
Package ‘secr’
February 29, 2024

Type Package

Title Spatially Explicit Capture-Recapture

Version 4.6.6

Date 2024-03-01

Description Functions to estimate the density and size of a spatially
distributed animal population sampled with an array of passive detectors,
such as traps, or by searching polygons or transects. Models incorporating
distance-dependent detection are fitted by maximizing the likelihood.
Tools are included for data manipulation and model selection.

Depends R (>= 3.5.0), methods

Imports abind, graphics, grDevices, MASS, mgcv, nlme, parallel, raster
(>= 3.5-15), Rcpp (>= 0.12.14), RcppNumerical, RcppParallel (>=
5.1.1), sf, stats, stringr, terra (>= 1.5-12), tools, utils

Suggests gdistance, igraph, knitr, readxl, rmarkdown, sp, spatstat (>=
3.0-2), spatstat.geom, spatstat.random, spsurvey (>= 5.3.0),
testthat

LinkingTo BH, Rcpp, RcppEigen, RcppNumerical, RcppParallel

VignetteBuilder knitr

License GPL (>= 2)

LazyData yes

LazyDataCompression xz

SystemRequirements GNU make

URL https://www.otago.ac.nz/density/,

https://github.com/MurrayEfford/secr/

NeedsCompilation yes

Author Murray Efford [aut, cre] (<https://orcid.org/0000-0001-5231-5184>),
Philipp Jund [ctb] ((faster transect search and spacing)),
David Fletcher [ctb] ((overdispersion))

Maintainer Murray Efford <murray.efford@otago.ac.nz>

Repository CRAN

Date/Publication 2024-02-29 22:30:02 UTC

1

https://www.otago.ac.nz/density/
https://github.com/MurrayEfford/secr/
https://orcid.org/0000-0001-5231-5184

2 R topics documented:

R topics documented:
secr-package . 5
addCovariates . 8
addSightings . 10
addTelemetry . 12
AIC.secr . 14
AICcompatible . 18
as.data.frame . 19
as.mask . 20
as.popn . 21
autoini . 22
binCovariate . 24
BUGS . 25
capthist . 27
capthist.parts . 29
chat . 30
circular . 34
clone . 36
closedN . 37
closure.test . 40
cluster . 42
coef.secr . 43
collate . 44
confint.secr . 45
contour . 47
covariates . 49
CV . 50
D.designdata . 52
deermouse . 53
deleteMaskPoints . 55
derived . 56
details . 59
detectfn . 63
detector . 65
deviance . 66
discretize . 68
distancetotrap . 70
Dsurface . 71
ellipse.secr . 72
empirical.varD . 73
esa.plot . 79
esa.plot.secr . 82
expected.n . 83
extractMoves . 85
FAQ . 86
Fletcher.chat . 88
fx.total . 89

R topics documented: 3

fxi . 91
gridCells . 94
hcov . 95
head . 98
homerange . 100
hornedlizard . 103
housemouse . 105
Internal . 106
intervals . 108
join . 109
kfn . 111
list.secr.fit . 113
LLsurface . 114
logit . 116
logmultinom . 117
LR.test . 118
make.capthist . 119
make.lacework . 122
make.mask . 123
make.systematic . 126
make.traps . 129
make.tri . 132
makeStart . 134
mask . 135
mask.check . 136
modelAverage . 139
ms . 142
newdata . 143
nontarget . 144
occasionKey . 145
ovenbird . 146
ovensong . 148
OVpossum . 151
Parallel . 153
pdot . 156
PG . 158
plot.capthist . 160
plot.mask . 163
plot.popn . 167
plot.secr . 168
plot.traps . 170
plotMaskEdge . 172
pmixProfileLL . 173
pointsInPolygon . 174
polyarea . 175
popn . 176
possum . 177
predict.secr . 179

4 R topics documented:

predictDsurface . 182
print.capthist . 184
print.secr . 185
print.traps . 187
randomHabitat . 188
raster . 191
rbind.capthist . 192
rbind.popn . 195
rbind.traps . 196
read.capthist . 197
read.mask . 200
read.telemetry . 201
read.traps . 203
rectangularMask . 205
reduce . 206
reduce.capthist . 207
region.N . 210
RMarkInput . 214
RSE . 215
Rsurface . 217
score.test . 219
secr-defunct . 221
secr-deprecated . 222
secr.design.MS . 223
secr.fit . 226
secr.test . 232
secrdemo . 234
secrRNG . 236
secrtest . 238
session . 239
setNumThreads . 240
shareFactorLevels . 242
sighting . 243
signal . 244
signalmatrix . 245
sim.capthist . 246
sim.popn . 250
sim.secr . 256
skink . 259
smooths . 261
snip . 263
sort.capthist . 265
spacing . 266
speed . 267
stoatDNA . 270
strip.legend . 272
subset.capthist . 274
subset.mask . 276

secr-package 5

subset.popn . 278
subset.traps . 279
suggest.buffer . 280
summary.capthist . 283
summary.mask . 285
summary.popn . 286
summary.traps . 287
timevaryingcov . 288
transformations . 290
trap.builder . 292
traps . 297
traps.info . 299
Trend . 300
trim . 301
Troubleshooting . 302
turnover . 304
updateCH . 307
usage . 308
usagePlot . 309
userdist . 311
utility . 313
vcov.secr . 315
verify . 316
write.captures . 318
writeGPS . 319

Index 322

secr-package Spatially Explicit Capture–Recapture Models

Description

Functions to estimate the density and size of a spatially distributed animal population sampled with
an array of passive detectors, such as traps, or by searching polygons or transects.

Details

Package: secr
Type: Package
Version: 4.6.6
Date: 2024-03-01
License: GNU General Public License Version 2 or later

Spatially explicit capture–recapture is a set of methods for studying marked animals distributed in
space. Data comprise the locations of detectors (traps, searched areas, etc. described in an object

6 secr-package

of class ‘traps’), and the detection histories of individually marked animals. Individual histories are
stored in an object of class ‘capthist’ that includes the relevant ‘traps’ object.

Models for population density (animals per hectare) and detection are defined in secr using sym-
bolic formula notation. Density models may include spatial or temporal trend. Possible predictors
for detection probability include both pre-defined variables (t, b, etc.) corresponding to ‘time’, ‘be-
haviour’ and other effects), and user-defined covariates of several kinds. Habitat is distinguished
from nonhabitat with an object of class ‘mask’.

Models are fitted in secr by maximizing either the full likelihood or the likelihood conditional on
the number of individuals observed (n). Conditional likelihood models are limited to homoge-
neous Poisson density, but allow continuous individual covariates for detection. A model fitted with
secr.fit is an object of class secr. Generic methods (plot, print, summary, etc.) are provided for
each object class.

A link at the bottom of each help page takes you to the help index. Several vignettes complement
the help pages:

General interest
secr-overview.pdf general introduction
secr-datainput.pdf data formats and input functions
secr-version4.pdf changes in secr 4.0
secr-manual.pdf consolidated help pages
secr-tutorial.pdf introductory tutorial
secr-habitatmasks.pdf buffers and habitat masks
secr-spatialdata.pdf using spatial data
secr-models.pdf linear models in secr
secr-troubleshooting.pdf problems with secr.fit, including speed issues

More specialised topics
secr-densitysurfaces.pdf modelling density surfaces
secr-finitemixtures.pdf mixture models for individual heterogeneity
secr-markresight.pdf mark-resight data and models
secr-multisession.pdf multi-session capthist objects and models
secr-noneuclidean.pdf non-Euclidean distances
secr-parameterisations.pdf alternative parameterisations sigmak, a0
secr-polygondetectors.pdf using polygon and transect detector types
secr-sound.pdf analysing data from microphone arrays
secr-varyingeffort.pdf variable effort in SECR models

The datasets captdata and ovenbird include examples of fitted models. For models fitted to other
datasets see secr-version4.pdf Appendix 2.

Add-on packages extend the capability of secr and are documented separately. secrlinear enables
the estimation of linear density (e.g., animals per km) for populations in linear habitats such as
stream networks (secrlinear-vignette.pdf). secrdesign enables the assessment of alternative study
designs by Monte Carlo simulation; scenarios may differ in detector (trap) layout, sampling inten-
sity, and other characteristics (secrdesign-vignette.pdf). ipsecr fits some awkward models (e.g., for
single-catch traps) by simulation and inverse prediction (ipsecr-vignette.pdf). openCR fits open

https://www.otago.ac.nz/density/pdfs/secr-overview.pdf
https://www.otago.ac.nz/density/pdfs/secr-datainput.pdf
https://www.otago.ac.nz/density/pdfs/secr-version4.pdf
https://www.otago.ac.nz/density/pdfs/secr-manual.pdf
https://www.otago.ac.nz/density/pdfs/secr-tutorial.pdf
https://www.otago.ac.nz/density/pdfs/secr-habitatmasks.pdf
https://www.otago.ac.nz/density/pdfs/secr-spatialdata.pdf
https://www.otago.ac.nz/density/pdfs/secr-models.pdf
https://www.otago.ac.nz/density/pdfs/secr-troubleshooting.pdf
https://www.otago.ac.nz/density/pdfs/secr-densitysurfaces.pdf
https://www.otago.ac.nz/density/pdfs/secr-finitemixtures.pdf
https://www.otago.ac.nz/density/pdfs/secr-markresight.pdf
https://www.otago.ac.nz/density/pdfs/secr-multisession.pdf
https://www.otago.ac.nz/density/pdfs/secr-noneuclidean.pdf
https://www.otago.ac.nz/density/pdfs/secr-parameterisations.pdf
https://www.otago.ac.nz/density/pdfs/secr-polygondetectors.pdf
https://www.otago.ac.nz/density/pdfs/secr-sound.pdf
https://www.otago.ac.nz/density/pdfs/secr-varyingeffort.pdf
https://www.otago.ac.nz/density/pdfs/secr-version4.pdf
https://cran.r-project.org/package=secrlinear/vignettes/secrlinear-vignette.pdf
https://www.otago.ac.nz/density/pdfs/secrdesign-vignette.pdf
https://CRAN.R-project.org/package=ipsecr/vignettes/ipsecr-vignette.pdf

secr-package 7

population models, both non-spatial and spatial (openCR-vignette.pdf).

The analyses in secr extend those available in the software Density (see www.otago.ac.nz/density/
for the most recent version of Density). Help is available on the ‘DENSITY | secr’ forum at
www.phidot.org and the Google group secrgroup. Feedback on the software is also welcome, in-
cluding suggestions for additional documentation or new features consistent with the overall design.

Author(s)

Murray Efford <murray.efford@otago.ac.nz>

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture–recapture studies. Biometrics 64, 377–385.

Borchers, D. L. and Fewster, R. M. (2016) Spatial capture–recapture models. Statistical Science
31, 219–232.

