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Abstract

In this vignette, we give an illustration, using simulated data, of a sequential-experimentation process
to optimize a response surface. I hope that this is helpful for understanding both how to use the rsm
package and RSM methodology in general.

1 The scenario

We will use simulated data from a hypothetical baking experiment. Our goal is to find the optimal amounts
of flour, butter, and sugar in a recipe. The response variable is some rating of the texture and flavor of
the product. The baking temperature, procedures, equipment, and operating environment will be held
constant.

2 Initial experiment

Our current recipe calls for 1 cup of flour, .50 cups of sugar, and .25 cups of butter. Our initial experiment
will center at this recipe, and we will vary each ingredient by ±0.1 cup. Let’s start with a minimal first-
order experiment, a half-fraction of a 23 design plus 4 center points. This is a total of 8 experimental runs,
which is quite enough given the labor involved. The philosophy of RSM is to do minimal experiments that
can be augmented later if necessary if more detail is needed. We’ll generate and randomize the experiment
using ❝✉❜❡, in terms of coded variables x1, x2, x3:

❘❃ ❧✐❜r❛r②✭rs♠✮

❘❃ ❡①♣t✶ ❂ ❝✉❜❡✭⑦ ①✶ ✰ ①✷✱ ①✸ ⑦ ①✶ ✯ ①✷✱ ♥✵ ❂ ✹✱

❘❃ ❝♦❞✐♥❣ ❂ ❝✭①✶ ⑦ ✭❢❧♦✉r ✲ ✶✮✴✳✶✱ ①✷ ⑦ ✭s✉❣❛r ✲ ✳✺✮✴✳✶✱ ①✸ ⑦ ✭❜✉tt❡r ✲ ✳✷✺✮✴✳✶✮✮

So here is the protocol for the first design.

❘❃ ❡①♣t✶

r✉♥✳♦r❞❡r st❞✳♦r❞❡r ❢❧♦✉r s✉❣❛r ❜✉tt❡r

✶ ✶ ✷ ✶✳✶ ✵✳✹ ✵✳✶✺

✷ ✷ ✼ ✶✳✵ ✵✳✺ ✵✳✷✺

✸ ✸ ✸ ✵✳✾ ✵✳✻ ✵✳✶✺

✹ ✹ ✹ ✶✳✶ ✵✳✻ ✵✳✸✺

✺ ✺ ✶ ✵✳✾ ✵✳✹ ✵✳✸✺

✻ ✻ ✻ ✶✳✵ ✵✳✺ ✵✳✷✺

✼ ✼ ✺ ✶✳✵ ✵✳✺ ✵✳✷✺

✽ ✽ ✽ ✶✳✵ ✵✳✺ ✵✳✷✺

❉❛t❛ ❛r❡ st♦r❡❞ ✐♥ ❝♦❞❡❞ ❢♦r♠ ✉s✐♥❣ t❤❡s❡ ❝♦❞✐♥❣ ❢♦r♠✉❧❛s ✳✳✳

①✶ ⑦ ✭❢❧♦✉r ✲ ✶✮✴✵✳✶

①✷ ⑦ ✭s✉❣❛r ✲ ✵✳✺✮✴✵✳✶

①✸ ⑦ ✭❜✉tt❡r ✲ ✵✳✷✺✮✴✵✳✶

1



It’s important to understand that ❝✉❜❡ returns a coded dataset; this facilitates response-surface methodology
in that analyses are best done on a coded scale. The above design is actually stored in coded form, as we
can see by looking at it as an ordinary ❞❛t❛✳❢r❛♠❡:

❘❃ ❛s✳❞❛t❛✳❢r❛♠❡✭❡①♣t✶✮

r✉♥✳♦r❞❡r st❞✳♦r❞❡r ①✶ ①✷ ①✸

✶ ✶ ✷ ✶ ✲✶ ✲✶

✷ ✷ ✼ ✵ ✵ ✵

✸ ✸ ✸ ✲✶ ✶ ✲✶

✹ ✹ ✹ ✶ ✶ ✶

✺ ✺ ✶ ✲✶ ✲✶ ✶

✻ ✻ ✻ ✵ ✵ ✵

✼ ✼ ✺ ✵ ✵ ✵

✽ ✽ ✽ ✵ ✵ ✵

3 But hold on a minute. . . First, assess the strategy

But wait! Before collecting any data, we really should plan ahead and make sure this is all going to work.

3.1 First-order design capability

First of all, will this initial design do the trick? One helpful tool in rsm is the ✈❛r❢❝♥ function, which allows
us to examine the variance of the predictions we will obtain. We don’t have any data yet, so this is done in

terms of a scaled variance, defined as N
σ2 Var(ŷ(x)), where N is the number of design points, σ

2 is the error

variance and ŷ(x) is the predicted value at a design point x. In turn, ŷ(x) depends on the model as well
as the experimental design. Usually, Var(ŷ(x)) depends most strongly on how far x is from the center of
the design (which is 0 in coded units). Accordingly, the ✈❛r❢❝♥ function requires us to supply the design
and the model, and a few different directions to go from the origin along which to plot the scaled variance
(some defaults are supplied if not specified). We can look either at a profile plot or a contour plot:

❘❃ ♣❛r✭♠❢r♦✇❂❝✭✶✱✷✮✮

❘❃ ✈❛r❢❝♥✭❡①♣t✶✱ ⑦ ❋❖✭①✶✱①✷✱①✸✮✮

❘❃ ✈❛r❢❝♥✭❡①♣t✶✱ ⑦ ❋❖✭①✶✱①✷✱①✸✮✱ ❝♦♥t♦✉r ❂ ❚❘❯❊✮
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Not surprisingly, the variance increases as we go farther outÐthat is, estimation is more accurate in the cen-
ter of the design than in the periphery. This particular design has the same variance profile in all directions:
this is called a rotatable design.

Another important outcome of this is what do not see: there are no error messages. That means we can
actually fit the intended model. If we intend to use this design to fit a second-order model, it’s a different
story:

❘❃ ✈❛r❢❝♥✭❡①♣t✶✱ ⑦ ❙❖✭①✶✱①✷✱①✸✮✮

❊rr♦r ✐♥ s♦❧✈❡✳❞❡❢❛✉❧t✭t✭♠♠✮ ✪✯✪ ♠♠✮ ✿

▲❛♣❛❝❦ r♦✉t✐♥❡ ❞❣❡s✈✿ s②st❡♠ ✐s ❡①❛❝t❧② s✐♥❣✉❧❛r✿ ❯❬✺✱✺❪ ❂ ✵

The point is, ✈❛r❢❝♥ is a useful way to make sure you can estimate the model you need to fit, before collecting
any data.

3.2 Looking further ahead

As we mentioned, response-surface experimentation uses a building-block approach. It could be that we
will want to augment this design so that we can fit a second-order surface. A popular way to do that is to
do a followup experiment on axis or ªstarº points at locations ±α so that the two experiments combined
may be used to fit a second-order model. Will this work? And if so, what does the variance function look
like? Let’s find out. It turns out that a rotatable design is not achievable by adding star points:

❘❃ ❞❥♦✐♥✭❡①♣t✶✱ st❛r✭♥✵ ❂ ✷✱ ❛❧♣❤❛ ❂ ✧r♦t❛t❛❜❧❡✧✮✮

❊rr♦r ✐♥ st❛r✭♥✵ ❂ ✷✱ ❛❧♣❤❛ ❂ ✧r♦t❛t❛❜❧❡✧✱ ❜❛s✐s ❂ str✉❝t✉r❡✭❧✐st✭r✉♥✳♦r❞❡r ❂ ✶✿✽✱ ✿

❘♦t❛t❛❜❧❡ ❞❡s✐❣♥ ✐s ♥♦t ❛❝❤✐❡✈❛❜❧❡✿ ✐♥❝♦♥s✐st❡♥t ❞❡s✐❣♥ ♠♦♠❡♥ts

But here are the characteristics of a design with α = 1.5:

❘❃ ♣❛r✭♠❢r♦✇❂❝✭✶✱✷✮✮

❘❃ ❢♦❧❧♦✇✉♣ ❂ ❞❥♦✐♥✭❡①♣t✶✱ st❛r✭♥✵ ❂ ✷✱ ❛❧♣❤❛ ❂ ✶✳✺✮✮

❘❃ ✈❛r❢❝♥✭❢♦❧❧♦✇✉♣✱ ⑦ ❇❧♦❝❦ ✰ ❙❖✭①✶✱①✷✱①✸✮✮

❘❃ ✈❛r❢❝♥✭❢♦❧❧♦✇✉♣✱ ⑦ ❇❧♦❝❦ ✰ ❙❖✭①✶✱①✷✱①✸✮✱ ❝♦♥t♦✉r ❂ ❚❘❯❊✮
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From this we can tell that we can at least augment the design to fit a second-order model. The model
includes a block effect to account for the fact that two separately radomized experiments are combined.
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4 OK, now we can collect some data

Just like on TV cooking shows, we’ll immediately pull the results out of the oven, using a simulation. The
ratings we obtained for experiment 1 were added as the r❛t✐♥❣s column, and we thus have these data
ready to analyze:

