problems with increasing size.

Features

At the moment, two R fitting functions are available:

1. the elastic.net function, which solves a family of linear regression problems penalized by
a mixture of `1 and `2 norms. It notably includes the LASSO (Tibshirani, 1996), the adaptive-
LASSO (Zou, 2006), the Elastic-net (Zou and Hastie, 2006) or the Structured Elastic-net
(Slawski et al., 2010). See examples as well as the available demo(quad_enet).

2. the bounded.reg function, which fits a linear model penalized by a mixture of `∞ and `2
norms. It owns the same versatility as the elastic.net function regarding the `2 norm, yet
the `1-norm is replaced by the infinity norm. Check demo(quad_breg) and examples.

The problem commonly solved for these two functions writes

min
β

1

2
(y −Xβ)T (y −Xβ) + λ1‖Dβ‖q +

λ2
2
βTSβ,

where q = 1 for elastic.net and q = ∞ for bounded.reg. The diagonal matrix D allows
different weights for the first part of the penalty. The structuring matrix S can be used to introduce
some prior information regarding the predictors. It is provided via a positive semidefinite matrix.

The S4 objects produced by the fitting procedures own the classical methods for linear model in R,
as well as methods for plotting, (double) cross-validation and for the stability selection procedure
of Meinshausen and Buhlmann (2010).

All the examples of this documentation have been included to the package source, in the ’examples’
directory. Some (too few!) routine testing scripts using the testhat package are also present in the
’tests’ directory, where we check basic functionalities of the code, especially the reproducibility of
the Lasso/Elastic-net solution path with the lars, elasticnet and glmnet packages. We also check
the handling of runtime errors or unstabilities.

quadrupen-package 3

Algorithm

The general strategy of the algorithm relies on maintaining an active set of variables, starting from a
vector of zeros. The underlying optimization problem is solved only on the activated variables, thus
handling with small smooth problems with increasing size. Hence, by considering a decreasing
grid of values for the penalty λ1 and fixing λ2, we may explore the whole path of solutions at a
reasonable numerical cost, providing that λ1 does not end up too small.

For the `1-based methods (available in the elastic.net function), the size of the underlying prob-
lems solved is related to the number of nonzero coefficients in the vector of parameters. With the
`∞-norm, (available in the boundary.reg function), we do not produce sparse estimator. Never-
theless, the size of the systems solved along the path deals with the number of unbounded variables
for the current penalty level, which is quite smaller than the number of predictors for a reasonable
λ1. The same kind of proposal was made in Zhao, Rocha and Yu (2009).

Underlying optimization is performed by direct resolution of quadratic sub problems, which is the
main purpose of this package. This strategy is thoroughly exposed in Grandvalet, Chiquet and
Ambroise (submitted). Still, we also implemented the popular and versatile proximal (FISTA)
approaches for routine checks and numerical comparisons. A coordinate descent approach is also
included, yet only for the elastic.net fitting procedure.

The default setting uses the quadratic approach that gives its name to the package. It has been opti-
mized to be the method of choice for small and medium scale problems, and produce very accurate
solutions. However, the first order methods (coordinate descent and FISTA) can be interesting
in situations where the problem is close to singular, in which case the Cholesky decomposition
used in the quadratic solver can be computationally unstable. Though it is extremely unlikely for
elastic.net – and if so, we encourage the user to send us back any report of such an event –, this
happens at times with bounded.reg. Regarding this issue, we let the possibility for the user to run
the optimization of the bounded.reg criterion in a (hopefully) ’bulletproof’ mode: using mainly the
fast and accurate quadratic approach, it switches to the slower but more robust proximal resolution
when unstability is detected.

Technical remarks

Most of the numerical work is done in C++, relying on the RcppArmadillo package. We also
provide a (double) cross-validation procedure and functions for stability selection, both using the
multi-core capability of the computer, through the parallel package. This feature is not available
for Windows user, though. Finally, note that the plot methods enjoy some (still very few) of the
capabilities of the ggplot2 package.

We hope to enrich quadrupen with other popular fitting procedures and develop other statistical
tools, particularly towards bootstrapping and model selection purpose. Sparse matrix encoding is
partially supported at the moment, and will hopefully be thoroughly available in the future, thanks
to upcoming updates of the great RcppArmadillo package.

Author(s)

Julien Chiquet <julien.chiquet@inrae.fr>

References

Yves Grandvalet, Julien Chiquet and Christophe Ambroise, Sparsity by Worst-case Quadratic Penal-
ties, arXiv preprint, 2012.

https://arxiv.org/abs/1210.2077
https://arxiv.org/abs/1210.2077

4 bounded.reg

• Nicolas Meinshausen and Peter Buhlmann. Stability Selection, JRSS(B), 2010.

• Martin Slawski, Wolfgang zu Castell, and Gerhard Tutz. Feature selection guided by structural
information, AOAS, 2010.