Efford, M. G. (2004) Density estimation in live-trapping studies. Oikos 106, 598–610.

Efford, M. G. (2011) Estimation of population density by spatially explicit capture–recapture with
area searches. Ecology 92, 2202–2207.

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit
capture-recapture: likelihood-based methods. In: D. L. Thomson, E. G. Cooch and M. J. Conroy
(eds) Modeling Demographic Processes in Marked Populations. Springer, New York. Pp. 255–269.

Efford, M. G., Borchers D. L. and Mowat, G. (2013) Varying effort in capture–recapture studies.
Methods in Ecology and Evolution 4, 629–636.

Efford, M. G., Dawson, D. K. and Borchers, D. L. (2009) Population density estimated from loca-
tions of individuals on a passive detector array. Ecology 90, 2676–2682.

Efford, M. G., Dawson, D. K. and Robbins C. S. (2004) DENSITY: software for analysing capture-
recapture data from passive detector arrays. Animal Biodiversity and Conservation 27, 217–228.

Efford, M. G. and Fewster, R. M. (2013) Estimating population size by spatially explicit capture–
recapture. Oikos 122, 918–928.

Efford, M. G. and Hunter, C. M. (2017) Spatial capture–mark–resight estimation of animal popula-
tion density. Biometrics 74, 411–420.

Efford, M. G. and Mowat, G. (2014) Compensatory heterogeneity in capture–recapture data.Ecology
95, 1341–1348.

Royle, J. A., Chandler, R. B., Sollmann, R. and Gardner, B. (2014) Spatial capture–recapture.
Academic Press.

Royle, J. A. and Gardner, B. (2011) Hierarchical spatial capture–recapture models for estimating
density from trapping arrays. In: A.F. O’Connell, J.D. Nichols and K.U. Karanth (eds) Camera
Traps in Animal Ecology: Methods and Analyses. Springer, Tokyo. Pp. 163–190.

See Also

read.capthist, secr.fit, traps, capthist, mask

https://CRAN.R-project.org/package=openCR/vignettes/openCR-vignette.pdf
https://www.otago.ac.nz/density/
http://www.phidot.org/forum/
https://groups.google.com/forum/#!forum/secrgroup

8 addCovariates

Examples

Not run:

generate some data & plot
detectors <- make.grid (nx = 10, ny = 10, spacing = 20,

detector = "multi")
plot(detectors, label = TRUE, border = 0, gridspace = 20)
detections <- sim.capthist (detectors, noccasions = 5,

popn = list(D = 5, buffer = 100),
detectpar = list(g0 = 0.2, sigma = 25))

session(detections) <- "Simulated data"
plot(detections, border = 20, tracks = TRUE, varycol = TRUE)

generate habitat mask
mask <- make.mask (detectors, buffer = 100, nx = 48)

fit model and display results
secr.model <- secr.fit (detections, model = g0~b, mask = mask)
secr.model

End(Not run)

addCovariates Add Covariates to Mask or Traps

Description

Tools to construct spatial covariates for existing mask or traps objects from a spatial data source.

Usage

addCovariates(object, spatialdata, columns = NULL, strict = FALSE, replace = FALSE)

Arguments

object mask, traps or popn object

spatialdata spatial data source (see Details)

columns character vector naming columns to include (all by default)

strict logical; if TRUE a check is performed for points in object that lie outside
spatialdata (mask data sources only)

replace logical; if TRUE then covariates with duplicate names are replaced; otherwise a
new column is added

addCovariates 9

Details

The goal is to obtain the value(s) of one or more spatial covariates for each point (i.e. row) in
object. The procedure depends on the data source spatialdata, which may be either a spatial
coverage (raster or polygon) or an object with covariate values at points (another mask or traps
object). In the first case, an overlay operation is performed to find the pixel or polygon matching
each point. In the second case, a search is conducted for the closest point in spatialdata.

If spatialdata is a character value then it is interpreted as the name of a polygon shape file (ex-
cluding ‘.shp’).

If spatialdata is a SpatialPolygonsDataFrame, SpatialGridDataFrame or ’sf’ object from sf then
it will be used in an overlay operation as described.

If package terra has been installed then spatialdata may also be a RasterLayer from package
raster or SpatRaster from terra. If provided counts should be a single name that will be used for
the values (otherwise ’raster’ will be used).

If spatialdata is a mask or traps object then it is searched for the closest point to each point in
object, and covariates are drawn from the corresponding rows in covariates(spatialdata). By
default (strict = FALSE), values are returned even when the points lie outside any cell of the mask.

Value

An object of the same class as object with new or augmented covariates attribute. Column
names and types are derived from the input.

Warning

Use of a SpatialGridDataFrame for spatialdata is untested.

See Also

make.mask, read.mask, read.traps

Examples

In the Lake Station skink study (see ?skink), habitat covariates were
measured only at trap sites. Here we extrapolate to a mask, taking
values for each mask point from the nearest trap.

LSmask <- make.mask(LStraps, buffer = 30, type = "trapbuffer")
tempmask <- addCovariates(LSmask, LStraps)
show first few lines
head(covariates(tempmask))

10 addSightings

addSightings Mark-resight Data

Description

Add sighting data on unmarked individuals and/or unidentified marked individuals to an existing
capthist object.

Usage

addSightings(capthist, unmarked = NULL, nonID = NULL, uncertain = NULL, verify = TRUE,
...)

Arguments

capthist secr capthist object

unmarked matrix or list of matrices of sightings of unmarked animals, Tu, or file name (see
Details)

nonID matrix or list of matrices of unidentified sightings of marked animals, Tm, or
file name (see Details)

uncertain matrix or list of matrices of uncertain sightings, Tn, or file name (see Details)

verify logical; if TRUE then the resulting capthist object is checked with verify

... other arguments passed to read.table

Details

The capthist object for mark-resight analysis comprises distinct marking and sighting occasions,
defined in the markocc attribute of traps(capthist). Add this attribute to traps(capthist)
with markocc before using ’addSightings’. See also read.traps and read.capthist.

Mark-resight data may be binary (detector type ‘proximity’) or counts (detector types ‘count’, ’poly-
gon’ or ’transect’). The detector type is an attribute of traps(capthist). Values in unmarked and
nonID should be whole numbers, and may be greater than 1 even for binary proximity detectors
because multiple animals may be detected simultaneously at one place.

Arguments unmarked, nonID, uncertain provide data for attributes ‘Tu’, ‘Tm’, ‘Tn’ respectively.
They may take several forms

• a single integer, the sum of all counts*

• a matrix of the count on each occasion at each detector (dimensions K x S, where K is the num-
ber of detectors and S is the total number of occasions). Columns corresponding to marking
occasions should be all-zero.

• for multi-session data, a list with components as above

addSightings 11

• a character value with the name of a text file containing the data; the file will be read with
read.table. The . . . argument allows some control over how the file is read. The data format
comprises at least S+1 columns. The first is a session identifier used to split the file when the
data span multiple sessions; it should be constant for a single-session capthist. The remaining
S columns contain the counts for occasions 1:S, one row per detector. Further columns may
be present; they are ignored at present.

* although this is convenient, the full matrix of counts provides more flexibility (e.g., when you
wish to subset by occasion), and enables modelling of variation across detectors and occasions.

Value

A capthist object with the same structure as the input, but with new sighting-related attributes Tu
(sightings of unmarked animals) and/or Tm (unidentified sightings of marked animals). Input val-
ues, including NULL, overwrite existing values.

Warning

** Mark-resight data formats and models are experimental and subject to change **

See Also

markocc, read.capthist, read.traps, sim.resight, Tm, Tu, Tn, secr-markresight.pdf

Examples

construct capthist object MRCH from text files provided in
'extdata' folder, assigning attribute 'markocc' and add unmarked
and marked sightings from respective textfiles

datadir <- system.file("extdata", package = "secr")
captfile <- paste0(datadir, '/MRCHcapt.txt')
trapfile <- paste0(datadir, '/MRCHtrap.txt')
Tufile <- paste0(datadir, '/Tu.txt')
Tmfile <- paste0(datadir, '/Tm.txt')

MRCH <- read.capthist(captfile, trapfile, detector = c("multi",
rep("proximity",4)), markocc = c(1,0,0,0,0))

MRCH1 <- addSightings(MRCH, Tufile, Tmfile)

alternatively (ignoring marked, not ID sightings)

MRCH <- read.capthist(captfile, trapfile, detector = c("multi",
rep("proximity",4)), markocc = c(1,0,0,0,0))

Tu <- read.table(Tufile)[,-1] # drop session column
MRCH2 <- addSightings(MRCH, unmarked = Tu)
summary(MRCH2)

https://www.otago.ac.nz/density/pdfs/secr-markresight.pdf

12 addTelemetry

addTelemetry Combine Telemetry and Detection Data

Description

Animal locations determined by radiotelemetry can be used to augment capture–recapture data.
The procedure in secr is first to form a capthist object containing the telemetry data and then to
combine this with true capture–recapture data (e.g. detections from hair-snag DNA) in another
capthist object. secr.fit automatically detects the telemetry data in the new object.

Usage

addTelemetry (detectionCH, telemetryCH, type = c('concurrent','dependent','independent'),
collapsetelemetry = TRUE, verify = TRUE)

xy2CH (CH, inflation = 1e-08)

telemetrytype (object) <- value

telemetrytype (object, ...)

Arguments

detectionCH single-session capthist object, detector type ‘single’, ‘multi’, ‘proximity’ or ‘count’

telemetryCH single-session capthist object, detector type ‘telemetryonly’

type character (see Details)
collapsetelemetry

logical; if TRUE then telemetry occasions are collapsed to one

verify logical; if TRUE then verify.capthist is called on the output

CH capthist object with telemetryxy attribute

inflation numeric tolerance for polygon

object secr traps object

value character telemetry type replacement value

... other arguments

Details

It is assumed that a number of animals have been radiotagged, and their telemetry data (xy-coordinates)
have been input to telemetryCH, perhaps using read.capthist with detector = "telemetryonly"
and fmt = "XY", or with read.telemetry.

A new capthist object is built comprising all the detection histories in detectionCH, plus empty (all-
zero) histories for every telemetered animal not in detectionCH. Telemetry is associated with new

addTelemetry 13

sampling occasions and a new detector (nominally at the same point as the first in detectionCH).
The number of telemetry fixes of each animal is recorded in the relevant cell of the new capthist
object (CH[i, s, K+1] for animal i and occasion s if there were K detectors in detectionCH).

The new sampling occasion(s) are assigned the detector type ‘telemetry’ in the traps attribute of
the output capthist object, and the traps attribute telemetrytype is set to the value provided. The
telemetry type may be “independent” (no matching of individuals in captured and telemetered sam-
ples), “dependent” (telemetered animals are a subset of captured animals) or “concurrent” (histories
may be capture-only, telemetry-only or both capture and telemetry).