❘❃ ❡①♣t✶

r✉♥✳♦r❞❡r st❞✳♦r❞❡r ❢❧♦✉r s✉❣❛r ❜✉tt❡r r❛t✐♥❣

✶ ✶ ✷ ✶✳✶ ✵✳✹ ✵✳✶✺ ✷✽✳✾

✷ ✷ ✼ ✶✳✵ ✵✳✺ ✵✳✷✺ ✷✺✳✺

✸ ✸ ✸ ✵✳✾ ✵✳✻ ✵✳✶✺ ✷✵✳✷

✹ ✹ ✹ ✶✳✶ ✵✳✻ ✵✳✸✺ ✷✼✳✶

✺ ✺ ✶ ✵✳✾ ✵✳✹ ✵✳✸✺ ✷✶✳✺

✻ ✻ ✻ ✶✳✵ ✵✳✺ ✵✳✷✺ ✷✹✳✼

✼ ✼ ✺ ✶✳✵ ✵✳✺ ✵✳✷✺ ✷✺✳✵

✽ ✽ ✽ ✶✳✵ ✵✳✺ ✵✳✷✺ ✷✹✳✼

❉❛t❛ ❛r❡ st♦r❡❞ ✐♥ ❝♦❞❡❞ ❢♦r♠ ✉s✐♥❣ t❤❡s❡ ❝♦❞✐♥❣ ❢♦r♠✉❧❛s ✳✳✳

①✶ ⑦ ✭❢❧♦✉r ✲ ✶✮✴✵✳✶

①✷ ⑦ ✭s✉❣❛r ✲ ✵✳✺✮✴✵✳✶

①✸ ⑦ ✭❜✉tt❡r ✲ ✵✳✷✺✮✴✵✳✶

We can now analyze the data using a first-order model (implemented in rsm by the ❋❖ function). The model
is fitted in terms of the coded variables.

❘❃ ❛♥❛❧✶ ❂ rs♠✭r❛t✐♥❣ ⑦ ❋❖✭①✶✱①✷✱①✸✮✱ ❞❛t❛❂❡①♣t✶✮

❘❃ s✉♠♠❛r②✭❛♥❛❧✶✮

❈❛❧❧✿

rs♠✭❢♦r♠✉❧❛ ❂ r❛t✐♥❣ ⑦ ❋❖✭①✶✱ ①✷✱ ①✸✮✱ ❞❛t❛ ❂ ❡①♣t✶✮

❊st✐♠❛t❡ ❙t❞✳ ❊rr♦r t ✈❛❧✉❡ Pr✭❃⑤t⑤✮

✭■♥t❡r❝❡♣t✮ ✷✹✳✼✵✵✵✵ ✵✳✶✼✾✻✸ ✶✸✼✳✺✵✼✼ ✶✳✻✼✽❡✲✵✽ ✯✯✯

①✶ ✸✳✺✼✺✵✵ ✵✳✷✺✹✵✸ ✶✹✳✵✼✸✶ ✵✳✵✵✵✶✹✼✾ ✯✯✯

①✷ ✲✵✳✼✼✺✵✵ ✵✳✷✺✹✵✸ ✲✸✳✵✺✵✽ ✵✳✵✸✼✾✾✼✼ ✯

①✸ ✲✵✳✶✷✺✵✵ ✵✳✷✺✹✵✸ ✲✵✳✹✾✷✶ ✵✳✻✹✽✹✺✹✸

✲✲✲

❙✐❣♥✐❢✳ ❝♦❞❡s✿ ✵ ✬✯✯✯✬ ✵✳✵✵✶ ✬✯✯✬ ✵✳✵✶ ✬✯✬ ✵✳✵✺ ✬✳✬ ✵✳✶ ✬ ✬ ✶

▼✉❧t✐♣❧❡ ❘✲sq✉❛r❡❞✿ ✵✳✾✽✶✶✱ ❆❞❥✉st❡❞ ❘✲sq✉❛r❡❞✿ ✵✳✾✻✻✾

❋✲st❛t✐st✐❝✿ ✻✾✳✷ ♦♥ ✸ ❛♥❞ ✹ ❉❋✱ ♣✲✈❛❧✉❡✿ ✵✳✵✵✵✻✻✺✽

❆♥❛❧②s✐s ♦❢ ❱❛r✐❛♥❝❡ ❚❛❜❧❡

❘❡s♣♦♥s❡✿ r❛t✐♥❣

❉❢ ❙✉♠ ❙q ▼❡❛♥ ❙q ❋ ✈❛❧✉❡ Pr✭❃❋✮

❋❖✭①✶✱ ①✷✱ ①✸✮ ✸ ✺✸✳✺✽✼ ✶✼✳✽✻✷✺ ✻✾✳✷✵✶✵ ✵✳✵✵✵✻✻✺✽

❘❡s✐❞✉❛❧s ✹ ✶✳✵✸✸ ✵✳✷✺✽✶

▲❛❝❦ ♦❢ ❢✐t ✶ ✵✳✻✵✺ ✵✳✻✵✺✵ ✹✳✷✹✺✻ ✵✳✶✸✶✹✸✹✸

P✉r❡ ❡rr♦r ✸ ✵✳✹✷✽ ✵✳✶✹✷✺

❉✐r❡❝t✐♦♥ ♦❢ st❡❡♣❡st ❛s❝❡♥t ✭❛t r❛❞✐✉s ✶✮✿

①✶ ①✷ ①✸

✵✳✾✼✻✼✷✾✹✼ ✲✵✳✷✶✶✼✸✽✺✻ ✲✵✳✵✸✹✶✺✶✸✽
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❈♦rr❡s♣♦♥❞✐♥❣ ✐♥❝r❡♠❡♥t ✐♥ ♦r✐❣✐♥❛❧ ✉♥✐ts✿

❢❧♦✉r s✉❣❛r ❜✉tt❡r

✵✳✵✾✼✻✼✷✾✹✼ ✲✵✳✵✷✶✶✼✸✽✺✻ ✲✵✳✵✵✸✹✶✺✶✸✽

The take-home message here is that the first-order model does help explain the variations in the response
(significant F statistic for the model, as well as two of the three coefficients of xj are fairly significant); and
also that there is no real evidence that the model does not fit (fairly nonsignificant F for lack of fit). Finally,
there is information on the direction of steepest ascent, which suggests that we could improve the ratings
by increasing the flour and decreasing the sugar and butter (by smaller amounts in terms of coded units).

5 Explore the path of steepest-ascent

The direction of steepest ascent is our best guess as the how we can improve the recipe. The st❡❡♣❡st

function provides an easy way to find some steps in the right direction, up to a distance of 5 (in coded
units) by default:

❘❃ ✭ s❛✶ ❂ st❡❡♣❡st✭❛♥❛❧✶✮ ✮

P❛t❤ ♦❢ st❡❡♣❡st ❛s❝❡♥t ❢r♦♠ r✐❞❣❡ ❛♥❛❧②s✐s✿

❞✐st ①✶ ①✷ ①✸ ⑤ ❢❧♦✉r s✉❣❛r ❜✉tt❡r ⑤ ②❤❛t

✶ ✵✳✵ ✵✳✵✵✵ ✵✳✵✵✵ ✵✳✵✵✵ ⑤ ✶✳✵✵✵✵ ✵✳✺✵✵✵ ✵✳✷✺✵✵ ⑤ ✷✹✳✼✵✵

✷ ✵✳✺ ✵✳✹✽✽ ✲✵✳✶✵✻ ✲✵✳✵✶✼ ⑤ ✶✳✵✹✽✽ ✵✳✹✽✾✹ ✵✳✷✹✽✸ ⑤ ✷✻✳✺✷✾

✸ ✶✳✵ ✵✳✾✼✼ ✲✵✳✷✶✷ ✲✵✳✵✸✹ ⑤ ✶✳✵✾✼✼ ✵✳✹✼✽✽ ✵✳✷✹✻✻ ⑤ ✷✽✳✸✻✶

✹ ✶✳✺ ✶✳✹✻✺ ✲✵✳✸✶✽ ✲✵✳✵✺✶ ⑤ ✶✳✶✹✻✺ ✵✳✹✻✽✷ ✵✳✷✹✹✾ ⑤ ✸✵✳✶✾✵

✺ ✷✳✵ ✶✳✾✺✸ ✲✵✳✹✷✸ ✲✵✳✵✻✽ ⑤ ✶✳✶✾✺✸ ✵✳✹✺✼✼ ✵✳✷✹✸✷ ⑤ ✸✷✳✵✶✽

✻ ✷✳✺ ✷✳✹✹✷ ✲✵✳✺✷✾ ✲✵✳✵✽✺ ⑤ ✶✳✷✹✹✷ ✵✳✹✹✼✶ ✵✳✷✹✶✺ ⑤ ✸✸✳✽✺✶

✼ ✸✳✵ ✷✳✾✸✵ ✲✵✳✻✸✺ ✲✵✳✶✵✷ ⑤ ✶✳✷✾✸✵ ✵✳✹✸✻✺ ✵✳✷✸✾✽ ⑤ ✸✺✳✻✽✵

✽ ✸✳✺ ✸✳✹✶✾ ✲✵✳✼✹✶ ✲✵✳✶✷✵ ⑤ ✶✳✸✹✶✾ ✵✳✹✷✺✾ ✵✳✷✸✽✵ ⑤ ✸✼✳✺✶✷

✾ ✹✳✵ ✸✳✾✵✼ ✲✵✳✽✹✼ ✲✵✳✶✸✼ ⑤ ✶✳✸✾✵✼ ✵✳✹✶✺✸ ✵✳✷✸✻✸ ⑤ ✸✾✳✸✹✶

✶✵ ✹✳✺ ✹✳✸✾✺ ✲✵✳✾✺✸ ✲✵✳✶✺✹ ⑤ ✶✳✹✸✾✺ ✵✳✹✵✹✼ ✵✳✷✸✹✻ ⑤ ✹✶✳✶✼✵

✶✶ ✺✳✵ ✹✳✽✽✹ ✲✶✳✵✺✾ ✲✵✳✶✼✶ ⑤ ✶✳✹✽✽✹ ✵✳✸✾✹✶ ✵✳✷✸✷✾ ⑤ ✹✸✳✵✵✷

The ②❤❛t values show what the fitted model anticipates for the rating; but as we move to further distances,
these are serious extrapolations and can’t be trusted. What we need is real data! So let’s do a little exper-
iment along this path, using the distances from 0.5 to 4.0, for a total of 8 runs. The ❞✉♣❡ function makes a
copy of these runs and re-randomizes the order.