• Peng Zhao, Guillerme Rocha and Bin Yu. The composite absolute penalties family for grouped
and hierarchical variable selection, The Annals of Statistics, 2009.

• Hui Zou. The Adaptive Lasso and Its Oracle Properties, JASA, 2006.

• Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net, JRSS(B),
2006.

• Robert Tibshirani. Regression Shrinkage and Selection via the Lasso, JRSS(B), 1996.

bounded.reg Fit a linear model with infinity-norm plus ridge-like regularization

Description

Adjust a linear model penalized by a mixture of a (possibly weighted) `∞-norm (bounding the
magnitude of the parameters) and a (possibly structured) `2-norm (ridge-like). The solution path
is computed at a grid of values for the infinity-penalty, fixing the amount of `2 regularization. See
details for the criterion optimized.

Usage

bounded.reg(
x,
y,
lambda1 = NULL,
lambda2 = 0.01,
penscale = rep(1, p),
struct = NULL,
intercept = TRUE,
normalize = TRUE,
naive = FALSE,
nlambda1 = ifelse(is.null(lambda1), 100, length(lambda1)),
min.ratio = ifelse(n <= p, 0.01, 0.001),
max.feat = ifelse(lambda2 < 0.01, min(n, p), min(4 * n, p)),
control = list(),
checkargs = TRUE

)

Arguments

x matrix of features, possibly sparsely encoded (experimental). Do NOT include
intercept. When normalized os TRUE, coefficients will then be rescaled to the
original scale.

y response vector.

bounded.reg 5

lambda1 sequence of decreasing `∞ penalty levels. If NULL (the default), a vector is gen-
erated with nlambda1 entries, starting from a guessed level lambda1.max where
only the intercept is included, then shrunken to min.ratio*lambda1.max.

lambda2 real scalar; tunes the `2-penalty in the bounded regression. Default is 0.01.
Set to 0 to regularize only by the infinity norm (be careful regarding numerical
stability in that case, particularly in the high dimensional setting).

penscale vector with real positive values that weight the infinity norm of each feature.
Default set all weights to 1. See details below.

struct matrix structuring the coefficients. Must be at least positive semidefinite (this
is checked internally if the checkarg argument is TRUE). The default uses the
identity matrix. See details below.

intercept logical; indicates if an intercept should be included in the model. Default is
TRUE.

normalize logical; indicates if variables should be normalized to have unit L2 norm before
fitting. Default is TRUE.

naive logical; Compute either ’naive’ of ’classic’ bounded regression: mimicking the
Elastic-net, the vector of parameters is rescaled by a coefficient (1+lambda2)
when naive equals FALSE. No rescaling otherwise. Default is FALSE.

nlambda1 integer that indicates the number of values to put in the lambda1 vector. Ignored
if lambda1 is provided.

min.ratio minimal value of infinity-part of the penalty that will be tried, as a fraction of
the maximal lambda1 value. A too small value might lead to unstability at the
end of the solution path corresponding to small lambda1. The default value tries
to avoid this, adapting to the ’n < p’ context. Ignored if lambda1 is provided.

max.feat integer; limits the number of features ever to enter the model: in our implemen-
tation of the bounded regression, it corresponds to the variables which have left
the boundary along the path. The algorithm stops if this number is exceeded and
lambda1 is cut at the corresponding level. Default is min(nrow(x),ncol(x))
for small lambda2 (<0.01) and min(4*nrow(x),ncol(x)) otherwise. Use with
care, as it considerably changes the computation time.

control list of argument controlling low level options of the algorithm –use with care
and at your own risk– :

verbose: integer; activate verbose mode –this one is not too much risky!– set
to 0 for no output; 1 for warnings only, and 2 for tracing the whole progres-
sion. Default is 1. Automatically set to 0 when the method is embedded
within cross-validation or stability selection.

timer: logical; use to record the timing of the algorithm. Default is FALSE.
max.iter: the maximal number of iteration used to solve the problem for a

given value of lambda1. Default is 500.
method: a string for the underlying solver used. Either "quadra" or "fista"

are available for bounded regression. Default is "quadra".
threshold: a threshold for convergence. The algorithm stops when the op-

timality conditions are fulfill up to this threshold. Default is 1e-7 for
"quadra" and 1e-2 for "fista".

6 bounded.reg

bulletproof: logical; indicates if the bulletproof mode should be used while
running the "quadra" method. Default is TRUE. See details below.

checkargs logical; should arguments be checked to (hopefully) avoid internal crashes?
Default is TRUE. Automatically set to FALSE when calls are made from cross-
validation or stability selection procedures.