The telemetry locations are carried over from telemetryCH as attribute ‘xylist’ (each component of
xylist holds the coordinates of one animal; use telemetryxy to extract).

The default behaviour of ‘addTelemetry‘ is to automatically collapse all telemetry occasions into
one. This is computationally more efficient than the alternative, but closes off some possible models.

xy2CH partly reverses addTelemetry: the location information in the telemetryxy attribute is con-
verted back to a capthist with detector type ‘telemetry’.

Value

A single-session capthist object with the same detector type as detectionCH, but possibly with
empty rows and an ‘telemetryxy’ attribute.

Note

Telemetry provides independent data on the location and presence of a sample of animals. These
animals may be missed in the main sampling that gives rise to detectionCH i.e., they may have
all-zero detection histories.

The ‘telemetry’ detector type is used for telemetry occasions in a combined dataset.

See Also

capthist, make.telemetry, read.telemetry, telemetryxy telemetered

Examples

Not run:

Generate some detection and telemetry data, combine them using
addTelemetry, and perform analyses

detectors
te <- make.telemetry()
tr <- make.grid(detector = "proximity")

simulated population and 50% telemetry sample
totalpop <- sim.popn(tr, D = 20, buffer = 100)
tepop <- subset(totalpop, runif(nrow(totalpop)) < 0.5)

simulated detection histories and telemetry
the original animalID (renumber = FALSE) are needed for matching

14 AIC.secr

trCH <- sim.capthist(tr, popn = totalpop, renumber = FALSE, detectfn = "HHN")
teCH <- sim.capthist(te, popn = tepop, renumber=FALSE, detectfn = "HHN",

detectpar = list(lambda0 = 3, sigma = 25))

combinedCH <- addTelemetry(trCH, teCH)

summarise and display
summary(combinedCH)
plot(combinedCH, border = 150)
ncapt <- apply(combinedCH,1,sum)
points(totalpop[row.names(combinedCH)[ncapt==0],], pch = 1)
points(totalpop[row.names(combinedCH)[ncapt>0],], pch = 16)

for later comparison of precision we must fix the habitat mask
mask <- make.mask(tr, buffer = 100)
fit.tr <- secr.fit(trCH, mask = mask, CL = TRUE, detectfn = "HHN") ## trapping alone
fit.te <- secr.fit(teCH, mask = mask, CL = TRUE, start = log(20), ## telemetry alone

detectfn = "HHN")
fit2 <- secr.fit(combinedCH, mask = mask, CL = TRUE, ## combined

detectfn = "HHN")

improved precision when focus on realised population
(compare CVD)
derived(fit.tr, distribution = "binomial")
derived(fit2, distribution = "binomial")

may also use CL = FALSE
secr.fit(combinedCH, CL = FALSE, detectfn = "HHN", trace = FALSE)

End(Not run)

AIC.secr Compare SECR Models

Description

Terse report on the fit of one or more spatially explicit capture–recapture models. Models with
smaller values of AIC (Akaike’s Information Criterion) are preferred. Extraction ([) and logLik
methods are included.

Usage

S3 method for class 'secr'
AIC(object, ..., sort = TRUE, k = 2, dmax = 10, criterion = c("AICc","AIC"), chat = NULL)
S3 method for class 'secrlist'
AIC(object, ..., sort = TRUE, k = 2, dmax = 10, criterion = c("AICc","AIC"), chat = NULL)
S3 method for class 'secr'
logLik(object, ...)

AIC.secr 15

secrlist(..., names = NULL)
S3 method for class 'secrlist'
x[i]

Arguments

object secr object output from the function secr.fit, or a list of such objects with
class c("secrlist", "list")

... other secr objects

sort logical for whether rows should be sorted by ascending AICc

k numeric, penalty per parameter to be used; always k = 2 in this method

dmax numeric, maximum AIC difference for inclusion in confidence set

criterion character, criterion to use for model comparison and weights

chat numeric optional variance inflation factor for quasi-AIC

names character vector of names (optional)

x secrlist

i indices

Details

Models to be compared must have been fitted to the same data and use the same likelihood method
(full vs conditional). From version 4.1 a warning is issued if AICcompatible reveals a problem.

AIC is given by

AIC = −2 log(L(θ̂)) + 2K

where K is the number of "beta" parameters estimated.

AIC with small sample adjustment is given by

AICc = −2 log(L(θ̂)) + 2K +
2K(K + 1)

n−K − 1
.

The sample size n is the number of individuals observed at least once (i.e. the number of rows in
capthist).

Model weights are calculated as

wi =
exp(−∆i/2),∑

exp(−∆i/2)

where ∆ refers to differences in AIC or AICc depending on the argument ‘criterion’. AICc is widely
used, but AIC may be better (Fletcher 2018, p. 60).

Models for which delta > dmax are given a weight of zero and are excluded from the summation.
Model weights may be used to form model-averaged estimates of real or beta parameters with
modelAverage (see also Buckland et al. 1997, Burnham and Anderson 2002).

The argument k is included for consistency with the generic method AIC.

16 AIC.secr

secrlist forms a list of fitted models (an object of class ‘secrlist’) from the fitted models in
Arguments may include secrlists. If secr components are named the model names will be retained
unless ‘names’ is specified. (see Examples).

If chat (ĉ) is provided then quasi-AIC values are computed (secr >= 4.6.0):

QAIC = −2 log(L(θ̂))/ĉ+ 2K.

Value

A data frame with one row per model. By default, rows are sorted by ascending ’criterion’ (default
AICc).

model character string describing the fitted model

detectfn shape of detection function fitted (halfnormal vs hazard-rate)

npar number of parameters estimated

logLik maximized log likelihood

AIC Akaike’s Information Criterion

AICc AIC with small-sample adjustment of Hurvich & Tsai (1989)

And depending on criterion:

dAICc difference between AICc of this model and the one with smallest AICc

AICcwt AICc model weight

or

dAIC difference between AIC of this model and the one with smallest AIC

AICwt AIC model weight

logLik.secr returns an object of class ‘logLik’ that has attribute df (degrees of freedom = number
of estimated parameters).

If the variance inflation factor ’chat’ is provided then outputs AIC, AICc etc. are replaced by the
corresponding quasi-AIC values labelled QAIC, QAICc etc.

Note

It is not be meaningful to compare models by AIC if they relate to different data (see AICcompatible).

Specifically:

• an ‘secrlist’ generated and saved to file by mask.check may be supplied as the object argument
of AIC.secrlist, but the results are not informative

• models fitted by the conditional likelihood (CL = TRUE) and full likelihood (CL = FALSE) meth-
ods cannot be compared

• hybrid mixture models (using hcov argument of secr.fit) should not be compared with other
models

• grouped models (using groups argument of secr.fit) should not be compared with other models

AIC.secr 17

• multi-session models should not be compared with single-session models based on the same
data.

A likelihood-ratio test (LR.test) is a more direct way to compare two models.

The issue of goodness-of-fit and possible adjustment of AIC for overdispersion has yet to be ad-
dressed (cf QAIC in MARK).

From version 2.6.0 the user may select between AIC and AICc for comparing models, whereas
previously only AICc was used and AICc weights were reported as ‘AICwt’). There is evidence
that AIC may be better for model averaging even when samples are small sizes - Turek and Fletcher
(2012).

References

Buckland S. T., Burnham K. P. and Augustin, N. H. (1997) Model selection: an integral part of
inference. Biometrics 53, 603–618.

Burnham, K. P. and Anderson, D. R. (2002) Model Selection and Multimodel Inference: A Practical
Information-Theoretic Approach. Second edition. New York: Springer-Verlag.

Fletcher, D. (2019) Model averaging. SpringerBriefs in Statistics. Berlin: Springer-Verlag.

Hurvich, C. M. and Tsai, C. L. (1989) Regression and time series model selection in small samples.
Biometrika 76, 297–307.

Turek, D. and Fletcher, D. (2012) Model-averaged Wald confidence intervals. Computational statis-
tics and data analysis 56, 2809–2815.

See Also

AICcompatible, modelAverage, AIC, secr.fit, print.secr, score.test, LR.test, deviance.secr

Examples

Compare two models fitted previously
secrdemo.0 is a null model
secrdemo.b has a learned trap response

AIC(secrdemo.0, secrdemo.b)

Form secrlist and pass to AIC.secr
temp <- secrlist(null = secrdemo.0, learnedresponse = secrdemo.b)
AIC(temp)

18 AICcompatible

AICcompatible Model Compatibility

Description

Determine whether models can be compared by AIC. Incompatibility may be due to difference in
the data or the specifications of the groups, hcov or binomN arguments to secr.fit,

Usage

S3 method for class 'secr'
AICcompatible(object, ...)
S3 method for class 'secrlist'
AICcompatible(object, ...)

Arguments

object secr object output from the function secr.fit, or a list of such objects with
class c("secrlist", "list")

... other secr objects

Details

The capthist objects are checked for strict identity with the function identical.

All elements in the output must be TRUE for valid AIC comparison or model averaging using AIC
or AICc.

Value

Named logical vector with elements ‘data’, ‘CL’, ‘groups’, ‘hcov’ and ‘binomN’.

See Also

AIC.secr, modelAverage

Examples

AICcompatible(secrdemo.0, secrdemo.CL)

Not run:

A common application of AICcompatible() is to determine
the compatibility of models fitted with and without the
fastproximity option.

as.data.frame 19

ovenCHp1 <- reduce(ovenCHp, by = 'all', outputdetector = 'count')
ob1 <- secr.fit(ovenCHp, buffer = 300, details = list(fastproximity = TRUE))
ob2 <- secr.fit(ovenCHp1, buffer = 300, details = list(fastproximity = FALSE))
ob3 <- secr.fit(ovenCHp1, buffer = 300, details = list(fastproximity = FALSE), binomN = 1)
AICcompatible(ob1,ob2)
AICcompatible(ob1,ob3)

End(Not run)

as.data.frame Coerce capthist to Data Frame

Description

Method for generic as.data.frame function that partially reverses make.capthist.

Usage

S3 method for class 'capthist'
as.data.frame(x, row.names = NULL, optional = FALSE, covariates = FALSE,

fmt = c("trapID", "XY"), ...)
S3 method for class 'traps'
as.data.frame(x, row.names = NULL, optional = FALSE, usage = FALSE,

covariates = FALSE, ...)

Arguments

x capthist object

row.names unused argument of generic function

optional unused argument of generic function

covariates logical or a character vector of covariates to export

fmt character string for capture format

usage logical; if TRUE then usage columns are appended if present

... other arguments (not used)

Details

By default individual covariates are not exported. When exported they are repeated for each detec-
tion of an individual.