❘❃ ❡①♣t✷ ❂ ❞✉♣❡✭s❛✶❬✷✿✾✱ ❪✮

Now the data are collected; and we have these results:

❘❃ ❡①♣t✷

r✉♥✳♦r❞❡r st❞✳♦r❞❡r ❞✐st ①✶ ①✷ ①✸ ⑤ ❢❧♦✉r s✉❣❛r ❜✉tt❡r ⑤✳✶ ②❤❛t r❛t✐♥❣

✶ ✶ ✽ ✹✳✵ ✸✳✾✵✼ ✲✵✳✽✹✼ ✲✵✳✶✸✼ ⑤ ✶✳✸✾✵✼ ✵✳✹✶✺✸ ✵✳✷✸✻✸ ⑤ ✸✾✳✸✹✶ ✷✹✳✸

✷ ✷ ✹ ✷✳✵ ✶✳✾✺✸ ✲✵✳✹✷✸ ✲✵✳✵✻✽ ⑤ ✶✳✶✾✺✸ ✵✳✹✺✼✼ ✵✳✷✹✸✷ ⑤ ✸✷✳✵✶✽ ✷✻✳✻

✸ ✸ ✶ ✵✳✺ ✵✳✹✽✽ ✲✵✳✶✵✻ ✲✵✳✵✶✼ ⑤ ✶✳✵✹✽✽ ✵✳✹✽✾✹ ✵✳✷✹✽✸ ⑤ ✷✻✳✺✷✾ ✷✹✳✽

✹ ✹ ✸ ✶✳✺ ✶✳✹✻✺ ✲✵✳✸✶✽ ✲✵✳✵✺✶ ⑤ ✶✳✶✹✻✺ ✵✳✹✻✽✷ ✵✳✷✹✹✾ ⑤ ✸✵✳✶✾✵ ✷✼✳✺

✺ ✺ ✼ ✸✳✺ ✸✳✹✶✾ ✲✵✳✼✹✶ ✲✵✳✶✷✵ ⑤ ✶✳✸✹✶✾ ✵✳✹✷✺✾ ✵✳✷✸✽✵ ⑤ ✸✼✳✺✶✷ ✷✼✳✸

✻ ✻ ✻ ✸✳✵ ✷✳✾✸✵ ✲✵✳✻✸✺ ✲✵✳✶✵✷ ⑤ ✶✳✷✾✸✵ ✵✳✹✸✻✺ ✵✳✷✸✾✽ ⑤ ✸✺✳✻✽✵ ✷✼✳✽

✼ ✼ ✺ ✷✳✺ ✷✳✹✹✷ ✲✵✳✺✷✾ ✲✵✳✵✽✺ ⑤ ✶✳✷✹✹✷ ✵✳✹✹✼✶ ✵✳✷✹✶✺ ⑤ ✸✸✳✽✺✶ ✷✻✳✵

✽ ✽ ✷ ✶✳✵ ✵✳✾✼✼ ✲✵✳✷✶✷ ✲✵✳✵✸✹ ⑤ ✶✳✵✾✼✼ ✵✳✹✼✽✽ ✵✳✷✹✻✻ ⑤ ✷✽✳✸✻✶ ✷✺✳✸

The idea is to find the highest point along this path, and center the next experiment there. To that end,
let’s look at it graphically:
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❘❃ ♣❧♦t✭r❛t✐♥❣ ⑦ ❞✐st✱ ❞❛t❛ ❂ ❡①♣t✷✮

❘❃ ❛♥❛❧✷ ❂ ❧♠✭r❛t✐♥❣ ⑦ ♣♦❧②✭❞✐st✱ ✷✮✱ ❞❛t❛ ❂ ❡①♣t✷✮

❘❃ ✇✐t❤✭❡①♣t✷✱ ④

❘❃ ♦r❞ ❂ ♦r❞❡r✭❞✐st✮

❘❃ ❧✐♥❡s✭❞✐st❬♦r❞❪✱ ♣r❡❞✐❝t✭❛♥❛❧✷✮❬♦r❞❪✮

❘❃ ⑥✮
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There is a fair amount of variation here, so the fitted quadratic curve provides useful guidance. It suggests
that we do our next experiment at a distance of about 2.5 in coded units, i.e., near point #6 in the steepest-
ascent path, s❛✶. Let’s use somewhat rounder values: flour: 1.25 cups, sugar: 0.45 cups, and butter: 0.25 cups
(unchanged from ❡①♣t✶).

6 Relocated experiment

We can run basically the same design we did the first time around, only with the new center. This is easily
done using ❞✉♣❡ and changing the codings:

❘❃ ❡①♣t✸ ❂ ❞✉♣❡✭❡①♣t✶✮

❘❃ ❝♦❞✐♥❣s✭❡①♣t✸✮ ❂ ❝✭①✶ ⑦ ✭❢❧♦✉r ✲ ✶✳✷✺✮✴✳✶✱ ①✷ ⑦ ✭s✉❣❛r ✲ ✳✹✺✮✴✳✶✱ ①✸ ⑦ ✭❜✉tt❡r ✲ ✳✷✺✮✴✳✶✮

Once the data are collected, we have:

❘❃ ❡①♣t✸

r✉♥✳♦r❞❡r st❞✳♦r❞❡r ❢❧♦✉r s✉❣❛r ❜✉tt❡r r❛t✐♥❣

✶ ✶ ✺ ✶✳✷✺ ✵✳✹✺ ✵✳✷✺ ✷✻✳✻

✷ ✷ ✷ ✶✳✸✺ ✵✳✸✺ ✵✳✶✺ ✷✺✳✸

✸ ✸ ✹ ✶✳✸✺ ✵✳✺✺ ✵✳✸✺ ✷✸✳✼

✹ ✹ ✸ ✶✳✶✺ ✵✳✺✺ ✵✳✶✺ ✷✻✳✵

✺ ✺ ✼ ✶✳✷✺ ✵✳✹✺ ✵✳✷✺ ✷✼✳✽

✻ ✻ ✻ ✶✳✷✺ ✵✳✹✺ ✵✳✷✺ ✷✻✳✷
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✼ ✼ ✶ ✶✳✶✺ ✵✳✸✺ ✵✳✸✺ ✷✼✳✸

✽ ✽ ✽ ✶✳✷✺ ✵✳✹✺ ✵✳✷✺ ✷✼✳✷

❉❛t❛ ❛r❡ st♦r❡❞ ✐♥ ❝♦❞❡❞ ❢♦r♠ ✉s✐♥❣ t❤❡s❡ ❝♦❞✐♥❣ ❢♦r♠✉❧❛s ✳✳✳

①✶ ⑦ ✭❢❧♦✉r ✲ ✶✳✷✺✮✴✵✳✶

①✷ ⑦ ✭s✉❣❛r ✲ ✵✳✹✺✮✴✵✳✶

①✸ ⑦ ✭❜✉tt❡r ✲ ✵✳✷✺✮✴✵✳✶

. . . and we do the same analysis:

❘❃ ❛♥❛❧✸ ❂ rs♠✭r❛t✐♥❣ ⑦ ❋❖✭①✶✱①✷✱①✸✮✱ ❞❛t❛❂❡①♣t✸✮

❘❃ s✉♠♠❛r②✭❛♥❛❧✸✮

❈❛❧❧✿

rs♠✭❢♦r♠✉❧❛ ❂ r❛t✐♥❣ ⑦ ❋❖✭①✶✱ ①✷✱ ①✸✮✱ ❞❛t❛ ❂ ❡①♣t✸✮

❊st✐♠❛t❡ ❙t❞✳ ❊rr♦r t ✈❛❧✉❡ Pr✭❃⑤t⑤✮

✭■♥t❡r❝❡♣t✮ ✷✻✳✷✻✷✺✵ ✵✳✹✵✺✵✾ ✻✹✳✽✸✵✻ ✸✳✸✾✶❡✲✵✼ ✯✯✯

①✶ ✲✶✳✵✼✺✵✵ ✵✳✺✼✷✽✾ ✲✶✳✽✼✻✺ ✵✳✶✸✸✽

①✷ ✲✵✳✼✷✺✵✵ ✵✳✺✼✷✽✾ ✲✶✳✷✻✺✺ ✵✳✷✼✹✹

①✸ ✲✵✳✵✼✺✵✵ ✵✳✺✼✷✽✾ ✲✵✳✶✸✵✾ ✵✳✾✵✷✷

✲✲✲

❙✐❣♥✐❢✳ ❝♦❞❡s✿ ✵ ✬✯✯✯✬ ✵✳✵✵✶ ✬✯✯✬ ✵✳✵✶ ✬✯✬ ✵✳✵✺ ✬✳✬ ✵✳✶ ✬ ✬ ✶

▼✉❧t✐♣❧❡ ❘✲sq✉❛r❡❞✿ ✵✳✺✻✷✹✱ ❆❞❥✉st❡❞ ❘✲sq✉❛r❡❞✿ ✵✳✷✸✹✶

❋✲st❛t✐st✐❝✿ ✶✳✼✶✸ ♦♥ ✸ ❛♥❞ ✹ ❉❋✱ ♣✲✈❛❧✉❡✿ ✵✳✸✵✶✺

❆♥❛❧②s✐s ♦❢ ❱❛r✐❛♥❝❡ ❚❛❜❧❡

❘❡s♣♦♥s❡✿ r❛t✐♥❣

❉❢ ❙✉♠ ❙q ▼❡❛♥ ❙q ❋ ✈❛❧✉❡ Pr✭❃❋✮

❋❖✭①✶✱ ①✷✱ ①✸✮ ✸ ✻✳✼✹✼✺ ✷✳✷✹✾✷ ✶✳✼✶✸✷ ✵✳✸✵✶✹✺

❘❡s✐❞✉❛❧s ✹ ✺✳✷✺✶✷ ✶✳✸✶✷✽

▲❛❝❦ ♦❢ ❢✐t ✶ ✸✳✼✽✶✷ ✸✳✼✽✶✷ ✼✳✼✶✻✽ ✵✳✵✻✾✶✶

P✉r❡ ❡rr♦r ✸ ✶✳✹✼✵✵ ✵✳✹✾✵✵

❉✐r❡❝t✐♦♥ ♦❢ st❡❡♣❡st ❛s❝❡♥t ✭❛t r❛❞✐✉s ✶✮✿

①✶ ①✷ ①✸

✲✵✳✽✷✼✻✽✽✻✽ ✲✵✳✺✺✽✷✵✽✻✹ ✲✵✳✵✺✼✼✹✺✼✷

❈♦rr❡s♣♦♥❞✐♥❣ ✐♥❝r❡♠❡♥t ✐♥ ♦r✐❣✐♥❛❧ ✉♥✐ts✿

❢❧♦✉r s✉❣❛r ❜✉tt❡r

✲✵✳✵✽✷✼✻✽✽✻✽ ✲✵✳✵✺✺✽✷✵✽✻✹ ✲✵✳✵✵✺✼✼✹✺✼✷

This may not seem too dissimilar to the ❛♥❛❧✶ results, and if you think so, that would suggest we just do
another steepest-ascent step. However, none of the linear (first-order) effects are statistically significant, nor
are they even jointly significant (P ≈ .30 in the ANOVA table); so we don’t have a compelling case that we
even know what that direction might be! It seems better to instead collect more data in this region and see
if we get more clarity.

6.1 Foldover experiment

Recall that our first experiment was a half-fraction plus center points. We can get more information by doing
the other fraction. This is accomplished using the ❢♦❧❞♦✈❡r function, which reverses the signs of some or
all of the coded variables (and also re-randomizes the experiment). In this case, the original experiment
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was generated using x3 = x1x2, so if we reverse x1, we will have x3 = −x1x2, thus the other half of the
experiment.

❘❃ ❡①♣t✹ ❂ ❢♦❧❞♦✈❡r✭❡①♣t✸✱ ✈❛r✐❛❜❧❡ ❂ ✧①✶✧✮

Once the data are collected, we have:

❘❃ ❡①♣t✹✩r❛t✐♥❣ ❂ s✐♠❇❛❦❡✭❞❡❝♦❞❡✳❞❛t❛✭❡①♣t✹✮✮

❘❃ ❡①♣t✹

r✉♥✳♦r❞❡r st❞✳♦r❞❡r ❢❧♦✉r s✉❣❛r ❜✉tt❡r r❛t✐♥❣

✶ ✶ ✷ ✶✳✶✺ ✵✳✸✺ ✵✳✶✺ ✸✹✳✵

✷ ✷ ✼ ✶✳✷✺ ✵✳✹✺ ✵✳✷✺ ✸✺✳✶

✸ ✸ ✸ ✶✳✸✺ ✵✳✺✺ ✵✳✶✺ ✸✶✳✵

✹ ✹ ✹ ✶✳✶✺ ✵✳✺✺ ✵✳✸✺ ✸✹✳✻

✺ ✺ ✺ ✶✳✷✺ ✵✳✹✺ ✵✳✷✺ ✸✺✳✺

✻ ✻ ✻ ✶✳✷✺ ✵✳✹✺ ✵✳✷✺ ✸✹✳✾

✼ ✼ ✽ ✶✳✷✺ ✵✳✹✺ ✵✳✷✺ ✸✺✳✶

✽ ✽ ✶ ✶✳✸✺ ✵✳✸✺ ✵✳✸✺ ✸✸✳✸

❉❛t❛ ❛r❡ st♦r❡❞ ✐♥ ❝♦❞❡❞ ❢♦r♠ ✉s✐♥❣ t❤❡s❡ ❝♦❞✐♥❣ ❢♦r♠✉❧❛s ✳✳✳

①✶ ⑦ ✭❢❧♦✉r ✲ ✶✳✷✺✮✴✵✳✶

①✷ ⑦ ✭s✉❣❛r ✲ ✵✳✹✺✮✴✵✳✶

①✸ ⑦ ✭❜✉tt❡r ✲ ✵✳✷✺✮✴✵✳✶

Note that this experiment does indeed have different factor combinations (e.g., (1.15, .35, .15)) not present
in ❡①♣t✸. For analysis, we will combine ❡①♣t✸ and ❡①♣t✹, which is easily accomplished with the ❞❥♦✐♥

function. Note that ❞❥♦✐♥ creates an additional blocking factor:

❘❃ ♥❛♠❡s✭ ❞❥♦✐♥✭❡①♣t✸✱ ❡①♣t✹✮ ✮

❬✶❪ ✧r✉♥✳♦r❞❡r✧ ✧st❞✳♦r❞❡r✧ ✧①✶✧ ✧①✷✧ ✧①✸✧ ✧r❛t✐♥❣✧ ✧❇❧♦❝❦✧

It’s important to include this in the model because we have two separately randomized experiments. In
this particular case, it’s especially important because ❡①♣t✹ seems to have higher values overall than ❡①♣t✸;
either the raters are in a better mood, or ambient conditions have changed. Here is our analysis:

❘❃ ❛♥❛❧✹ ❂ rs♠✭r❛t✐♥❣ ⑦ ❇❧♦❝❦ ✰ ❋❖✭①✶✱①✷✱①✸✮✱ ❞❛t❛ ❂ ❞❥♦✐♥✭❡①♣t✸✱ ❡①♣t✹✮✮

❘❃ s✉♠♠❛r②✭❛♥❛❧✹✮

❈❛❧❧✿

rs♠✭❢♦r♠✉❧❛ ❂ r❛t✐♥❣ ⑦ ❇❧♦❝❦ ✰ ❋❖✭①✶✱ ①✷✱ ①✸✮✱ ❞❛t❛ ❂ ❞❥♦✐♥✭❡①♣t✸✱

❡①♣t✹✮✮

❊st✐♠❛t❡ ❙t❞✳ ❊rr♦r t ✈❛❧✉❡ Pr✭❃⑤t⑤✮

✭■♥t❡r❝❡♣t✮ ✷✻✳✷✻✷✺✵ ✵✳✹✵✸✷✾ ✻✺✳✶✷✵✽ ✶✳✸✽✽❡✲✶✺ ✯✯✯

❇❧♦❝❦✷ ✼✳✾✷✺✵✵ ✵✳✺✼✵✸✹ ✶✸✳✽✾✺✸ ✷✳✺✹✸❡✲✵✽ ✯✯✯

①✶ ✲✶✳✵✼✺✵✵ ✵✳✹✵✸✷✾ ✲✷✳✻✻✺✻ ✵✳✵✷✶✾✼ ✯

①✷ ✲✵✳✺✼✺✵✵ ✵✳✹✵✸✷✾ ✲✶✳✹✷✺✽ ✵✳✶✽✶✻✾

①✸ ✵✳✸✷✺✵✵ ✵✳✹✵✸✷✾ ✵✳✽✵✺✾ ✵✳✹✸✼✸✾

✲✲✲

❙✐❣♥✐❢✳ ❝♦❞❡s✿ ✵ ✬✯✯✯✬ ✵✳✵✵✶ ✬✯✯✬ ✵✳✵✶ ✬✯✬ ✵✳✵✺ ✬✳✬ ✵✳✶ ✬ ✬ ✶

▼✉❧t✐♣❧❡ ❘✲sq✉❛r❡❞✿ ✵✳✾✹✽✻✱ ❆❞❥✉st❡❞ ❘✲sq✉❛r❡❞✿ ✵✳✾✷✾✾

❋✲st❛t✐st✐❝✿ ✺✵✳✼✷ ♦♥ ✹ ❛♥❞ ✶✶ ❉❋✱ ♣✲✈❛❧✉❡✿ ✺✳✵✼✺❡✲✵✼
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❆♥❛❧②s✐s ♦❢ ❱❛r✐❛♥❝❡ ❚❛❜❧❡