Details

The optimized criterion is

β̂λ1,λ1 = argmin
β

1

2
(y −Xβ)T (y −Xβ) + λ1‖Dβ‖∞ +

λ2
2
βTSβ,

where D is a diagonal matrix, whose diagonal terms are provided as a vector by the penscale
argument. The `2 structuring matrix S is provided via the struct argument, a positive semidefinite
matrix (possibly of class Matrix). Note that the quadratic algorithm for the bounded regression
may become unstable along the path because of singularity of the underlying problem, e.g. when
there are too much correlation or when the size of the problem is close to or smaller than the sample
size. In such cases, it might be a good idea to switch to the proximal solver, slower yet more robust.
This is the strategy adopted by the 'bulletproof' mode, that will send a warning while switching
the method to 'fista' and keep on optimizing on the remainder of the path. When bulletproof
is set to FALSE, the algorithm stops at an early stage of the path of solutions. Hence, users should be
careful when manipulating the resulting 'quadrupen' object, as it will not have the size expected
regarding the dimension of the lambda1 argument.

Singularity of the system can also be avoided with a larger `2-regularization, via lambda2, or a
"not-too-small" `∞ regularization, via a larger 'min.ratio' argument.

Value

an object with class quadrupen, see the documentation page quadrupen for details.

See Also

See also quadrupen, plot,quadrupen-method and crossval.

Examples

Simulating multivariate Gaussian with blockwise correlation
and piecewise constant vector of parameters
beta <- rep(c(0,1,0,-1,0), c(25,10,25,10,25))
cor <- 0.75
Soo <- toeplitz(cor^(0:(25-1))) ## Toeplitz correlation for irrelevant variables
Sww <- matrix(cor,10,10) ## bloc correlation between active variables
Sigma <- bdiag(Soo,Sww,Soo,Sww,Soo)
diag(Sigma) <- 1
n <- 50
x <- as.matrix(matrix(rnorm(95*n),n,95) %*% chol(Sigma))
y <- 10 + x %*% beta + rnorm(n,0,10)

Infinity norm without/with an additional l2 regularization term

crossval 7

and with structuring prior
labels <- rep("irrelevant", length(beta))
labels[beta != 0] <- "relevant"
plot(bounded.reg(x,y,lambda2=0) , label=labels) ## a mess
plot(bounded.reg(x,y,lambda2=10), label=labels) ## good guys are at the boundaries

crossval Cross-validation function for quadrupen fitting methods.

Description

Function that computes K-fold (double) cross-validated error of a quadrupen fit. If no lambda2 is
provided, simple cross validation on the lambda1 parameter is performed. If a vector lambda2 is
passed as an argument, double cross-validation is performed.

Usage

crossval(
x,
y,
penalty = c("elastic.net", "bounded.reg"),
K = 10,
folds = split(sample(1:nrow(x)), rep(1:K, length = nrow(x))),
lambda2 = 0.01,
verbose = TRUE,
mc.cores = 2,
...

)

Arguments

x matrix of features, possibly sparsely encoded (experimental). Do NOT include
intercept.

y response vector.

penalty a string for the fitting procedure used for cross-validation. Either "elastic.net"
or "bounded.reg", at the moment. Default is elastic.net.

K integer indicating the number of folds. Default is 10.

folds list of K vectors that describes the folds to use for the cross-validation. By de-
fault, the folds are randomly sampled with the specified K. The same folds are
used for each values of lambda2.

lambda2 tunes the `2-penalty (ridge-like) of the fit. If none is provided, the default scalar
value of the corresponding fitting method is used and a simple CV is performed.
If a vector of values is given, double cross-validation is performed (both on
lambda1 and lambda2, using the same folds for each lambda2).

8 crossval

verbose logical; indicates if the progression (the current lambda2) should be displayed.
Default is TRUE.

mc.cores the number of cores to use. The default uses 2 cores.

... additional parameters to overwrite the defaults of the fitting procedure identified
by the 'penalty' argument. See the corresponding documentation (elastic.net
or bounded.reg).

Value

An object of class "cvpen" for which a plot method is available.

Note

If the user runs the fitting method with option 'bulletproof' set to FALSE, the algorithm may
stop at an early stage of the path. Early stops are handled internally, in order to provide results
on the same grid of penalty tuned by λ1. This is done by means of NA values, so as mean and
standard error are consistently evaluated. If, while cross-validating, the procedure experiences too
many early stoppings, a warning is sent to the user, in which case you should reconsider the grid
of lambda1 used for the cross-validation. If bulletproof is TRUE (the default), there is nothing to
worry about, except a possible slow down when any switching to the proximal algorithm is required.

See Also

quadrupen, plot,cvpen-method and cvpen.