20 as.mask

Value

A data frame or list of data frames (in the case of a multisession input).

For capthist objects –

The core columns are (Session, ID, Occasion, TrapID) or (Session, ID, Occasion, x, y), depending
on the value of fmt. Additional columns for covariates and signal strength (detector ‘signal’) are
appended to the right.

For traps objects –

The core columns are (x, y). Usage columns are named u1, u2, ..., uS where S is the number of
occasions.

Examples

as.data.frame (captdata)
as.data.frame (traps(captdata))

as.mask Coerce traps object to mask

Description

This function is used primarily for plotting covariates, for which the plot.mask function has greater
functionality than plot.traps. It also generates pretty maps of grid cells.

Usage

as.mask(x)

Arguments

x an object of class ’traps’

Details

A mask derived by coercion with as.mask may behave unpredictably e.g., in secr.fit.

Value

If x is a single-session traps object –

an object of class c("mask", "data.frame")

If x is a multi-session traps object –

an object of class c("mask", "list"), for which each component is a single-session mask.

as.popn 21

See Also

make.mask, plot.mask, mask, traps

Examples

plot(as.mask(traps(captdata)), dots = FALSE, meshcol = "black")
plot(traps(captdata), add = TRUE)

as.popn Coerce ppp object to popn

Description

This function converts a spatstat "ppp" object (Baddeley et al. 2015), making it easier to use the
simulation capability of spatstat in secr.

Usage

as.popn(x)

Arguments

x an object of class ’ppp’

Details

Not all attributes are carried over.

Value

An object of class c("popn", "data.frame") with attribute "boundingbox". The attribute "Lambda"
(spatstat class "im") is also carried over if present (used for the intensity surface of LGCP simula-
tions).

References

Baddeley, A., Rubak, E., and Turner, R. 2015. Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press, London. ISBN 9781482210200, https://www.routledge.com/Spatial-
Point-Patterns-Methodology-and-Applications-with-R/Baddeley-Rubak-Turner/p/book/9781482210200/.

See Also

sim.popn, popn

22 autoini

autoini Initial Parameter Values for SECR

Description

Find plausible initial parameter values for secr.fit. A simple SECR model is fitted by a fast ad
hoc method.

Usage

autoini(capthist, mask, detectfn = 0, thin = 0.2, tol = 0.001,
binomN = 1, adjustg0 = TRUE, adjustsigma = 1.2, ignoreusage = FALSE,
ncores = NULL)

Arguments

capthist capthist object

mask mask object compatible with the detector layout in capthist

detectfn integer code or character string for shape of detection function 0 = halfnormal

thin proportion of points to retain in mask

tol numeric absolute tolerance for numerical root finding

binomN integer code for distribution of counts (see secr.fit)

adjustg0 logical for whether to adjust g0 for usage (effort) and binomN

adjustsigma numeric scalar applied to RPSV(capthist, CC = TRUE)

ignoreusage logical for whether to discard usage information from traps(capthist)

ncores integer number of threads to be used for parallel processing

Details

Plausible starting values are needed to avoid numerical problems when fitting SECR models. Actual
models to be fitted will usually have more than the three basic parameters output by autoini;
other initial values can usually be set to zero for secr.fit. If the algorithm encounters problems
obtaining a value for g0, the default value of 0.1 is returned.

Only the halfnormal detection function is currently available in autoini (cf other options in e.g.
detectfn and sim.capthist).

autoini implements a modified version of the algorithm proposed by Efford et al. (2004). In
outline, the algorithm is

1. Find value of sigma that predicts the 2-D dispersion of individual locations (see RPSV).

2. Find value of g0 that, with sigma, predicts the observed mean number of captures per individ-
ual (by algorithm of Efford et al. (2009, Appendix 2))

3. Compute the effective sampling area from g0, sigma, using thinned mask (see esa)

4. Compute D = n/esa(g0, sigma), where n is the number of individuals detected

autoini 23

Here ‘find’ means solve numerically for zero difference between the observed and predicted values,
using uniroot.

Halfnormal sigma is estimated with RPSV(capthist, CC = TRUE). The factor adjustsigma is ap-
plied as a crude correction for truncation of movements at the edge of the detector array.

If RPSV cannot be computed the algorithm tries to use observed mean recapture distance d̄. Com-
putation of d̄ fails if there no recaptures, and all returned values are NA.

If the mask has more than 100 points then a proportion 1–thin of points are discarded at random to
speed execution.

The argument tol is passed to uniroot. It may be a vector of two values, the first for g0 and the
second for sigma.

If traps(capthist) has a usage attribute (defining effort on each occasion at each detector) then
the value of g0 is divided by the mean of the non-zero elements of usage. This adjustment is not
precise.

If adjustg0 is TRUE then an adjustment is made to g0 depending on the value of binomN. For
Poisson counts (binomN = 0) the adjustment is linear on effort (adjusted.g0 = g0 / usage). Otherwise,
the adjustment is on the hazard scale (adjusted.g0 = 1 – (1 – g0) ^ (1 / (usage x binomN))). An
arithmetic average is taken over all non-zero usage values (i.e. over used detectors and times). If
usage is not specified it is taken to be 1.0.

Setting ncores = NULL uses the existing value from the environment variable RCPP_PARALLEL_NUM_THREADS
(see setNumThreads).

Value

A list of parameter values :

D Density (animals per hectare)

g0 Magnitude (intercept) of detection function

sigma Spatial scale of detection function (m)

Note

autoini always uses the Euclidean distance between detectors and mask points.

You may get this message from secr.fit: “’autoini’ failed to find g0; setting initial g0 = 0.1”. If the
fitted model looks OK (reasonable estimates, non-missing SE) there is no reason to worry about the
starting values. If you get this message and model fitting fails then supply your own values in the
start argument of secr.fit.

References

Efford, M. G., Dawson, D. K. and Robbins C. S. (2004) DENSITY: software for analysing capture–
recapture data from passive detector arrays. Animal Biodiversity and Conservation 27, 217–228.

Efford, M. G., Dawson, D. K. and Borchers, D. L. (2009) Population density estimated from loca-
tions of individuals on a passive detector array. Ecology 90, 2676–2682.

See Also

capthist, mask, secr.fit, dbar

24 binCovariate

Examples

Not run:

demotraps <- make.grid()
demomask <- make.mask(demotraps)
demoCH <- sim.capthist (demotraps, popn = list(D = 5, buffer = 100), seed = 321)
autoini (demoCH, demomask)

End(Not run)

binCovariate Add Binned Covariate

Description

Forms a new covariate, replacing values of an old covariate by the central value of equal-width bins.

Usage

binCovariate(object, covname, width)

Arguments

object secr object with covariates attribute (capthist, traps, mask)

covname character name of covariate

width numeric bin width

Details

The name of the new covariate is paste0(covname, width).

Fails if covariate not found or is not numeric or there is already a covariate with the new name.

Multi-session objects are handled appropriately.

Value

Object of the same class as the input with new covariate.

See Also

covariates, skink

BUGS 25

Examples

bin values of skink snout-vent length (mm)
infraCH <- binCovariate (infraCH, 'SVL', 5)
table(covariates(infraCH[[1]])$SVL5)

bin values of trap covariate 'HtBrack' (height of bracken, cm)
traps(infraCH) <- binCovariate(traps(infraCH), "HtBrack", 20)
table(covariates(traps(infraCH)[[1]])$HtBrack20)

BUGS Convert Data To Or From BUGS Format

Description

Convert data between ‘capthist’ and BUGS input format.

Usage

read.DA(DAlist, detector = "polygonX", units = 1, session = 1,
Y = "Y", xcoord = "U1", ycoord = "U2", xmin = "Xl",
xmax = "Xu", ymin = "Yl", ymax = "Yu", buffer = "delta",
verify = TRUE)

write.DA(capthist, buffer, nzeros = 200, units = 1)

Arguments

DAlist list containing data in BUGS format
detector character value for detector type: ‘polygon’ or ‘polygonX’
units numeric for scaling output coordinates
session numeric or character label used in output
Y character, name of binary detection history matrix (animals x occasions)
xcoord character, name of matrix of x-coordinates for each detection in Y

ycoord character, name of matrix of y-coordinates for each detection in Y

xmin character, name of coordinate of state space boundary
xmax character, name of coordinate of state space boundary
ymin character, name of coordinate of state space boundary
ymax character, name of coordinate of state space boundary
buffer see Details
verify logical if TRUE then the resulting capthist object is checked with verify

capthist capthist object
nzeros level of data augmentation (all-zero detection histories)

26 BUGS

Details

Data for OpenBUGS or WinBUGS called from R using the package R2WinBUGS (Sturtz et al.
2005) take the form of an R list.

These functions are limited at present to binary data from a square quadrat such as used by Royle
and Young (2008). Marques et al. (2011) provide an R function create.data() for generating
simulated datasets of this sort (see sim.capthist for equivalent functionality).

When reading BUGS data –

The character values Y, xcoord, ycoord, xmin etc. are used to locate the data within DAlist,
allowing for variation in the input names.

The number of sampling occasions is taken from the number of columns in Y. Each value in Y should
be 0 or 1. Coordinates may be missing

A numeric value for buffer is the distance (in the original units) by which the limits Xl, Xu etc.
should be shrunk to give the actual plot limits. If buffer is character then a component of DAlist
contains the required numeric value.

Coordinates in the output will be multiplied by the scalar units.

Augmentation rows corresponding to ‘all-zero’ detection histories in Y, xcoord, and ycoord are
discarded.

When writing BUGS data –

Null (all-zero) detection histories are added to the matrix of detection histories Y, and missing (NA)
rows are added to the coordinate matrices xcoord and ycoord.

Coordinates in the output will be divided by the scalar units.

Value

For read.DA, an object of class ‘capthist’.

For write.DA, a list with the components

Xl left edge of state space
Xu right edge of state space
Yl bottom edge of state space
Yu top edge of state space
delta buffer between edge of state space and quadrat
nind number of animals observed
nzeros number of added all-zero detection histories
T number of sampling occasions
Y binary matrix of detection histories (dim = c(nind+nzeros, T))
U1 matrix of x-coordinates, dimensioned as Y
U2 matrix of y-coordinates, dimensioned as Y

U1 and U2 are ‘NA’ where animal was not detected.

capthist 27

References

Marques, T. A., Thomas, L. and Royle, J. A. (2011) A hierarchical model for spatial capture–
recapture data: Comment. Ecology 92, 526–528.

Royle, J. A. and Young, K. V. (2008) A hierarchical model for spatial capture–recapture data. Ecol-
ogy 89, 2281–2289.

Sturtz, S., Ligges, U. and Gelman, A. (2005) R2WinBUGS: a package for running WinBUGS from
R. Journal of Statistical Software 12, 1–16.