❘❡s♣♦♥s❡✿ r❛t✐♥❣

❉❢ ❙✉♠ ❙q ▼❡❛♥ ❙q ❋ ✈❛❧✉❡ Pr✭❃❋✮

❇❧♦❝❦ ✶ ✷✺✶✳✷✷✸ ✷✺✶✳✷✷✸ ✶✾✸✳✵✼✾✸ ✷✳✺✹✸❡✲✵✽

❋❖✭①✶✱ ①✷✱ ①✸✮ ✸ ✶✷✳✼✸✺ ✹✳✷✹✺ ✸✳✷✻✷✺ ✵✳✵✻✸✶✼✼

❘❡s✐❞✉❛❧s ✶✶ ✶✹✳✸✶✸ ✶✳✸✵✶

▲❛❝❦ ♦❢ ❢✐t ✺ ✶✷✳✻✺✸ ✷✳✺✸✶ ✾✳✶✹✻✹ ✵✳✵✵✽✾✸✹

P✉r❡ ❡rr♦r ✻ ✶✳✻✻✵ ✵✳✷✼✼

❉✐r❡❝t✐♦♥ ♦❢ st❡❡♣❡st ❛s❝❡♥t ✭❛t r❛❞✐✉s ✶✮✿

①✶ ①✷ ①✸

✲✵✳✽✺✷✵✷✽✷ ✲✵✳✹✺✺✼✸✻✵ ✵✳✷✺✼✺✽✾✾

❈♦rr❡s♣♦♥❞✐♥❣ ✐♥❝r❡♠❡♥t ✐♥ ♦r✐❣✐♥❛❧ ✉♥✐ts✿

❢❧♦✉r s✉❣❛r ❜✉tt❡r

✲✵✳✵✽✺✷✵✷✽✷ ✲✵✳✵✹✺✺✼✸✻✵ ✵✳✵✷✺✼✺✽✾✾

Now the first-order terms are still not very significant; and, partly because we now have more df for lack
of fit, the lack of fit test is quite significant. Response-surface experimentation is different from some other
kinds of experiments in that it’s actually ªgoodº in a way to have nonsignificant effects, especially first-
order ones, because it suggests we might be close to the peak.

6.2 Augmenting further to estimate a second-order response surface

Because there is lack of fit, it’s now a good idea to collect data at the ªstarº or axis points so that we can
fit a second-order model. As illustrated in Section 3.2, the st❛r function does this for us. We will choose
the parameter ❛❧♣❤❛ (α) so that the star block is orthogonal to the cube blocks; this seems like a good idea,
given how strong we have observed the block effect to be. So here is the next experiment, using the six axis
points and 2 center points (we already have 8 center points at this location), for 8 runs. The analysis will be
based on combining the cube clock, its foldover, and the star block:

❘❃ ❡①♣t✺ ❂ st❛r✭❡①♣t✹✱ ♥✵ ❂ ✷✱ ❛❧♣❤❛ ❂ ✧♦rt❤♦❣♦♥❛❧✧✮

❘❃ ♣❛r✭♠❢r♦✇❂❝✭✶✱✷✮✮

❘❃ ❝♦♠❜ ❂ ❞❥♦✐♥✭❡①♣t✸✱ ❡①♣t✹✱ ❡①♣t✺✮

❘❃ ✈❛r❢❝♥✭❝♦♠❜✱ ⑦ ❇❧♦❝❦ ✰ ❙❖✭①✶✱①✷✱①✸✮✮

❘❃ ✈❛r❢❝♥✭❝♦♠❜✱ ⑦ ❇❧♦❝❦ ✰ ❙❖✭①✶✱①✷✱①✸✮✱ ❝♦♥t♦✉r ❂ ❚❘❯❊✮
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This is not the second-order design we contemplated earlier, because it involves adding star points to the
complete 23 design; but it has reasonable prediction-variance properties. Time passes, the data are collected,
and we have:

❘❃ ❡①♣t✺

r✉♥✳♦r❞❡r st❞✳♦r❞❡r ❢❧♦✉r s✉❣❛r ❜✉tt❡r r❛t✐♥❣

✶ ✶ ✹ ✶✳✷✺✵✵✵✵ ✵✳✺✾✶✹✷✶✹ ✵✳✷✺✵✵✵✵✵ ✷✻✳✵

✷ ✷ ✷ ✶✳✸✾✶✹✷✶ ✵✳✹✺✵✵✵✵✵ ✵✳✷✺✵✵✵✵✵ ✷✸✳✾

✸ ✸ ✻ ✶✳✷✺✵✵✵✵ ✵✳✹✺✵✵✵✵✵ ✵✳✸✾✶✹✷✶✹ ✷✼✳✻

✹ ✹ ✼ ✶✳✷✺✵✵✵✵ ✵✳✹✺✵✵✵✵✵ ✵✳✷✺✵✵✵✵✵ ✷✻✳✼

✺ ✺ ✶ ✶✳✶✵✽✺✼✾ ✵✳✹✺✵✵✵✵✵ ✵✳✷✺✵✵✵✵✵ ✷✻✳✼

✻ ✻ ✺ ✶✳✷✺✵✵✵✵ ✵✳✹✺✵✵✵✵✵ ✵✳✶✵✽✺✼✽✻ ✷✼✳✸

✼ ✼ ✸ ✶✳✷✺✵✵✵✵ ✵✳✸✵✽✺✼✽✻ ✵✳✷✺✵✵✵✵✵ ✷✾✳✸

✽ ✽ ✽ ✶✳✷✺✵✵✵✵ ✵✳✹✺✵✵✵✵✵ ✵✳✷✺✵✵✵✵✵ ✷✼✳✹

❉❛t❛ ❛r❡ st♦r❡❞ ✐♥ ❝♦❞❡❞ ❢♦r♠ ✉s✐♥❣ t❤❡s❡ ❝♦❞✐♥❣ ❢♦r♠✉❧❛s ✳✳✳

①✶ ⑦ ✭❢❧♦✉r ✲ ✶✳✷✺✮✴✵✳✶

①✷ ⑦ ✭s✉❣❛r ✲ ✵✳✹✺✮✴✵✳✶

①✸ ⑦ ✭❜✉tt❡r ✲ ✵✳✷✺✮✴✵✳✶

We will fit a second-order model, accounting for the block effect.