Examples

Simulating multivariate Gaussian with blockwise correlation
and piecewise constant vector of parameters
beta <- rep(c(0,1,0,-1,0), c(25,10,25,10,25))
cor <- 0.75
Soo <- toeplitz(cor^(0:(25-1))) ## Toeplitz correlation for irrelevant variable
Sww <- matrix(cor,10,10) ## bloc correlation between active variables
Sigma <- bdiag(Soo,Sww,Soo,Sww,Soo) + 0.1
diag(Sigma) <- 1
n <- 100
x <- as.matrix(matrix(rnorm(95*n),n,95) %*% chol(Sigma))
y <- 10 + x %*% beta + rnorm(n,0,10)

Use fewer lambda1 values by overwritting the default parameters
and cross-validate over the sequences lambda1 and lambda2

cv.double <- crossval(x,y, lambda2=10^seq(2,-2,len=50), nlambda1=50)

Rerun simple cross-validation with the appropriate lambda2
cv.10K <- crossval(x,y, lambda2=0.2)
Try leave one out also
cv.loo <- crossval(x,y, K=n, lambda2=0.2)

plot(cv.double)

cvpen-class 9

plot(cv.10K)
plot(cv.loo)

Performance for selection purpose
beta.min.10K <- slot(cv.10K, "beta.min")
beta.min.loo <- slot(cv.loo, "beta.min")

cat("\nFalse positives with the minimal 10-CV choice: ", sum(sign(beta) != sign(beta.min.10K)))
cat("\nFalse positives with the minimal LOO-CV choice: ", sum(sign(beta) != sign(beta.min.loo)))

cvpen-class Class "cvpen"

Description

Class of object returned by a cross-validation performed through the crossval method.

Slots

lambda1: vector of λ1 (`1 or `∞ penalty levels) for which each cross-validation has been per-
formed.

lambda2: vector (or scalar) of `2-penalty levels for which each cross-validation has been per-
formed.

lambda1.min: level of λ1 that minimizes the error estimated by cross-validation.

lambda1.1se: largest level of λ1 such as the cross-validated error is within 1 standard error of the
minimum.

lambda2.min: level of λ2 that minimizes the error estimated by cross-validation.

cv.error: a data frame containing the mean cross-validated error and its associated standard error
for each values of lambda1 and lambda2.

folds: list of K vectors indicating the folds used for cross-validation.

beta.min: the vector of parameters obtained by fitting the problem on the full data set x and y with
lambda1.min and lambda2.min penalties.

beta.1se: the vector of parameters obtained by fitting the problem on the full data set x and y with
lambda1.1se and lambda2.min penalties.

The specific plot,cvpen-method method is documented.

See Also

See also plot,cvpen-method and crossval.

10 elastic.net

elastic.net Fit a linear model with elastic-net regularization

Description

Adjust a linear model with elastic-net regularization, mixing a (possibly weighted) `1-norm (LASSO)
and a (possibly structured) `2-norm (ridge-like). The solution path is computed at a grid of values
for the `1-penalty, fixing the amount of `2 regularization. See details for the criterion optimized.

Usage

elastic.net(
x,
y,
lambda1 = NULL,
lambda2 = 0.01,
penscale = rep(1, p),
struct = NULL,
intercept = TRUE,
normalize = TRUE,
naive = FALSE,
nlambda1 = ifelse(is.null(lambda1), 100, length(lambda1)),
min.ratio = ifelse(n <= p, 0.01, 1e-04),
max.feat = ifelse(lambda2 < 0.01, min(n, p), min(4 * n, p)),
beta0 = NULL,
control = list(),
checkargs = TRUE

)

Arguments

x matrix of features, possibly sparsely encoded (experimental). Do NOT include
intercept. When normalized os TRUE, coefficients will then be rescaled to the
original scale.

y response vector.

lambda1 sequence of decreasing `1-penalty levels. If NULL (the default), a vector is gen-
erated with nlambda1 entries, starting from a guessed level lambda1.max where
only the intercept is included, then shrunken to min.ratio*lambda1.max.

lambda2 real scalar; tunes the `2 penalty in the Elastic-net. Default is 0.01. Set to 0 to
recover the Lasso.

penscale vector with real positive values that weight the `1-penalty of each feature. De-
fault set all weights to 1.

struct matrix structuring the coefficients (preferably sparse). Must be at least positive
semidefinite (this is checked internally if the checkarg argument is TRUE). The
default uses the identity matrix. See details below.

elastic.net 11

intercept logical; indicates if an intercept should be included in the model. Default is
TRUE.

normalize logical; indicates if variables should be normalized to have unit L2 norm before
fitting. Default is TRUE.

naive logical; Compute either ’naive’ of classic elastic-net as defined in Zou and
Hastie (2006): the vector of parameters is rescaled by a coefficient (1+lambda2)
when naive equals FALSE. No rescaling otherwise. Default is FALSE.

nlambda1 integer that indicates the number of values to put in the lambda1 vector. Ignored
if lambda1 is provided.

min.ratio minimal value of `1-part of the penalty that will be tried, as a fraction of the
maximal lambda1 value. A too small value might lead to unstability at the end
of the solution path corresponding to small lambda1 combined with λ2 = 0.
The default value tries to avoid this, adapting to the ’n < p’ context. Ignored if
lambda1 is provided.