See Also

hornedlizardCH, verify, capthist

Examples

write.DA (hornedlizardCH, buffer = 100, units = 100)

In this example, the input uses Xl, Xu etc.
for the limits of the plot itself, so buffer = 0.
Input is in hundreds of metres.
First, obtain the list lzdata
olddir <- setwd (system.file("extdata", package="secr"))
source ("lizarddata.R")
setwd(olddir)
str(lzdata)
Now convert to capthist
tempcapt <- read.DA(lzdata, Y = "H", xcoord = "X",

ycoord = "Y", buffer = 0, units = 100)

Not run:

plot(tempcapt)
secr.fit(tempcapt, trace = FALSE)
etc.

End(Not run)

capthist Spatial Capture History Object

Description

A capthist object encapsulates all data needed by secr.fit, except for the optional habitat mask.

28 capthist

Details

An object of class capthist holds spatial capture histories, detector (trap) locations, individual
covariates and other data needed for a spatially explicit capture-recapture analysis with secr.fit.

A capthist is primarily an array of values with dim(capthist) = c(nc, noccasions, ntraps) where nc
is the number of detected individuals. Values maybe binary ({–1, 0, 1}) or integer depending on the
detector type.

Deaths during the experiment are represented as negative values.

Ancillary data are retained as attributes of a capthist object as follows:

• traps — object of class traps (required)

• session — session identifier (required)

• covariates — dataframe of individual covariates (optional)

• cutval — threshold of signal strength for detection (‘signal’ only)

• signalframe — signal strength values etc., one row per detection (‘signal’ only)

• detectedXY — dataframe of coordinates for location within polygon (‘polygon’-like detectors
only)

• xylist — coordinates of telemetered animals

• Tu — detectors x occasions matrix of sightings of unmarked animals

• Tm — detectors x occasions matrix of sightings of marked but unidentified animals

• Tn — detectors x occasions matrix of sightings with unknown mark status

read.capthist is adequate for most data input. Alternatively, the parts of a capthist object can
be assembled with the function make.capthist. Use sim.capthist for Monte Carlo simulation
(simple models only). Methods are provided to display and manipulate capthist objects (print,
summary, plot, rbind, subset, reduce) and to extract and replace attributes (covariates, traps, xy).

A multi-session capthist object is a list in which each component is a capthist for a single ses-
sion. The list maybe derived directly from multi-session input in Density format, or by combining
existing capthist objects with MS.capthist.

Note

Early versions of secr (before 3.0) used an individual x occasion matrix for data from single-catch
and multi-catch traps, instead of a 3-D array. Entries in the matrix corresponded to trap numbers.
The function updateCH converts the old format.

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture–recapture studies. Biometrics 64, 377–385.

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit
capture-recapture: likelihood-based methods. In: D. L. Thomson, E. G. Cooch and M. J. Conroy
(eds) Modeling Demographic Processes in Marked Populations. Springer, New York. Pp. 255–269.

capthist.parts 29

See Also

traps, secr.fit, read.capthist, make.capthist, sim.capthist, subset.capthist, rbind.capthist,
MS.capthist, reduce.capthist, mask

capthist.parts Dissect Spatial Capture History Object

Description

Extract parts of an object of class ‘capthist’.

Usage

animalID(object, names = TRUE, sortorder = c("snk", "ksn"))
occasion(object, sortorder = c("snk", "ksn"))
trap(object, names = TRUE, sortorder = c("snk", "ksn"))
alive(object, sortorder = c("snk", "ksn"))
alongtransect(object, tol = 0.01)
xy(object)
xy(object) <- value
telemetryxy(object, includeNULL = FALSE)
telemetryxy(object) <- value
telemetered(object)

Arguments

object a ‘capthist’ object

names if FALSE the values returned are numeric indices rather than names

sortorder character code for sort order (see Details)

tol tolerance for snapping to transect line (m)

value replacement value (see Details)

includeNULL logical; if TRUE a NULL component is included for untelemetered animals

Details

These functions extract data on detections, ignoring occasions when an animal was not detected.
By default, detections are ordered by occasion, animalID and trap (sortorder = "snk"). The al-
ternative is to order by trap, occasion and animalID (sortorder = "ksn"). (‘n’, ‘s’ and ‘k’ are the
indices used internally for animals, occasions and traps respectively).

For historical reasons, "ksn" is used for locations within polygons and similar (xy).

trap returns polygon or transect numbers if traps(object) has detector type ‘polygon’ or ‘tran-
sect’.

30 chat

alongtransect returns the distance of each detection from the start of the transect with which it is
associated.

Replacement values must precisely match object in number of detections and in their order. xy<-
expects a dataframe of x and y coordinates for points of detection within a ‘polygon’ or ‘transect’
detector. telemetryxy<- expects a list of dataframes, one per telemetered animal.

Value

For animalID and trap a vector of numeric or character values, one per detection.

For alive a vector of logical values, one per detection.

For occasion, a vector of numeric values, one per detection.

For xy, a dataframe with one row per detection and columns ‘x’ and ‘y’.

If object has multiple sessions, the result is a list with one component per session.

See Also

capthist, polyID, signalmatrix

Examples

`captdata' is a demonstration dataset
animalID(captdata)

temp <- sim.capthist(popn = list(D = 1), make.grid(detector
= "count"))

cbind(ID = as.numeric(animalID(temp)), occ = occasion(temp),
trap = trap(temp))

chat Overdispersion of Activity Centres

Description

Activity centres may be clumped (overdispersed) relative to a Poisson distribution, the model used
in secr.fit (Borchers and Efford 2008). This can cause the sampling variance of density estimates
to be understated. One solution currently under investigation is to apply a variance inflation factor,
a measure of overdispersion, based on the number of individuals detected at each detector (Bischof
et al. 2020).

Functions described here compute the observed (nk) or expected (Enk) number of individuals de-
tected at each detector and use that to compute Fletcher’s ĉ estimate of overdispersion for use as a
variance inflation factor.

Enk uses exact formulae for ’multi’, ’proximity’ and ’count’ detector types. Other types may be
simulated by setting a positive value for ’nrepl’, which should be large (e.g., nrepl = 10000).

chat 31

adjustVarD adjusts the SE and confidence limits of density estimates using Fletcher’s ĉ. The
implementation is limited to simple detection models (see Warnings).

See Cooch and White (2022) for an introduction to measurement of overdispersion in capture–
recapture. The focus here is on overdispersion of activity centres relative to a Poisson distribution,
rather than on non-independence in the spatial detection process.

Usage

nk(capthist)

Enk(D, mask, traps, detectfn = 0, detectpar = list(g0 = 0.2,
sigma = 25, z = 1), noccasions = NULL, binomN = NULL,
userdist = NULL, ncores = NULL, nrepl = NULL)

chat.nk(object, nsim = NULL, ...)

adjustVarD(object, chatmin = 1, alpha = 0.05, chat = NULL)

Arguments

capthist secr capthist object

D numeric density, either scalar or vector of length nrow(mask)

mask single-session habitat mask

traps traps object

detectfn integer code for detection function q.v.

detectpar a named list giving a value for each parameter of detection function

noccasions number of sampling intervals (occasions)

binomN integer code for discrete distribution (see secr.fit)

userdist user-defined distance function or matrix (see userdist)

ncores integer number of threads

nrepl integer number of replicates for E(nk) by simulation (optional)

object fitted secr model or dataframe (see Warnings for restrictions)

nsim integer number of c-hat values to simulate (optional)

... other arguments passed to Fletcher.chat (verbose, type)

chatmin minimum value of Fletcher’s ĉ

alpha alpha level for confidence intervals

chat numeric chat (optional)

32 chat

Details

If traps has a usage attribute then noccasions is set accordingly; otherwise it must be provided.

The environment variable RCPP_PARALLEL_NUM_THREADS determines the number of paral-
lel threads. It is set to the value of ncores, unless that is NULL (see setNumThreads).

A conventional variance inflation factor due to Wedderburn (1974) is ĉX = X2/(K − p) where K
is the number of detectors, p is the number of estimated parameters, and

X2 =
∑
k

(nk − E(nk))2/E(nk).

Fletcher’s ĉ is an improvement on ĉX that is less affected by small expected counts. It is defined by

ĉ = cX/(1 + s̄),

where s̄ =
∑
k sk/K and sk = (nk − E(nk))/E(nk).

chat.nk may be used to simulate ĉ values under the given model (set nsim > 0). The . . . argument
may include ’ncores = x’ (x>1) to specify parallel processing of simulations - the speed up is large
on unix-like machines for which the cluster type of makeCluster is "FORK" rather than "PSOCK".
If ’ncores’ is not provided then the value returned by setNumThreads() is used.

No adjustment is made by adjustVarD when ĉ is less than the minimum. adjustVarD by default
computes Fletcher’s ‘chat’ using chat.nk, but a value may be provided.

If chat has been computed separately and provided in the argument of that name, adjustVarD also
accepts a single dataframe as the argument ‘object’; the dataframe should have row ‘D’ and columns
‘link’, ‘estimate’, ‘SE.estimate’ as in the output from predict.secr.

Value

For nk, a vector of observed counts, one for each detector in traps(capthist).

For Enk, a vector of expected counts, one for each detector in traps.

For chat.nk, usually a list comprising –

expected.nk expected number at each detector

nk observed number at each detector

stats vector of summary statistics: mean(expected.nk), var(expected.nk), mean(nk),
var(nk), nu (=df), X2/nu

chat ĉ (Fletcher or Wedderburn depending on ‘type’)

There are two variations –

If ‘verbose = FALSE’ then only the numeric value of ĉ is returned (a vector of 2 values if ‘type =
"both"’).

If chat.nk is called with ‘nsim > 0’ then the output is a list comprising –

type from input

nsim from input

sim.chat vector of simulated ĉ

chat 33

chat ĉ (Fletcher or Wedderburn depending on ‘type’)

p probability of observing ĉ as large as this (from rank of chat among sim.chat)

For adjustVarD, a dataframe with one row for each session, based on predict.secr or derived.secr,
with extra column ‘c-hat’.

Warning

These functions are experimental in secr 4.6, and do not work with polygon-like and single-catch
detectors. No allowance is made for modelled variation in detection parameters with respect to
occasion, detector or animal; this includes mixture models (e.g., g0~h2).

Versions before 4.5.11 did not correctly compute expected counts for multi-catch detectors.

Furthermore, we doubt that the adjustment actually solves the problem of overdispersion (Efford
and Fletcher unpubl.).

References

Bischof, R., P. Dupont, C. Milleret, J. Chipperfield, and J. A. Royle. 2020. Consequences of
ignoring group association in spatial capture–recapture analysis. Wildlife Biology wlb.00649. DOI
10.2981/wlb.00649

Cooch, E. and White, G. (eds) (2022) Program MARK: A Gentle Introduction. 22nd edition. Avail-
able online at http://www.phidot.org/software/mark/docs/book/.