❘❃ ❛♥❛❧✺ ❂ rs♠✭r❛t✐♥❣ ⑦ ❇❧♦❝❦ ✰ ❙❖✭①✶✱①✷✱①✸✮✱ ❞❛t❛ ❂ ❞❥♦✐♥✭❡①♣t✸✱ ❡①♣t✹✱ ❡①♣t✺✮✮

❘❃ s✉♠♠❛r②✭❛♥❛❧✺✮

❈❛❧❧✿

rs♠✭❢♦r♠✉❧❛ ❂ r❛t✐♥❣ ⑦ ❇❧♦❝❦ ✰ ❙❖✭①✶✱ ①✷✱ ①✸✮✱ ❞❛t❛ ❂ ❞❥♦✐♥✭❡①♣t✸✱

❡①♣t✹✱ ❡①♣t✺✮✮

❊st✐♠❛t❡ ❙t❞✳ ❊rr♦r t ✈❛❧✉❡ Pr✭❃⑤t⑤✮

✭■♥t❡r❝❡♣t✮ ✷✳✻✾✾✻❡✰✵✶ ✷✳✺✵✺✶❡✲✵✶ ✶✵✼✳✼✻✹✼ ❁ ✷✳✷❡✲✶✻ ✯✯✯

❇❧♦❝❦✷ ✼✳✾✷✺✵❡✰✵✵ ✷✳✾✻✹✶❡✲✵✶ ✷✻✳✼✸✻✻ ✹✳✻✵✶❡✲✶✷ ✯✯✯

❇❧♦❝❦✸ ✻✳✵✵✵✵❡✲✵✶ ✷✳✾✻✹✶❡✲✵✶ ✷✳✵✷✹✷ ✵✳✵✻✺✼✾✺ ✳

①✶ ✲✶✳✵✹✻✻❡✰✵✵ ✶✳✼✶✶✸❡✲✵✶ ✲✻✳✶✶✻✵ ✺✳✷✵✽❡✲✵✺ ✯✯✯

①✷ ✲✼✳✼✷✷✹❡✲✵✶ ✶✳✼✶✶✸❡✲✵✶ ✲✹✳✺✶✷✺ ✵✳✵✵✵✼✶✶ ✯✯✯

①✸ ✷✳✺✷✵✷❡✲✵✶ ✶✳✼✶✶✸❡✲✵✶ ✶✳✹✼✷✼ ✵✳✶✻✻✺✼✽

①✶✿①✷ ✲✹✳✵✵✵✵❡✲✵✶ ✷✳✵✾✺✾❡✲✵✶ ✲✶✳✾✵✽✺ ✵✳✵✽✵✺✸✼ ✳

①✶✿①✸ ✲✶✳✺✵✵✵❡✲✵✶ ✷✳✵✾✺✾❡✲✵✶ ✲✵✳✼✶✺✼ ✵✳✹✽✼✽✽✽

①✷✿①✸ ✶✳✼✾✵✸❡✲✶✺ ✷✳✵✾✺✾❡✲✵✶ ✵✳✵✵✵✵ ✶✳✵✵✵✵✵✵

①✶❫✷ ✲✶✳✷✸✾✸❡✰✵✵ ✶✳✾✹✵✺❡✲✵✶ ✲✻✳✸✽✻✺ ✸✳✹✼✶❡✲✵✺ ✯✯✯

①✷❫✷ ✲✻✳✹✷✽✻❡✲✵✷ ✶✳✾✹✵✺❡✲✵✶ ✲✵✳✸✸✶✸ ✵✳✼✹✻✶✸✾

①✸❫✷ ✲✶✳✻✹✷✾❡✲✵✶ ✶✳✾✹✵✺❡✲✵✶ ✲✵✳✽✹✻✻ ✵✳✹✶✸✼✻✻

✲✲✲

❙✐❣♥✐❢✳ ❝♦❞❡s✿ ✵ ✬✯✯✯✬ ✵✳✵✵✶ ✬✯✯✬ ✵✳✵✶ ✬✯✬ ✵✳✵✺ ✬✳✬ ✵✳✶ ✬ ✬ ✶

▼✉❧t✐♣❧❡ ❘✲sq✉❛r❡❞✿ ✵✳✾✽✽✶✱ ❆❞❥✉st❡❞ ❘✲sq✉❛r❡❞✿ ✵✳✾✼✼✷

❋✲st❛t✐st✐❝✿ ✾✵✳✼✼ ♦♥ ✶✶ ❛♥❞ ✶✷ ❉❋✱ ♣✲✈❛❧✉❡✿ ✽✳✹✻❡✲✶✵

❆♥❛❧②s✐s ♦❢ ❱❛r✐❛♥❝❡ ❚❛❜❧❡

❘❡s♣♦♥s❡✿ r❛t✐♥❣

❉❢ ❙✉♠ ❙q ▼❡❛♥ ❙q ❋ ✈❛❧✉❡ Pr✭❃❋✮

❇❧♦❝❦ ✷ ✸✶✶✳✺✷✸ ✶✺✺✳✼✻✷ ✹✹✸✳✷✶✸✼ ✺✳✻✼✽❡✲✶✷

❋❖✭①✶✱ ①✷✱ ①✸✮ ✸ ✷✶✳✵✻✹ ✼✳✵✷✶ ✶✾✳✾✼✾✶ ✺✳✽✹✾❡✲✵✺

❚❲■✭①✶✱ ①✷✱ ①✸✮ ✸ ✶✳✹✻✵ ✵✳✹✽✼ ✶✳✸✽✹✽ ✵✳✷✾✹✽✸✽
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P◗✭①✶✱ ①✷✱ ①✸✮ ✸ ✶✻✳✽✹✺ ✺✳✻✶✺ ✶✺✳✾✼✼✶ ✵✳✵✵✵✶✼✷

❘❡s✐❞✉❛❧s ✶✷ ✹✳✷✶✼ ✵✳✸✺✶

▲❛❝❦ ♦❢ ❢✐t ✺ ✷✳✸✶✷ ✵✳✹✻✷ ✶✳✻✾✾✸ ✵✳✷✺✷✺✼✽

P✉r❡ ❡rr♦r ✼ ✶✳✾✵✺ ✵✳✷✼✷

❙t❛t✐♦♥❛r② ♣♦✐♥t ♦❢ r❡s♣♦♥s❡ s✉r❢❛❝❡✿

①✶ ①✷ ①✸

✶✳✵✻✹✹✾✺✷ ✲✾✳✸✶✽✵✾✵✶ ✵✳✷✽✶✵✺✽✸

❙t❛t✐♦♥❛r② ♣♦✐♥t ✐♥ ♦r✐❣✐♥❛❧ ✉♥✐ts✿

❢❧♦✉r s✉❣❛r ❜✉tt❡r

✶✳✸✺✻✹✹✾✺ ✲✵✳✹✽✶✽✵✾✵ ✵✳✷✼✽✶✵✺✽

❊✐❣❡♥❛♥❛❧②s✐s✿

✩✈❛❧✉❡s

❬✶❪ ✲✵✳✵✸✵✵✷✵✻✼ ✲✵✳✶✻✵✺✷✶✻✽ ✲✶✳✷✼✼✸✶✹✼✾

✩✈❡❝t♦rs

❬✱✶❪ ❬✱✷❪ ❬✱✸❪

①✶ ✵✳✶✻✽✶✶✽✻✵ ✲✵✳✵✹✾✽✺✹✷✷ ✵✳✾✽✹✺✵✺✸✵

①✷ ✲✵✳✾✽✶✷✽✸✸✷ ✲✵✳✶✵✸✻✵✽✷✾ ✵✳✶✻✷✸✷✶✽✵

①✸ ✲✵✳✵✾✸✾✶✵✹✽ ✵✳✾✾✸✸✻✼✾✺ ✵✳✵✻✻✸✸✾✺✾

There are significant first and second-order terms now, and nonsignificant lack of fit. The summary includes
a canonical analysis which gives the coordinates of the estimated stationary point and the canonical direc-
tions (eigenvectors) from that point. That is, the fitted surface is characterized in the form ŷ(v1, v2, v3) =
ŷs + λ1v2

1 + λ2v2
2 + λ3v2

3 where ŷs is the fitted value at the stationary point, the eigenvalues are denoted
λj, and the eigenvectors are denoted vj. Since all three eigenvalues are negative, the estimated surface de-
creases in all directions from its value at ŷs and hence has a maximum there. However, the stationary point
is nowhere near the experiment, so this is an extreme extrapolation and not to be trusted at all. (In fact,
in decoded units, the estimated optimum calls for a negative amount of sugar!) So the best bet now is to
experiment on some path that leads us vaguely toward this distant stationary point.

7 Ridge analysis (second-order steepest ascent)

The st❡❡♣❡st function again may be used; this time it computes a curved path of steepest ascent, based on
ridge analysis:

❘❃ st❡❡♣❡st✭❛♥❛❧✺✮

P❛t❤ ♦❢ st❡❡♣❡st ❛s❝❡♥t ❢r♦♠ r✐❞❣❡ ❛♥❛❧②s✐s✿

❞✐st ①✶ ①✷ ①✸ ⑤ ❢❧♦✉r s✉❣❛r ❜✉tt❡r ⑤ ②❤❛t

✶ ✵✳✵ ✵✳✵✵✵ ✵✳✵✵✵ ✵✳✵✵✵ ⑤ ✶✳✷✺✵✵ ✵✳✹✺✵✵ ✵✳✷✺✵✵ ⑤ ✷✻✳✾✾✻

✷ ✵✳✺ ✲✵✳✷✷✼ ✲✵✳✹✶✼ ✵✳✶✺✻ ⑤ ✶✳✷✷✼✸ ✵✳✹✵✽✸ ✵✳✷✻✺✻ ⑤ ✷✼✳✹✽✹

✸ ✶✳✵ ✲✵✳✷✸✺ ✲✵✳✾✷✷ ✵✳✸✵✼ ⑤ ✶✳✷✷✻✺ ✵✳✸✺✼✽ ✵✳✷✽✵✼ ⑤ ✷✼✳✽✶✼

✹ ✶✳✺ ✲✵✳✶✽✾ ✲✶✳✹✸✶ ✵✳✹✵✽ ⑤ ✶✳✷✸✶✶ ✵✳✸✵✻✾ ✵✳✷✾✵✽ ⑤ ✷✽✳✶✵✷

✺ ✷✳✵ ✲✵✳✶✷✻ ✲✶✳✾✸✾ ✵✳✹✼✸ ⑤ ✶✳✷✸✼✹ ✵✳✷✺✻✶ ✵✳✷✾✼✸ ⑤ ✷✽✳✸✺✽

✻ ✷✳✺ ✲✵✳✵✺✺ ✲✷✳✹✹✻ ✵✳✺✶✹ ⑤ ✶✳✷✹✹✺ ✵✳✷✵✺✹ ✵✳✸✵✶✹ ⑤ ✷✽✳✺✾✶

✼ ✸✳✵ ✵✳✵✷✵ ✲✷✳✾✺✶ ✵✳✺✸✻ ⑤ ✶✳✷✺✷✵ ✵✳✶✺✹✾ ✵✳✸✵✸✻ ⑤ ✷✽✳✽✵✹

✽ ✸✳✺ ✵✳✵✾✽ ✲✸✳✹✺✻ ✵✳✺✹✻ ⑤ ✶✳✷✺✾✽ ✵✳✶✵✹✹ ✵✳✸✵✹✻ ⑤ ✷✽✳✾✾✾

✾ ✹✳✵ ✵✳✶✼✽ ✲✸✳✾✺✾ ✵✳✺✹✻ ⑤ ✶✳✷✻✼✽ ✵✳✵✺✹✶ ✵✳✸✵✹✻ ⑤ ✷✾✳✶✼✼

✶✵ ✹✳✺ ✵✳✷✺✽ ✲✹✳✹✺✾ ✵✳✺✸✽ ⑤ ✶✳✷✼✺✽ ✵✳✵✵✹✶ ✵✳✸✵✸✽ ⑤ ✷✾✳✸✸✼

✶✶ ✺✳✵ ✵✳✸✸✾ ✲✹✳✾✻✶ ✵✳✺✷✺ ⑤ ✶✳✷✽✸✾ ✲✵✳✵✹✻✶ ✵✳✸✵✷✺ ⑤ ✷✾✳✹✽✶

11



After a distance of about 3, it starts venturing into unreasonable combinations of design factors. So let’s
experiment at 8 distances spread 2/3 apart in coded units:

❘❃ ❡①♣t✻ ❂ ❞✉♣❡✭st❡❡♣❡st✭❛♥❛❧✺✱ ❞✐st ❂ ✭✷✿✾✮✴✸✮✮

P❛t❤ ♦❢ st❡❡♣❡st ❛s❝❡♥t ❢r♦♠ r✐❞❣❡ ❛♥❛❧②s✐s✿

Here are the results after data-collection is complete:

❘❃ ❡①♣t✻

r✉♥✳♦r❞❡r st❞✳♦r❞❡r ❞✐st ①✶ ①✷ ①✸ ⑤ ❢❧♦✉r s✉❣❛r ❜✉tt❡r ⑤✳✶ ②❤❛t r❛t✐♥❣

✶ ✶ ✸ ✶✳✸✸✸✸✸✸✸ ✲✵✳✷✵✼ ✲✶✳✷✻✶ ✵✳✸✼✾ ⑤ ✶✳✷✷✾✸ ✵✳✸✷✸✾ ✵✳✷✽✼✾ ⑤ ✷✽✳✵✶✶ ✸✺✳✺

✷ ✷ ✺ ✷✳✵✵✵✵✵✵✵ ✲✵✳✶✷✻ ✲✶✳✾✸✾ ✵✳✹✼✸ ⑤ ✶✳✷✸✼✹ ✵✳✷✺✻✶ ✵✳✷✾✼✸ ⑤ ✷✽✳✸✺✽ ✸✸✳✽

✸ ✸ ✷ ✶✳✵✵✵✵✵✵✵ ✲✵✳✷✸✺ ✲✵✳✾✷✷ ✵✳✸✵✼ ⑤ ✶✳✷✷✻✺ ✵✳✸✺✼✽ ✵✳✷✽✵✼ ⑤ ✷✼✳✽✶✼ ✸✺✳✵

✹ ✹ ✶ ✵✳✻✻✻✻✻✻✼ ✲✵✳✷✹✶ ✲✵✳✺✽✹ ✵✳✷✶✷ ⑤ ✶✳✷✷✺✾ ✵✳✸✾✶✻ ✵✳✷✼✶✷ ⑤ ✷✼✳✻✵✸ ✸✹✳✶

✺ ✺ ✼ ✷✳✻✻✻✻✻✻✼ ✲✵✳✵✸✵ ✲✷✳✻✶✺ ✵✳✺✷✸ ⑤ ✶✳✷✹✼✵ ✵✳✶✽✽✺ ✵✳✸✵✷✸ ⑤ ✷✽✳✻✻✹ ✸✸✳✸

✻ ✻ ✻ ✷✳✸✸✸✸✸✸✸ ✲✵✳✵✼✾ ✲✷✳✷✼✽ ✵✳✺✵✷ ⑤ ✶✳✷✹✷✶ ✵✳✷✷✷✷ ✵✳✸✵✵✷ ⑤ ✷✽✳✺✶✻ ✸✹✳✷

✼ ✼ ✹ ✶✳✻✻✻✻✻✻✼ ✲✵✳✶✻✾ ✲✶✳✻✵✵ ✵✳✹✸✸ ⑤ ✶✳✷✸✸✶ ✵✳✷✾✵✵ ✵✳✷✾✸✸ ⑤ ✷✽✳✶✾✵ ✸✹✳✼

✽ ✽ ✽ ✸✳✵✵✵✵✵✵✵ ✵✳✵✷✵ ✲✷✳✾✺✶ ✵✳✺✸✻ ⑤ ✶✳✷✺✷✵ ✵✳✶✺✹✾ ✵✳✸✵✸✻ ⑤ ✷✽✳✽✵✹ ✸✸✳✹

And let’s do an analysis like that of ❡①♣t✷:

❘❃ ♣❧♦t✭r❛t✐♥❣ ⑦ ❞✐st✱ ❞❛t❛ ❂ ❡①♣t✻✮

❘❃ ❛♥❛❧✻ ❂ ❧♠✭r❛t✐♥❣ ⑦ ♣♦❧②✭❞✐st✱ ✷✮✱ ❞❛t❛ ❂ ❡①♣t✻✮

❘❃ ✇✐t❤✭❡①♣t✻✱ ④

❘❃ ♦r❞ ❂ ♦r❞❡r✭❞✐st✮

❘❃ ❧✐♥❡s✭❞✐st❬♦r❞❪✱ ♣r❡❞✐❝t✭❛♥❛❧✻✮❬♦r❞❪✮

❘❃ ⑥✮

●

●

●

●

●

●

●

●

1.0 1.5 2.0 2.5 3.0

3
3
.5

3
4
.0

3
4
.5

3
5
.0

3
5
.5

dist

ra
ti
n
g

It looks like we should center the new experiment at a distance of 1.5 or soÐperhaps flour still at 1.25, and
both sugar and butter at .30.
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8 Second-order design at the new location

We are now in a situation where we already know we have curvature, so we might as well go straight to
a second-order experiment. It is less critical to assess lack of fit, so we don’t need as many center points.
Note that each of the past experiments has 8 runsÐthat is the practical size for one block. All these things
considered, we decide to run a central-composite design with the cube portion being a complete 23 design
(8 runs with no center points), and the star portion including two center points (another block of 8 runs).
Let’s generate the design, and magically do the cooking and the rating for these two 8-run experiments:

❘❃ ❡①♣t✼ ❂ ❝❝❞✭ ⑦ ①✶ ✰ ①✷ ✰ ①✸✱ ♥✵ ❂ ❝✭✵✱ ✷✮✱ ❛❧♣❤❛ ❂ ✧♦rt❤✧✱ ❝♦❞✐♥❣ ❂ ❝✭

❘❃ ①✶ ⑦ ✭❢❧♦✉r ✲ ✶✳✷✺✮✴✳✶✱ ①✷ ⑦ ✭s✉❣❛r ✲ ✳✸✮✴✳✶✱ ①✸ ⑦ ✭❜✉tt❡r ✲ ✳✸✮✴✳✶✮✮

. . . and after the data are collected:

❘❃ ❡①♣t✼

r✉♥✳♦r❞❡r st❞✳♦r❞❡r ❢❧♦✉r s✉❣❛r ❜✉tt❡r ❇❧♦❝❦ r❛t✐♥❣

✶ ✶ ✺ ✶✳✶✺ ✵✳✷ ✵✳✹ ✶ ✷✻✳✻

✷ ✷ ✶ ✶✳✶✺ ✵✳✷ ✵✳✷ ✶ ✷✺✳✻

✸ ✸ ✻ ✶✳✸✺ ✵✳✷ ✵✳✹ ✶ ✷✻✳✻

✹ ✹ ✸ ✶✳✶✺ ✵✳✹ ✵✳✷ ✶ ✷✻✳✷

✺ ✺ ✽ ✶✳✸✺ ✵✳✹ ✵✳✹ ✶ ✷✹✳✺

✻ ✻ ✼ ✶✳✶✺ ✵✳✹ ✵✳✹ ✶ ✷✼✳✸

✼ ✼ ✷ ✶✳✸✺ ✵✳✷ ✵✳✷ ✶ ✷✸✳✺

✽ ✽ ✹ ✶✳✸✺ ✵✳✹ ✵✳✷ ✶ ✷✹✳✼

✾ ✶ ✽ ✶✳✷✺ ✵✳✸ ✵✳✸ ✷ ✷✼✳✾

✶✵ ✷ ✷ ✶✳✹✺ ✵✳✸ ✵✳✸ ✷ ✷✷✳✵

✶✶ ✸ ✺ ✶✳✷✺ ✵✳✸ ✵✳✶ ✷ ✷✺✳✷

✶✷ ✹ ✸ ✶✳✷✺ ✵✳✶ ✵✳✸ ✷ ✷✻✳✺

✶✸ ✺ ✹ ✶✳✷✺ ✵✳✺ ✵✳✸ ✷ ✷✺✳✾

✶✹ ✻ ✻ ✶✳✷✺ ✵✳✸ ✵✳✺ ✷ ✷✼✳✽

✶✺ ✼ ✶ ✶✳✵✺ ✵✳✸ ✵✳✸ ✷ ✷✻✳✵

✶✻ ✽ ✼ ✶✳✷✺ ✵✳✸ ✵✳✸ ✷ ✷✾✳✸

❉❛t❛ ❛r❡ st♦r❡❞ ✐♥ ❝♦❞❡❞ ❢♦r♠ ✉s✐♥❣ t❤❡s❡ ❝♦❞✐♥❣ ❢♦r♠✉❧❛s ✳✳✳

①✶ ⑦ ✭❢❧♦✉r ✲ ✶✳✷✺✮✴✵✳✶

①✷ ⑦ ✭s✉❣❛r ✲ ✵✳✸✮✴✵✳✶

①✸ ⑦ ✭❜✉tt❡r ✲ ✵✳✸✮✴✵✳✶

It turns out that to obtain orthogonal blocks, locating the star points at ±α = ±2 is the correct choice for
these numbers of center points; hence the nice round values. Here’s our analysis; we’ll go straight to the
second-order model, and again, we need to include the block effect in the model.