max.feat integer; limits the number of features ever to enter the model; i.e., non-zero co-
efficients for the Elastic-net: the algorithm stops if this number is exceeded and
lambda1 is cut at the corresponding level. Default is min(nrow(x),ncol(x))
for small lambda2 (<0.01) and min(4*nrow(x),ncol(x)) otherwise. Use with
care, as it considerably changes the computation time.

beta0 a starting point for the vector of parameter. When NULL (the default), will be
initialized at zero. May save time in some situation.

control list of argument controlling low level options of the algorithm –use with care
and at your own risk– :

verbose: integer; activate verbose mode –this one is not too much risky!– set
to 0 for no output; 1 for warnings only, and 2 for tracing the whole progres-
sion. Default is 1. Automatically set to 0 when the method is embedded
within cross-validation or stability selection.

timer: logical; use to record the timing of the algorithm. Default is FALSE.
max.iter: the maximal number of iteration used to solve the problem for a

given value of lambda1. Default is 500.
method: a string for the underlying solver used. Either "quadra", "pathwise"

or "fista". Default is "quadra".
threshold: a threshold for convergence. The algorithm stops when the op-

timality conditions are fulfill up to this threshold. Default is 1e-7 for
"quadra" and 1e-2 for the first order methods.

monitor: indicates if a monitoring of the convergence should be recorded, by
computing a lower bound between the current solution and the optimum:
when '0' (the default), no monitoring is provided; when '1', the bound
derived in Grandvalet et al. is computed; when '>1', the Fenchel duality
gap is computed along the algorithm.

checkargs logical; should arguments be checked to (hopefully) avoid internal crashes?
Default is TRUE. Automatically set to FALSE when calls are made from cross-
validation or stability selection procedures.

12 plot,cvpen-method

Details

The optimized criterion is the following:

β̂λ1,λ1
= argmin

β

1

2
(y −Xβ)T (y −Xβ) + λ1‖Dβ‖1 +

λ2
2
βTSβ,

where D is a diagonal matrix, whose diagonal terms are provided as a vector by the penscale
argument. The `2 structuring matrix S is provided via the struct argument, a positive semidefinite
matrix (possibly of class Matrix).

Value

an object with class quadrupen, see the documentation page quadrupen for details.

See Also

See also quadrupen, plot,quadrupen-method and crossval.

Examples

Simulating multivariate Gaussian with blockwise correlation
and piecewise constant vector of parameters
beta <- rep(c(0,1,0,-1,0), c(25,10,25,10,25))
cor <- 0.75
Soo <- toeplitz(cor^(0:(25-1))) ## Toeplitz correlation for irrelevant variables
Sww <- matrix(cor,10,10) ## bloc correlation between active variables
Sigma <- bdiag(Soo,Sww,Soo,Sww,Soo)
diag(Sigma) <- 1
n <- 50
x <- as.matrix(matrix(rnorm(95*n),n,95) %*% chol(Sigma))
y <- 10 + x %*% beta + rnorm(n,0,10)

labels <- rep("irrelevant", length(beta))
labels[beta != 0] <- "relevant"
Comparing the solution path of the LASSO and the Elastic-net
plot(elastic.net(x,y,lambda2=0), label=labels) ## a mess
plot(elastic.net(x,y,lambda2=10), label=labels) ## a lot better

plot,cvpen-method Plot method for cross validated error of a quadrupen model

Description

Produce a plot of the cross validated error of a quadrupen model.

Usage

\S4method{plot}{cvpen}(x, y, log.scale=TRUE, reverse=FALSE,
plot=TRUE, main = "Cross-validation error", ...)

plot,cvpen-method 13

Arguments

x output of a crossval run (must be of class cvpen).

y used for S4 compatibility.

log.scale logical; indicates if a log-scale should be used when xvar="lambda". Ignored
for 2D cross-validation plot.

reverse logical; should the X-axis by reversed when xvar=lambda? Default is FALSE.
Ignored for 2D cross-validation plot.

plot logical; indicates if the graph should be plotted. Default is TRUE.

main the main title, with a hopefully appropriate default definition.

... used for S4 compatibility.

Value

a ggplot2 object which can be plotted via the print method.

Examples

Simulating multivariate Gaussian with blockwise correlation
and piecewise constant vector of parameters
beta <- rep(c(0,1,0,-1,0), c(25,10,25,10,25))
cor <- 0.75
Soo <- toeplitz(cor^(0:(25-1))) ## Toeplitz correlation for irrelevant variables
Sww <- matrix(cor,10,10) ## bloc correlation between active variables
Sigma <- bdiag(Soo,Sww,Soo,Sww,Soo) + 0.1
diag(Sigma) <- 1
n <- 100
x <- as.matrix(matrix(rnorm(95*n),n,95) %*% chol(Sigma))
y <- 10 + x %*% beta + rnorm(n,0,10)

Use fewer lambda1 values by overwritting the default parameters
and cross-validate over the sequences lambda1 and lambda2

cv.double <- crossval(x,y, lambda2=10^seq(2,-2,len=50), nlambda1=50)