Fletcher, D. (2012) Estimating overdispersion when fitting a generalized linear model to sparse data.
Biometrika 99, 230–237.

Wedderburn, R. W. M. (1974) Quasi-likelihood functions, generalized linear models, and the Gauss-
Newton method. Biometrika 61, 439–47.

See Also

secr, make.mask, Detection functions, Fletcher.chat

Examples

temptrap <- make.grid()
msk <- make.mask(temptrap)
expected number of individuals per detector (multi-catch)
Enk (D = 5, msk, temptrap, detectpar = list(g0 = 0.2, sigma = 25),

noccasions = 5)

useful plotting function for simulated chat (nsim>0)
plotchat <- function(chat, head = '', breaks = seq(0.5,2.5,0.05)) {

hist(chat$sim.chat, xlim = range(breaks), main = head, xlab = 'c-hat',
breaks = breaks, cex.main = 1, yaxs = 'i')

abline(v = chat$chat, lwd = 1.5, col = 'blue')
}

34 circular

circular Circular Probability

Description

Functions to answer the question "what radius is expected to include proportion p of points from a
circular bivariate distribution corresponding to a given detection function", and the reverse. These
functions may be used to relate the scale parameter(s) of a detection function (e.g., σ) to home-
range area (specifically, the area within an activity contour for the corresponding simple home-range
model) (see Note).

WARNING: the default behaviour of these functions changed in version 2.6.0. Integration is now
performed on the cumulative hazard (exposure) scale for all functions unless hazard = FALSE. Re-
sults will differ.

Usage

circular.r (p = 0.95, detectfn = 0, sigma = 1, detectpar = NULL, hazard
= TRUE, upper = Inf, ...)

circular.p (r = 1, detectfn = 0, sigma = 1, detectpar = NULL, hazard
= TRUE, upper = Inf, ...)

Arguments

p vector of probability levels for which radius is required

r vector of radii for which probability level is required

detectfn integer code or character string for shape of detection function 0 = halfnormal,
2 = exponential etc. – see detectfn for other codes

sigma spatial scale parameter of detection function

detectpar named list of detection function parameters

hazard logical; if TRUE the transformation−log(1−g(d)) is applied before integration

upper numeric upper limit of integration

... other arguments passed to integrate

Details

circular.r is the quantile function of the specified circular bivariate distribution (analogous to
qnorm, for example). The quantity calculated by circular.r is sometimes called ‘circular error
probable’ (see Note).

For detection functions with two parameters (intercept and scale) it is enough to provide sigma.
Otherwise, detectpar should be a named list including parameter values for the requested detection
function (g0 may be omitted, and order does not matter).

circular 35

Detection functions in secr are expressed in terms of the decline in probability of detection with
distance g(d), and both circular.r and circular.p integrate this function by default. Rather
than integrating g(d) itself, it may be more appropriate to integrate g(d) transformed to a hazard i.e.
1− log(−g(d)). This is selected with hazard = TRUE.

Integration may also fail with the message “roundoff error is detected in the extrapolation table”.
Setting upper to a large number less than infinity sometimes corrects this.

Value

Vector of values for the required radii or probabilities.

Note

The term ‘circular error probable’ has a military origin. It is commonly used for GPS accuracy
with the default probability level set to 0.5 (i.e. half of locations are further than CEP from the
true location). A circular bivariate normal distriubution is commonly assumed for the circular error
probable; this is equivalent to setting detectfn = "halfnormal".

Closed-form expressions are used for the normal and uniform cases; in the circular bivariate normal
case, the relationship is r = σ

√
−2ln(1− p). Otherwise, the probability is computed numerically

by integrating the radial distribution. Numerical integration is not foolproof, so check suspicious or
extreme values.

When circular.r is used with the default sigma = 1, the result may be interpreted as the factor by
which sigma needs to be inflated to include the desired proportion of activity (e.g., 2.45 sigma for
95% of points from a circular bivariate normal distribution fitted on the hazard scale (detectfn = 14)
OR 2.24 sigma on the probability scale (detectfn = 0)).

References

Calhoun, J. B. and Casby, J. U. (1958) Calculation of home range and density of small mammals.
Public Health Monograph No. 55. United States Government Printing Office.

Johnson, R. A. and Wichern, D. W. (1982) Applied multivariate statistical analysis. Prentice-Hall,
Englewood Cliffs, New Jersey, USA.

See Also

detectfn, detectfnplot

Examples

Calhoun and Casby (1958) p 3.
give p = 0.3940, 0.8645, 0.9888
circular.p(1:3, hazard = FALSE)

halfnormal, hazard-rate and exponential
circular.r ()
circular.r (detectfn = "HR", detectpar = list(sigma = 1, z = 4))
circular.r (detectfn = "EX")
circular.r (detectfn = "HHN")

36 clone

circular.r (detectfn = "HHR", detectpar = list(sigma = 1, z = 4))
circular.r (detectfn = "HEX")

plot(seq(0, 5, 0.05), circular.p(r = seq(0, 5, 0.05)),
type = "l", xlab = "Radius (multiples of sigma)", ylab = "Probability")

lines(seq(0, 5, 0.05), circular.p(r = seq(0, 5, 0.05), detectfn = 2),
type = "l", col = "red")

lines(seq(0, 5, 0.05), circular.p(r = seq(0, 5, 0.05), detectfn = 1,
detectpar = list(sigma = 1,z = 4)), type = "l", col = "blue")

abline (h = 0.95, lty = 2)

legend (2.8, 0.3, legend = c("halfnormal","hazard-rate, z = 4", "exponential"),
col = c("black","blue","red"), lty = rep(1,3))

in this example, a more interesting comparison would use
sigma = 0.58 for the exponential curve.

clone Replicate Rows

Description

Clone rows of an object a constant or random number of times

Usage

Default S3 method:
clone(object, type, ...)
S3 method for class 'popn'

clone(object, type, ...)
S3 method for class 'capthist'

clone(object, type, ...)

Arguments

object any object

type character ‘constant’, ‘poisson’, ‘truncatedpoisson’ or ‘nbinom’

... other arguments for distribution function

Details

The . . . argument specifies the number of times each row should be repeated. For random distribu-
tions (Poisson or negative binomial) . . . provides the required parameter values: lambda for Poisson,
size, prob or size, mu for negative binomial.

One application is to derive a population of cues from a popn object, where each animal in the
original popn generates a number of cues from the same point.

closedN 37

Cloning a capthist object replicates whole detection histories. Individual covariates and detection-
specific attributes (e.g., signal strength or xy location in polygon) are also replicated. Cloned data
from single-catch traps will cause verify() to fail, but a model may still be fitted in secr.fit by
overriding the check with verify = FALSE.

Value

Object of same class as object but with varying number of rows. For clone.popn and capthist
an attribute ‘freq’ is set, a vector of length equal to the original number of rows giving the number
of repeats (including zeros).

If popn or capthist is a multi-session object the returned value will be a multi-session object of
the same length.

See Also

sim.popn

Examples

population of animals at 1 / hectare generates random
Poisson number of cues, lambda = 5
mics4 <- make.grid(nx = 2, ny = 2, spacing = 44, detector = "signal")
pop <- sim.popn (D = 1, core = mics4, buffer = 300, nsessions = 6)
pop <- clone (pop, "poisson", 5)
attr(pop[[1]],"freq")

clone(captdata, "poisson", 3)

To avoid losing any individuals use zero-truncated Poisson
First find lambda of truncated Poisson with given mean
getlambda <- function (target) {

fn <- function(x) x / (1-exp(-x)) - target
uniroot(interval = c(1e-8, target), f = fn)$root

}
clone(captdata, "truncatedpoisson", getlambda(3))

closedN Closed population estimates

Description

Estimate N, the size of a closed population, by several conventional non-spatial capture–recapture
methods.

38 closedN

Usage

closedN(object, estimator = NULL, level = 0.95, maxN = 1e+07,
dmax = 10)

Arguments

object capthist object

estimator character; name of estimator (see Details)

level confidence level (1 – alpha)

maxN upper bound for population size

dmax numeric, the maximum AIC difference for inclusion in confidence set

Details

Data are provided as spatial capture histories, but the spatial information (trapping locations) is
ignored.

AIC-based model selection is available for the maximum-likelihood estimators null, zippin, darroch,
h2, and betabinomial.

Model weights are calculated as

wi =
exp(−∆i/2)∑

exp(−∆i/2)

Models for which dAICc > dmax are given a weight of zero and are excluded from the summation,
as are non-likelihood models.

Computation of null, zippin and darroch estimates differs slightly from Otis et al. (1978) in
that the likelihood is maximized over real values of N between Mt1 and maxN, whereas Otis et al.
considered only integer values.

Asymmetric confidence intervals are obtained in the same way for all estimators, using a log trans-
formation of N̂ −Mt1 following Burnham et al. (1987), Chao (1987) and Rexstad and Burnham
(1991).

The available estimators are

Name Model Description Reference
null M0 null Otis et al. 1978 p.105
zippin Mb removal Otis et al. 1978 p.108
darroch Mt Darroch Otis et al. 1978 p.106-7
h2 Mh 2-part finite mixture Pledger 2000
betabinomial Mh Beta-binomial continuous mixture Dorazio and Royle 2003
jackknife Mh jackknife Burnham and Overton 1978
chao Mh Chao’s Mh estimator Chao 1987
chaomod Mh Chao’s modified Mh estimator Chao 1987
chao.th1 Mth sample coverage estimator 1 Lee and Chao 1994
chao.th2 Mth sample coverage estimator 2 Lee and Chao 1994

closedN 39

Value

A dataframe with one row per estimator and columns

model model in the sense of Otis et al. 1978

npar number of parameters estimated

loglik maximized log likelihood

AIC Akaike’s information criterion

AICc AIC with small-sample adjustment of Hurvich & Tsai (1989)

dAICc difference between AICc of this model and the one with smallest AICc

Mt1 number of distinct individuals caught

Nhat estimate of population size

seNhat estimated standard error of Nhat

lclNhat lower 100 x level % confidence limit

uclNhat upper 100 x level % confidence limit

Warning

If your data are from spatial sampling (e.g. grid trapping) it is recommended that you do not use
these methods to estimate population size (see Efford and Fewster 2013). Instead, fit a spatial model
and estimate population size with region.N.

Note

Prof. Anne Chao generously allowed me to adapt her code for the variance of the ‘chao.th1’ and
‘chao.th2’ estimators.

Chao’s estimators have been subject to various improvements not included here (e.g., Chao et al.
2016).