❘❃ ❛♥❛❧✼ ❂ rs♠✭r❛t✐♥❣ ⑦ ❇❧♦❝❦ ✰ ❙❖✭①✶✱①✷✱①✸✮✱ ❞❛t❛ ❂ ❡①♣t✼✮

❘❃ s✉♠♠❛r②✭❛♥❛❧✼✮

❈❛❧❧✿

rs♠✭❢♦r♠✉❧❛ ❂ r❛t✐♥❣ ⑦ ❇❧♦❝❦ ✰ ❙❖✭①✶✱ ①✷✱ ①✸✮✱ ❞❛t❛ ❂ ❡①♣t✼✮

❊st✐♠❛t❡ ❙t❞✳ ❊rr♦r t ✈❛❧✉❡ Pr✭❃⑤t⑤✮

✭■♥t❡r❝❡♣t✮ ✷✼✳✾✵✵✵✵ ✵✳✺✷✹✶✼ ✺✸✳✷✷✼✹ ✹✳✹✷✻❡✲✵✽ ✯✯✯

❇❧♦❝❦✷ ✵✳✼✵✵✵✵ ✵✳✸✼✵✻✹ ✶✳✽✽✽✻ ✵✳✶✶✼✺✻✽

①✶ ✲✵✳✾✵✵✵✵ ✵✳✶✽✺✸✷ ✲✹✳✽✺✻✹ ✵✳✵✵✹✻✹✽ ✯✯

①✷ ✲✵✳✵✺✵✵✵ ✵✳✶✽✺✸✷ ✲✵✳✷✻✾✽ ✵✳✼✾✽✵✾✸

①✸ ✵✳✻✸✼✺✵ ✵✳✶✽✺✸✷ ✸✳✹✹✵✵ ✵✳✵✶✽✹✸✻ ✯
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✲✲✲

❙✐❣♥✐❢✳ ❝♦❞❡s✿ ✵ ✬✯✯✯✬ ✵✳✵✵✶ ✬✯✯✬ ✵✳✵✶ ✬✯✬ ✵✳✵✺ ✬✳✬ ✵✳✶ ✬ ✬ ✶

▼✉❧t✐♣❧❡ ❘✲sq✉❛r❡❞✿ ✵✳✾✹✷✶✱ ❆❞❥✉st❡❞ ❘✲sq✉❛r❡❞✿ ✵✳✽✷✻✷

❋✲st❛t✐st✐❝✿ ✽✳✶✸✶ ♦♥ ✶✵ ❛♥❞ ✺ ❉❋✱ ♣✲✈❛❧✉❡✿ ✵✳✵✶✻✵✷

❆♥❛❧②s✐s ♦❢ ❱❛r✐❛♥❝❡ ❚❛❜❧❡

❘❡s♣♦♥s❡✿ r❛t✐♥❣

❉❢ ❙✉♠ ❙q ▼❡❛♥ ❙q ❋ ✈❛❧✉❡ Pr✭❃❋✮

❇❧♦❝❦ ✶ ✶✳✾✻✵✵ ✶✳✾✻✵✵ ✸✳✺✻✻✾ ✵✳✶✶✼✺✻✽

❋❖✭①✶✱ ①✷✱ ①✸✮ ✸ ✶✾✳✺✵✷✺ ✻✳✺✵✵✽ ✶✶✳✽✸✵✺ ✵✳✵✶✵✹✷✷

❚❲■✭①✶✱ ①✷✱ ①✸✮ ✸ ✶✳✾✻✺✵ ✵✳✻✺✺✵ ✶✳✶✾✷✵ ✵✳✹✵✶✼✸✶

P◗✭①✶✱ ①✷✱ ①✸✮ ✸ ✷✶✳✷✺✺✵ ✼✳✵✽✺✵ ✶✷✳✽✾✸✺ ✵✳✵✵✽✻✺✸

❘❡s✐❞✉❛❧s ✺ ✷✳✼✹✼✺ ✵✳✺✹✾✺

▲❛❝❦ ♦❢ ❢✐t ✹ ✶✳✼✻✼✺ ✵✳✹✹✶✾ ✵✳✹✺✵✾ ✵✳✼✽✾✸✸✼

P✉r❡ ❡rr♦r ✶ ✵✳✾✽✵✵ ✵✳✾✽✵✵

❙t❛t✐♦♥❛r② ♣♦✐♥t ♦❢ r❡s♣♦♥s❡ s✉r❢❛❝❡✿

①✶ ①✷ ①✸

✲✵✳✸✹✷✶✾✶✹ ✲✵✳✶✼✼✷✼✻✾ ✵✳✻✹✷✵✽✼✸

❙t❛t✐♦♥❛r② ♣♦✐♥t ✐♥ ♦r✐❣✐♥❛❧ ✉♥✐ts✿

❢❧♦✉r s✉❣❛r ❜✉tt❡r

✶✳✷✶✺✼✽✵✾ ✵✳✷✽✷✷✼✷✸ ✵✳✸✻✹✷✵✽✼

❊✐❣❡♥❛♥❛❧②s✐s✿

✩✈❛❧✉❡s

❬✶❪ ✲✵✳✸✸✾✵✸✸✻ ✲✵✳✼✺✸✹✾✹✻ ✲✶✳✶✽✷✹✼✶✽

✩✈❡❝t♦rs

❬✱✶❪ ❬✱✷❪ ❬✱✸❪

①✶ ✵✳✶✺✻✷✶✽✵ ✲✵✳✶✻✻✹✼✹✶ ✵✳✾✼✸✺✾✷✹✼✵

①✷ ✲✵✳✻✺✶✸✺✾✵ ✵✳✼✷✸✻✷✻✸ ✵✳✷✷✽✷✹✻✹✽✽

①✸ ✵✳✼✹✷✺✶✹✷ ✵✳✻✻✾✽✶✹✹ ✲✵✳✵✵✹✻✵✾✵✺✽

The model fits decently, and there are important second-order terms. The most exciting news is that the
stationary point is quite close to the design center, and it is indeed a maximum since all three eigenvalues
are negative. It looks like the best recipe is around 1.22 c. flour, .28 c. sugar, and .36 c. butter. Let’s look at
this graphically using the ❝♦♥t♦✉r function, slicing the fitted surface at the stationary point.

❘❃ ♣❛r✭♠❢r♦✇❂❝✭✶✱✸✮✮

❘❃ ❝♦♥t♦✉r✭❛♥❛❧✼✱ ⑦ ①✶ ✰ ①✷ ✰ ①✸✱ ❛t ❂ ①s✭❛♥❛❧✼✮✱ ✐♠❛❣❡ ❂ ❚❘❯❊✮

14



1.1 1.2 1.3 1.4

0
.1

0
.2

0
.3

0
.4

0
.5

flour
Slice at butter = 0.36, x1 = −0.342191359222045, x2 = −0.177276900596134

s
u

g
a

r

 1
9
 

 21 
 2

2
 

 2
2
 

 23 

 24 

 24 

 25 

 2
5 

 25 

 26 

 27 

 28 

1.1 1.2 1.3 1.4

0
.1

0
.2

0
.3

0
.4

0
.5

flour
Slice at sugar = 0.28, x1 = −0.342191359222045, x3 = 0.642087261253569

b
u

tt
e

r

 1
9
 

 2
1 

 2
2
 

 2
3  24  2

4 
 25 

 2
5
 

 26 

 27 

 28 

0.1 0.2 0.3 0.4 0.5

0
.1

0
.2

0
.3

0
.4

0
.5

sugar
Slice at flour = 1.22, x2 = −0.177276900596134, x3 = 0.642087261253569

b
u

tt
e

r

 22 
 23 

 24  25 

 25 

 25 
 26 

 26 

 27 

 28 

It’s also helpful to know how well we have estimated the stationary point. A simple bootstrap procedure
helps us understand this. In the code below, we simulate 200 re-fits of the model, after scrambling the
residuals and adding them back to the fitted values; then plot the their stationary points along with the one
estimated from ❛♥❛❧✼. The r❡♣❧✐❝❛t❡ function returns a matrix with 3 rows and 200 columns (one for each
bootstrap replication); so we need to transpose the result and decode the values.

❘❃ ❢✐ts ❂ ♣r❡❞✐❝t✭❛♥❛❧✼✮

❘❃ r❡s✐❞s ❂ r❡s✐❞✭❛♥❛❧✼✮
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❘❃ ❜♦♦t ❂ ❝♦❞❡✷✈❛❧✭❛s✳❞❛t❛✳❢r❛♠❡✭t✭❜♦♦t✳r❛✇✮✮✱ ❝♦❞✐♥❣s❂❝♦❞✐♥❣s✭❛♥❛❧✼✮✮
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❘❃ ♣❧♦t✭❜✉tt❡r ⑦ ❢❧♦✉r✱ ❞❛t❛ ❂ ❜♦♦t✱ ❝♦❧ ❂ ✧❣r❛②✧✮❀ ♣♦✐♥ts✭✶✳✷✶✺✱ ✳✸✻✹✱ ❝♦❧ ❂ ✧r❡❞✧✱ ♣❝❤ ❂ ✼✮
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These plots show something akin to a confidence region for the best recipe. Note they do not follow sym-
metrical elliptical patterns, as would a multivariate normal; this is due primarily to nonlinearity in estimat-
ing the stationary point.

9 Summary

For convenience, here is a tabular summary of what we did

Expt Center Type Runs Result

1 (1.00, .50, .25) 23−1 + 4 × 0 8 Fit OK, but we’re on a slope

2 SA path 8 Re-center at distance ∼ 2.5

3 (1.25, .45, .25) 23−1 + 4 × 0 8 Need more data to say much

4 same Foldover +8 LOF; need second-order design

5 same Star block +8 Suggests move to a new center

6 SA path 8 Re center at distance ∼ 1.5

7 (1.25, .30, .30) CCD: 23; star + 2 × 0 8 + 8 Best recipe ≈ (1.22, .28, .36)
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It has required 64 experimental runs to find this optimum. That is not too bad considering how much
variation there is in the response measures.
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