Rerun simple cross-validation with the appropriate lambda2
cv.10K <- crossval(x,y, lambda2=.2)
Try leave one out also
cv.loo <- crossval(x,y, K=n, lambda2=0.2)

plot(cv.double)

plot(cv.10K)
plot(cv.loo)

Performance for selection purpose
beta.min.10K <- slot(cv.10K, "beta.min")
beta.min.loo <- slot(cv.loo, "beta.min")

14 plot,quadrupen-method

cat("\nFalse positives with the minimal 10-CV choice: ", sum(sign(beta) != sign(beta.min.10K)))
cat("\nFalse positives with the minimal LOO-CV choice: ", sum(sign(beta) != sign(beta.min.loo)))

plot,quadrupen-method Plot method for a quadrupen object

Description

Produce a plot of the solution path of a quadrupen fit.

Usage

\S4method{plot}{quadrupen}(x, y, xvar = "lambda",
main = paste(slot(x, "penalty")," path", sep=""),
log.scale = TRUE, standardize=TRUE, reverse=FALSE,
labels = NULL, plot = TRUE, ...)

Arguments

x output of a fitting procedure of the quadrupen package (elastic.net or bounded.reg
for the moment). Must be of class quadrupen.

y used for S4 compatibility.

xvar variable to plot on the X-axis: either "lambda" (λ1 penalty level) or "fraction"
(`1-norm of the coefficients). Default is set to "lambda".

main the main title. Default is set to the model name followed by what is on the
Y-axis.

log.scale logical; indicates if a log-scale should be used when xvar="lambda". Default
is TRUE.

standardize logical; standardize the coefficients before plotting (with the norm of the predic-
tor). Default is TRUE.

reverse logical; should the X-axis be reversed when xvar="lambda"? Default is FALSE.

labels vector indicating the names associated to the plotted variables. When specified,
a legend is drawn in order to identify each variable. Only relevant when the
number of predictor is small. Remind that the intercept does not count. Default
is NULL.

plot logical; indicates if the graph should be plotted on call. Default is TRUE.

... Not used

Value

a ggplot2 object which can be plotted via the print method.

See Also

quadrupen.

plot,stability.path-method 15

Examples

Simulating multivariate Gaussian with blockwise correlation
and piecewise constant vector of parameters
beta <- rep(c(0,1,0,-1,0), c(25,10,25,10,25))
cor <- 0.75
Soo <- toeplitz(cor^(0:(25-1))) ## Toeplitz correlation for irrelevant variables
Sww <- matrix(cor,10,10) ## bloc correlation between active variables
Sigma <- bdiag(Soo,Sww,Soo,Sww,Soo)
diag(Sigma) <- 1
n <- 50
x <- as.matrix(matrix(rnorm(95*n),n,95) %*% chol(Sigma))
y <- 10 + x %*% beta + rnorm(n,0,10)

Plot the Lasso path
plot(elastic.net(x,y, lambda2=0), main="Lasso solution path")
Plot the Elastic-net path
plot(elastic.net(x,y, lambda2=10), xvar = "lambda")
Plot the Elastic-net path (fraction on X-axis, unstandardized coefficient)
plot(elastic.net(x,y, lambda2=10), standardize=FALSE, xvar="fraction")
Plot the Bounded regression path (fraction on X-axis)
plot(bounded.reg(x,y, lambda2=10), xvar="fraction")

plot,stability.path-method

Plot method for stability.path.

Description

Produce a plot of the stability path obtained by stability selection.

Usage

\S4method{plot}{stability.path}(x, y, xvar = "lambda", annot=TRUE,
main = paste("Stability path for ", slot(x, "penalty")," regularizer", sep=""),

log.scale = TRUE, labels = rep("unknown status",p), plot = TRUE,
sel.mode = c("rank","PFER"), cutoff=0.75, PFER=2, nvar=floor(n/log(p)), ...)

Arguments

x output of a stability run (must be of class stability.path).

y used for S4 compatibility.

xvar variable to plot on the X-axis: either "lambda" (first penalty level) or "fraction"
(fraction of the penalty level applied tune by λ1). Default is "lambda".

annot logical; should annotation be made on the graph regarding controlled PFER
(only relevant when sel.mode equals 'PFER')? Default is TRUE.

16 plot,stability.path-method

main main title. If none given, a somewhat appropriate title is automatically gener-
ated.

log.scale logical; indicates if a log-scale should be used when xvar="lambda". Default
is TRUE.

labels an optional vector of labels for each variable in the path (e.g., ’relevant’/’irrelevant’).
See examples.

plot logical; indicates if the graph should be plotted. Default is TRUE. If FALSE, only
the ggplot2 object is sent back.

sel.mode a character string, either 'rank' or 'PFER'. In the first case, the selection is
based on the rank of total probabilities by variables along the path: the first
nvar variables are selected (see below). In the second case, the PFER control is
used as described in Meinshausen and Buhlmannn’s paper. Default is 'rank'.

cutoff value of the cutoff probability (only relevant when sel.mode equals 'PFER').
PFER value of the per-family error rate to control (only relevant when sel.mode equals

'PFER').
nvar number of variables selected (only relevant when sel.mode equals 'rank'. De-

fault is floor(n/log(p)).
... used for S4 compatibility.