References

Burnham, K. P. and Overton, W. S. (1978) Estimating the size of a closed population when capture
probabilities vary among animals. Biometrika 65, 625–633.

Chao, A. (1987) Estimating the population size for capture–recapture data with unequal catchability.
Biometrics 43, 783–791.

Chao, A., Ma, K. H., Hsieh, T. C. and Chiu, Chun-Huo (2016) SpadeR: Species-Richness Prediction
and Diversity Estimation with R. R package version 0.1.1. https://CRAN.R-project.org/package=SpadeR

Dorazio, R. M. and Royle, J. A. (2003) Mixture models for estimating the size of a closed population
when capture rates vary among individuals. Biometrics 59, 351–364.

Efford, M. G. and Fewster, R. M. (2013) Estimating population size by spatially explicit capture–
recapture. Oikos 122, 918–928.

Hurvich, C. M. and Tsai, C. L. (1989) Regression and time series model selection in small samples.
Biometrika 76, 297–307.

Lee, S.-M. and Chao, A. (1994) Estimating population size via sample coverage for closed capture-
recapture models. Biometrics 50, 88–97.

40 closure.test

Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D. R. (1978) Statistical inference from
capture data on closed animal populations. Wildlife Monographs 62, 1–135.

Pledger, S. (2000) Unified maximum likelihood estimates for closed capture-recapture models using
mixtures. Biometrics 56, 434–442.

Rexstad, E. and Burnham, K. (1991) User’s guide for interactive program CAPTURE. Colorado
Cooperative Fish and Wildlife Research Unit, Fort Collins, Colorado, USA.

See Also

capthist, closure.test, region.N

Examples

closedN(deermouse.ESG)

closure.test Closure tests

Description

Perform tests to determine whether a population sampled by capture-recapture is closed to gains
and losses over the period of sampling.

Usage

closure.test(object, SB = FALSE, min.expected = 2)

Arguments

object capthist object

SB logical, if TRUE then test of Stanley and Burnham 1999 is calculated in addition
to that of Otis et al. 1978

min.expected integer for the minimum expected count in any cell of a component 2x2 table

Details

The test of Stanley and Burnham in part uses a sum over 2x2 contingency tables; any table with a
cell whose expected count is less than min.expected is dropped from the sum. The default value of
2 is that used by CloseTest (Stanley and Richards 2005, T. Stanley pers. comm.; see also Stanley
and Burnham 1999 p. 203).

closure.test 41

Value

In the case of a single-session capthist object, either a vector with the statistic (z-value) and p-value
for the test of Otis et al. (1978 p. 120) or a list whose components are data frames with the statistics
and p-values for various tests and test components as follows –

Otis Test of Otis et al. 1978

Xc Overall test of Stanley and Burnham 1999

NRvsJS Stanley and Burnham 1999

NMvsJS Stanley and Burnham 1999

MtvsNR Stanley and Burnham 1999

MtvsNM Stanley and Burnham 1999

compNRvsJS Occasion-specific components of NRvsJS

compNMvsJS Occasion-specific components of NMvsJS

Check the original papers for an explanation of the components of the Stanley and Burnham test.

In the case of a multi-session object, a list with one component (as above) for each session.

Note

No omnibus test exists for closure: the existing tests may indicate nonclosure even when a popu-
lation is closed if other effects such as trap response are present (see White et al. 1982 pp 96–97).
The test of Stanley and Burnham is sensitive to individual heterogeneity which is inevitable in most
spatial sampling, and it should not in general be used for this sort of data.

References

Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D. R. (1978) Statistical inference from
capture data on closed animal populations. Wildlife Monographs 62, 1–135.

Stanley, T. R. and Burnham, K. P. (1999) A closure test for time-specific capture–recapture data.
Environmental and Ecological Statistics 6, 197–209.

Stanley, T. R. and Richards, J. D. (2005) A program for testing capture–recapture data for closure.
Wildlife Society Bulletin 33, 782–785.

White, G. C., Anderson, D. R., Burnham, K. P. and Otis, D. L. (1982) Capture-recapture and
removal methods for sampling closed populations. Los Alamos National Laboratory, Los Alamos,
New Mexico.

See Also

capthist

Examples

closure.test(captdata)

42 cluster

cluster Detector Clustering

Description

Clusters are uniform groups of detectors. Use these functions to extract or replace cluster informa-
tion of a traps object, or extract cluster information for each detection in a capthist object.

Usage

clusterID(object)
clusterID(object) <- value
clustertrap(object)
clustertrap(object) <- value

Arguments

object traps or capthist object

value factor (clusterID) or integer-valued vector (clustertrap)

Details

Easy access to attributes used to define compound designs, those in which a detector array comprises
several similar subunits (‘clusters’). ‘clusterID’ identifies the detectors belonging to each cluster,
and ‘clustertrap’ is a numeric index used to relate matching detectors in different clusters.

For replacement (‘traps’ only), the number of rows of value must match exactly the number of
detectors in object.

‘clusterID’ and ‘clustertrap’ are assigned automatically by trap.builder.

Value

Factor (clusterID) or integer-valued vector (clustertrap).

clusterID(object) may be NULL.

See Also

traps, trap.builder, mash, derivedCluster, cluster.counts, cluster.centres

Examples

25 4-detector clusters
mini <- make.grid(nx = 2, ny = 2)
tempgrid <- trap.builder (cluster = mini , method = "all",

frame = expand.grid(x = seq(100, 500, 100), y = seq(100,
500, 100)))

clusterID(tempgrid)

coef.secr 43

clustertrap(tempgrid)

tempCH <- sim.capthist(tempgrid)
table(clusterID(tempCH)) ## detections per cluster
cluster.counts(tempCH) ## distinct individuals

coef.secr Coefficients of secr Object

Description

Extract coefficients (estimated beta parameters) from a spatially explicit capture–recapture model.

Usage

S3 method for class 'secr'
coef(object, alpha = 0.05, ...)

Arguments

object secr object output from secr.fit

alpha alpha level

... other arguments (not used currently)

Value

A data frame with one row per beta parameter and columns for the coefficient, SE(coefficient),
asymptotic lower and upper 100(1–alpha) confidence limits.

See Also

secr.fit, esa.plot

Examples

load & extract coefficients of previously fitted null model
coef(secrdemo.0)

44 collate

collate Array of Parameter Estimates

Description

Estimates from one or more openCR models are formed into an array.

Usage

S3 method for class 'secr'
collate(object, ..., realnames = NULL, betanames = NULL, newdata = NULL,

alpha = 0.05, perm = 1:4, fields = 1:4)

S3 method for class 'ipsecr'
collate(object, ..., realnames = NULL, betanames = NULL, newdata = NULL,

alpha = 0.05, perm = 1:4, fields = 1:4)

S3 method for class 'secrlist'
collate(object, ..., realnames = NULL, betanames = NULL, newdata = NULL,

alpha = 0.05, perm = 1:4, fields = 1:4)

Arguments

object secr or secrlist object

... other secr objects

realnames character vector of real parameter names

betanames character vector of beta parameter names

newdata optional dataframe of values at which to evaluate models

alpha alpha level for confidence intervals

perm permutation of dimensions in output from collate

fields vector to restrict summary fields in output

Details

collate extracts parameter estimates from a set of fitted secr model objects.

fields may be used to select a subset of summary fields ("estimate","SE.estimate","lcl","ucl") by
name or number.

confint.secr 45

Value

A 4-dimensional array of model-specific parameter estimates. By default, the dimensions corre-
spond respectively to

• rows in newdata (usually sessions),
• models,
• statistic fields (estimate, SE.estimate, lcl, ucl), and
• parameters ("phi", "sigma" etc.).

It often helps to reorder the dimensions with the perm argument.

See Also

modelAverage, secr.fit

Examples

collate (secrdemo.0, secrdemo.b, perm = c(4,2,3,1))[,,1,]

confint.secr Profile Likelihood Confidence Intervals

Description

Compute profile likelihood confidence intervals for ‘beta’ or ‘real’ parameters of a spatially explicit
capture-recapture model,

Usage

S3 method for class 'secr'
confint(object, parm, level = 0.95, newdata = NULL,

tracelevel = 1, tol = 0.0001, bounds = NULL, ncores = NULL, ...)

Arguments

object secr model object
parm numeric or character vector of parameters
level confidence level (1 – alpha)
newdata optional dataframe of values at which to evaluate model
tracelevel integer for level of detail in reporting (0,1,2)
tol absolute tolerance (passed to uniroot)
bounds numeric vector of outer starting values – optional
ncores number of threads used for parallel processing
... other arguments (not used)

46 confint.secr

Details

If parm is numeric its elements are interpreted as the indices of ‘beta’ parameters; character values
are interpreted as ‘real’ parameters. Different methods are used for beta parameters and real param-
eters. Limits for the j-th beta parameter are found by a numerical search for the value satisfying
−2(lj(βj) − l) = q, where l is the maximized log likelihood, lj(βj) is the maximized profile log
likelihood with βj fixed, and q is the 100(1− α) quantile of the χ2 distribution with one degree of
freedom. Limits for real parameters use the method of Lagrange multipliers (Fletcher and Faddy
2007), except that limits for constant real parameters are backtransformed from the limits for the
relevant beta parameter.

If bounds is provided it should be a 2-vector or matrix of 2 columns and length(parm) rows.

Setting ncores = NULL uses the existing value from the environment variable RCPP_PARALLEL_NUM_THREADS
(see setNumThreads).

Value

A matrix with one row for each parameter in parm, and columns giving the lower (lcl) and upper
(ucl) 100*level

Note

Calculation may take a long time, so probably you will do it only after selecting a final model.

The R function uniroot is used to search for the roots of −2(lj(βj) − l) = q within a suitable
interval. The interval is anchored at one end by the MLE, and at the other end by the MLE inflated
by a small multiple of the asymptotic standard error (1, 2, 4 or 8 SE are tried in turn, using the
smallest for which the interval includes a valid solution).

A more efficient algorithm was proposed by Venzon and Moolgavkar (1988); it has yet to be imple-
mented in secr, but see plkhci in the package Bhat for another R implementation.

References

Evans, M. A., Kim, H.-M. and O’Brien, T. E. (1996) An application of profile-likelihood based
confidence interval to capture–recapture estimators. Journal of Agricultural, Biological and Exper-
imental Statistics 1, 131–140.

Fletcher, D. and Faddy, M. (2007) Confidence intervals for expected abundance of rare species.
Journal of Agricultural, Biological and Experimental Statistics 12, 315–324.

Venzon, D. J. and Moolgavkar, S. H. (1988) A method for computing profile-likelihood-based con-
fidence intervals. Applied Statistics 37, 87–94.