Value

a list with a ggplot2 object which can be plotted via the print method, and a vector of selected
variables corresponding to method of choice ('rank' or 'PFER')

Examples

Simulating multivariate Gaussian with blockwise correlation
and piecewise constant vector of parameters
beta <- rep(c(0,1,0,-1,0), c(25,10,25,10,25))
Soo <- matrix(0.75,25,25) ## bloc correlation between zero variables
Sww <- matrix(0.75,10,10) ## bloc correlation between active variables
Sigma <- bdiag(Soo,Sww,Soo,Sww,Soo) + 0.2
diag(Sigma) <- 1
n <- 100
x <- as.matrix(matrix(rnorm(95*n),n,95) %*% chol(Sigma))
y <- 10 + x %*% beta + rnorm(n,0,10)

Build a vector of label for true nonzeros
labels <- rep("irrelevant", length(beta))
labels[beta != 0] <- c("relevant")
labels <- factor(labels, ordered=TRUE, levels=c("relevant","irrelevant"))

Call to stability selection function, 200 subsampling
stab <- stability(x,y, subsamples=200, lambda2=1, min.ratio=1e-2)

Build the plot an recover the selected variable
plot(stab, labels=labels)
plot(stab, xvar="fraction", labels=labels, sel.mode="PFER", cutoff=0.75, PFER=2)

quadrupen-class 17

quadrupen-class Class "quadrupen"

Description

Class of object returned by any fitting function of the quadrupen package (elastic.net or bounded.reg).

Slots

coefficients: Matrix (class "dgCMatrix") of coefficients with respect to the original input. The
number of rows corresponds the length of lambda1.

active.set: Matrix (class "dgCMatrix", generally sparse) indicating the ’active’ variables, in the
sense that they activate the constraints. For the elastic.net, it corresponds to the nonzero
variables; for the bounded.reg function, it is the set of variables reaching the boundary along
the path of solutions.

intercept: logical; indicates if an intercept has been included to the model.

mu: A vector (class "numeric") containing the successive values of the (unpenalized) intercept.
Equals to zero if intercept has been set to FALSE.

meanx: Vector (class "numeric") containing the column means of the predictor matrix.

normx: Vector (class "numeric") containing the square root of the sum of squares of each column
of the design matrix.

penscale: Vector "numeric" with real positive values that have been used to weight the penalty
tuned by λ1.

penalty: Object of class "character" indicating the method used ("elastic-net" or "bounded
regression").

naive: logical; was the naive mode on?

lambda1: Vector (class "numeric") of penalty levels (either `1 or `∞) for which the model has
eventually been fitted.

lambda2: Scalar (class "numeric") for the amount of `2 (ridge-like) penalty.

struct: Object of class "Matrix" used to structure the coefficients in the `2 penalty.

control: Object of class "list" with low level options used for optimization.

monitoring: List (class "list") which contains various indicators dealing with the optimization
process.

residuals: Matrix of residuals, each column corresponding to a value of lambda1.

r.squared: Vector (class "numeric") given the coefficient of determination as a function of lambda1.

fitted: Matrix of fitted values, each column corresponding to a value of lambda1.

Methods

This class comes with the usual predict(object, newx, ...), fitted(object, ...), residuals(object,
...), print(object, ...), show(object) and deviance(object, ...) generic (undocumented)
methods.

A specific plotting method is available and documented (plot,quadrupen-method).

18 stability

See Also

See also plot,quadrupen-method.

stability Stability selection for a quadrupen fit.

Description

Compute the stability path of a (possibly randomized) fitting procedure as introduced by Mein-
shausen and Buhlmann (2010).

Usage

stability(
x,
y,
penalty = c("elastic.net", "bounded.reg"),
subsamples = 100,
sample.size = floor(n/2),
randomize = TRUE,
weakness = 0.5,
verbose = TRUE,
folds = replicate(subsamples, sample(1:nrow(x), sample.size), simplify = FALSE),
mc.cores = 2,
...

)

Arguments

x matrix of features, possibly sparsely encoded (experimental). Do NOT include
intercept.

y response vector.

penalty a string for the fitting procedure used for cross-validation. Either elastic.net
or "bounded.reg".

subsamples integer indicating the number of subsamplings used to estimate the selection
probabilities. Default is 100.

sample.size integer indicating the size of each subsamples. Default is floor(n/2).

randomize Should a randomized version of the fitting procedure by used? Default is TRUE.
See details below.

weakness Coefficient used for randomizing. Default is 0.5. Ignored when randomized is
FALSE. See details below.

verbose logical; indicates if the progression should be displayed. Default is TRUE.

folds list with subsamples entries with vectors describing the folds to use for the sta-
bility procedure. By default, the folds are randomly sampled with the specified
subsamples argument.

stability 19

mc.cores the number of cores to use. The default uses 2 cores.

... additional parameters to overwrite the defaults of the fitting procedure. See the
corresponding documentation (elastic.net or bounded.reg)

Value

An object of class stability.path.

Note

When randomized = TRUE, the penscale argument that weights the penalty tuned by λ1 is per-
turbed (divided) for each subsample by a random variable uniformly distributed on [α, 1], where α
is the weakness parameter.

If the user runs the fitting method with option 'bulletproof' set to FALSE, the algorithm may stop
at an early stage of the path. Early stops of the underlying fitting function are handled internally,
in the following way: we chose to simply skip the results associated with such runs, in order not to
bias the stability selection procedure. If it occurs too often, a warning is sent to the user, in which
case you should reconsider the grid of lambda1 for stability selection. If bulletproof is TRUE (the
default), there is nothing to worry about, except a possible slow down when any switching to the
proximal algorithm is required.

References

N. Meinshausen and P. Buhlmann (2010). Stability Selection, JRSS(B).

See Also

stability.path and plot,stability.path-method.

Examples

Simulating multivariate Gaussian with blockwise correlation
and piecewise constant vector of parameters
beta <- rep(c(0,1,0,-1,0), c(25,10,25,10,25))
Soo <- matrix(0.75,25,25) ## bloc correlation between zero variables
Sww <- matrix(0.75,10,10) ## bloc correlation between active variables
Sigma <- bdiag(Soo,Sww,Soo,Sww,Soo) + 0.2
diag(Sigma) <- 1
n <- 100
x <- as.matrix(matrix(rnorm(95*n),n,95) %*% chol(Sigma))
y <- 10 + x %*% beta + rnorm(n,0,10)

Build a vector of label for true nonzeros
labels <- rep("irrelevant", length(beta))
labels[beta != 0] <- c("relevant")
labels <- factor(labels, ordered=TRUE, levels=c("relevant","irrelevant"))

Call to stability selection function, 200 subsampling
stab <- stability(x,y, subsamples=200, lambda2=1, min.ratio=1e-2)
Recover the selected variables for a given cutoff
and per-family error rate, without producing any plot

20 stability.path-class

stabpath <- plot(stab, cutoff=0.75, PFER=1, plot=FALSE)

cat("\nFalse positives for the randomized Elastic-net with stability selection: ",
sum(labels[stabpath$selected] != "relevant"))

cat("\nDONE.\n")

stability.path-class Class "stability.path"

Description

Class of object returned by the stability function, with methods print, show and plot.

Slots

probabilities: a Matrix object containing the estimated probabilities of selection along the path
of solutions.

penalty: Object of class "character" indicating the penalizer used.

naive: logical indicating whether rescaling of the coefficients has been performed regarding the
`2-penalty.

lambda1: a vector with the levels of the first penalty.

lambda2: a scalar with the `2-penalty level.

folds: a list that contains the folds used for each subsample.

See Also

See also plot,stability.path-method, and stability.

Index

∗ class
cvpen-class, 9
quadrupen-class, 17
stability.path-class, 20

∗ models
bounded.reg, 4
crossval, 7
elastic.net, 10
stability, 18

∗ regression
bounded.reg, 4
crossval, 7
elastic.net, 10
stability, 18

bounded.reg, 2, 3, 4, 8, 14, 17, 19

crossval, 6, 7, 9, 12
cvpen, 8
cvpen-class, 9

deviance,quadrupen-method
(quadrupen-class), 17

elastic.net, 2, 3, 8, 10, 14, 17–19

fitted,quadrupen-method
(quadrupen-class), 17

plot,cvpen-method, 12
plot,quadrupen-method, 14
plot,stability.path-method, 15
plot.cvpen (plot,cvpen-method), 12
plot.quadrupen (plot,quadrupen-method),

14
plot.stability.path

(plot,stability.path-method),
15

predict,quadrupen-method
(quadrupen-class), 17

print,quadrupen-method
(quadrupen-class), 17

print,stability.path-method
(stability.path-class), 20

quadrupen, 6, 8, 12, 14
quadrupen (quadrupen-package), 2
quadrupen-class, 17
quadrupen-package, 2

residuals,quadrupen-method
(quadrupen-class), 17

show,quadrupen-method
(quadrupen-class), 17

show,stability.path-method
(stability.path-class), 20

stability, 18, 20
stability.path, 19
stability.path-class, 20

21

	quadrupen-package
	bounded.reg
	crossval
	cvpen-class
	elastic.net
	plot,cvpen-method
	plot,quadrupen-method
	plot,stability.path-method
	quadrupen-class
	stability
	stability.path-class
	Index