Examples

Not run:

Limits for the constant real parameter "D"
confint(secrdemo.0, "D")

End(Not run)

contour 47

contour Contour Detection Probability

Description

Display contours of the net probability of detection p.(X), or the area within a specified distance of
detectors. buffer.contour adds a conventional ‘boundary strip’ to a detector (trap) array, where
buffer equals the strip width.

Usage

pdot.contour(traps, border = NULL, nx = 64, detectfn = 0,
detectpar = list(g0 = 0.2, sigma = 25, z = 1), noccasions = NULL,
binomN = NULL, levels = seq(0.1, 0.9, 0.1), poly =
NULL, poly.habitat = TRUE, plt = TRUE, add = FALSE, fill = NULL, ...)

buffer.contour(traps, buffer, nx = 64, convex = FALSE, ntheta = 100,
plt = TRUE, add = FALSE, poly = NULL, poly.habitat = TRUE,
fill = NULL, ...)

Arguments

traps traps object (or mask for buffer.contour)
border width of blank margin around the outermost detectors
nx dimension of interpolation grid in x-direction

detectfn integer code or character string for shape of detection function 0 = halfnormal
etc. – see detectfn

detectpar list of values for named parameters of detection function
noccasions number of sampling occasions
binomN integer code for discrete distribution (see secr.fit)
levels vector of levels for p.(X)
poly matrix of two columns, the x and y coordinates of a bounding polygon (optional)
poly.habitat logical as in make.mask

plt logical to plot contours
add logical to add contour(s) to an existing plot
fill vector of colours to fill contours (optional)
... other arguments to pass to contour

buffer vector of buffer widths
convex logical, if TRUE the plotted contour(s) will be convex
ntheta integer value for smoothness of convex contours

48 contour

Details

pdot.contour constructs a rectangular mask and applies pdot to compute the p.(X) at each mask
point.

If convex = FALSE, buffer.contour constructs a mask and contours the points on the basis of
distance to the nearest detector at the levels given in buffer.

If convex = TRUE, buffer.contour constructs a set of potential vertices by adding points on a
circle of radius = buffer to each detector location; the desired contour is the convex hull of these
points (this algorithm derives from Efford, 2012).

If traps has a usage attribute then noccasions is set accordingly; otherwise it must be provided.

If traps is for multiple sessions then detectpar should be a list of the same length, one component
per session, and noccasions may be a numeric vector of the same length.

Increase nx for smoother lines, at the expense of speed.

Value

Coordinates of the plotted contours are returned as a list with one component per polygon. The list
is returned invisibly if plt = TRUE.

For multi-session input (traps) the value is a list of such lists, one per session.

Note

The precision (smoothness) of the fitted line in buffer.contour is controlled by ntheta rather
than nx when convex = TRUE.

To suppress contour labels, include the argument drawlabels = FALSE (this will be passed via
. . . to contour). Other useful arguments of contour are col (colour of contour lines) and lwd (line
width).

You may wish to consider function st_buffer in package sf as an alternative to buffer.contour..

buffer.contour failed with multi-session traps before secr 2.8.0.

References

Efford, M. G. (2012) DENSITY 5.0: software for spatially explicit capture–recapture. Department
of Mathematics and Statistics, University of Otago, Dunedin, New Zealand https://www.otago.
ac.nz/density/.

See Also

pdot, make.mask

Examples

possumtraps <- traps(possumCH)

convex and concave buffers
plot(possumtraps, border = 270)
buffer.contour(possumtraps, buffer = 100, add = TRUE, col = "blue")

https://www.otago.ac.nz/density/
https://www.otago.ac.nz/density/

covariates 49

buffer.contour(possumtraps, buffer = 100, convex = TRUE, add = TRUE)

areas
buff.concave <- buffer.contour(possumtraps, buffer = 100,

plt = FALSE)
buff.convex <- buffer.contour(possumtraps, buffer = 100,

plt = FALSE, convex = TRUE)
sum (sapply(buff.concave, polyarea)) ## sum over parts
sapply(buff.convex, polyarea)

effect of nx on area
buff.concave2 <- buffer.contour(possumtraps, buffer = 100,

nx = 128, plt = FALSE)
sum (sapply(buff.concave2, polyarea))

Not run:

plot(possumtraps, border = 270)
pdot.contour(possumtraps, detectfn = 0, nx = 128, detectpar =

detectpar(possum.model.0), levels = c(0.1, 0.01, 0.001),
noccasions = 5, add = TRUE)

clipping to polygon
olddir <- setwd(system.file("extdata", package = "secr"))
possumtraps <- traps(possumCH)
possumarea <- read.table("possumarea.txt", header = TRUE)
par(xpd = TRUE, mar = c(1,6,6,6))
plot(possumtraps, border = 400, gridlines = FALSE)
pdot.contour(possumtraps, detectfn = 0, nx = 256, detectpar =

detectpar(possum.model.0), levels = c(0.1, 0.01, 0.001),
noccasions = 5, add = TRUE, poly = possumarea, col = "blue")

lines(possumarea)
setwd(olddir)
par(xpd = FALSE, mar = c(5,4,4,2) + 0.1) ## reset to default

End(Not run)

covariates Covariates Attribute

Description

Extract or replace covariates

Usage

covariates(object, ...)
covariates(object) <- value

50 CV

Arguments

object an object of class traps, popn, capthist, or mask

value a dataframe of covariates

... other arguments (not used)

Details

For replacement, the number of rows of value must match exactly the number of rows in object.

Value

covariates(object) returns the dataframe of covariates associated with object. covariates(object)
may be NULL.

Individual covariates are stored in the ‘covariates’ attribute of a capthist object.

Covariates used for modelling density are stored in the ‘covariates’ attribute of a mask object.

Detector covariates may vary between sampling occasions. In this case, columns in the detec-
tor covariates data.frame are associated with particular times; the matching is controlled by the
timevaryingcov attribute.

See Also

timevaryingcov

Examples

detector covariates
temptrap <- make.grid(nx = 6, ny = 8)
covariates (temptrap) <- data.frame(halfnhalf =

factor(rep(c("left","right"),c(24,24))))
summary(covariates(temptrap))

CV Coefficient of Variation

Description

The coefficient of variation of effective sampling area predicts the bias in estimated density (Efford
and Mowat 2014). These functions assist its calculation from fitted finite mixture models.

Usage

CV(x, p, na.rm = FALSE)
CVa0(object, ...)
CVa(object, sessnum = 1, ...)

CV 51

Arguments

x vector of numeric values

p vector of class probabilities

na.rm logical; if TRUE missing values are dropped from x

object fitted secr finite mixture model

sessnum integer sequence number of session to analyse

... other arguments passed to predict.secr (e.g., newdata)

Details

CV computes the coefficient of variation of x. If p is provided then the distribution is assumed to be
discrete, with support x and class membership probabilities p (scaled automatically to sum to 1.0).

CVa computes CV(a) where a is the effective sampling area of Borchers and Efford (2008).

CVa0 computes CV(a0) where a0 is the single-detector sampling area defined as a0 = 2πλ0σ
2

(Efford and Mowat 2014); a0 is a convenient surrogate for a, the effective sampling area. CV(a0)
uses either the fitted MLE of a0 (if the a0 parameterization has been used), or a0 computed from
the estimates of lambda0 and sigma.

CVa and CVa0 do not work for models with individual covariates.

Value

Numeric

Note

Do not confuse the function CVa with the estimated relative standard error of the estimate of a from
derived, also labelled CVa in the output. The relative standard error RSE is often labelled CV in
the literature on capture–recapture, but this can cause unnecessary confusion. See also RSE.

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture–recapture studies. Biometrics 64, 377–385.

Efford, M. G. and Mowat, G. (2014) Compensatory heterogeneity in capture–recapture data. Ecol-
ogy 95, 1341–1348.

See Also

CVpdot, derived, details, RSE

Examples

Not run:

housemouse model
morning <- subset(housemouse, occ = c(1,3,5,7,9))

52 D.designdata

msk <- make.mask((traps(morning)), nx = 32)
morning.h2 <- secr.fit(morning, buffer = 20, model = list(g0~h2), mask = msk,

trace = FALSE)
CVa0(morning.h2)

End(Not run)

D.designdata Construct Density Design Data

Description

Internal function used by secr.fit, confint.secr, and score.test.

Usage

D.designdata (mask, Dmodel, grouplevels, sessionlevels, sessioncov =
NULL, meanSD = NULL)

Arguments

mask mask object.
Dmodel formula for density model
grouplevels vector of group names
sessionlevels vector of character values for session names
sessioncov optional dataframe of values of session-specific covariate(s).
meanSD optional external values for scaling x- and y- coordinates

Details

This is an internal secr function that you are unlikely ever to use. Unlike secr.design.MS, this
function does not call model.matrix.

Value

Dataframe with one row for each combination of mask point, group and session. Conceptually, we
use a 3-D rectangular array with enough rows to accommodate the largest mask, so some rows in
the output may merely hold space to enable easy indexing. The dataframe has an attribute ‘dimD’
that gives the relevant dimensions: attr(dframe, "dimD") = c(nmask, ngrp, R), where nmask is
the number of mask points, ngrp is the number of groups, and R is the number of sessions. Columns
correspond to predictor variables in Dmodel.

The number of valid rows (points in each session-specific mask) is stored in the attribute ‘valid-
MaskRows’.

For a single-session mask, meanSD is a 2 x 2 matrix of mean and SD (rows) for x- and y-coordinates.
For a multi-session mask, a list of such objects. Ordinarily these values are from the meanSD
attribute of the mask, but they must be specified when applying a new mask to an existing model.

deermouse 53

See Also

secr.design.MS

deermouse Deermouse Live-trapping Datasets

Description

Data of V. H. Reid from live trapping of deermice (Peromyscus maniculatus) at two sites in Col-
orado, USA.

Usage

deermouse.ESG
deermouse.WSG

Details

Two datasets of V. H. Reid were described by Otis et al. (1978) and distributed with their CAPTURE
software (now available from https://www.mbr-pwrc.usgs.gov/software.html). They have
been used in several other papers on closed population methods (e.g., Huggins 1991, Stanley and
Richards 2005). This description is based on pages 32 and 87–93 of Otis et al. (1978).

Both datasets are from studies in Rio Blanco County, Colorado, in the summer of 1975. Trapping
was for 6 consecutive nights. Traps were arranged in a 9 x 11 grid and spaced 50 feet (15.2 m)
apart.

The first dataset was described by Otis et al. (1978: 32) as from ‘a drainage bottom of sagebrush,
gambel oak, and serviceberry with pinyon pine and juniper on the uplands’. By matching with the
‘examples’ file of CAPTURE this was from East Stuart Gulch (ESG).

The second dataset (Otis et al. 1978: 87) was from Wet Swizer Creek or Gulch (WSG) in August
1975. No specific vegetation description is given for this site, but it is stated that Sherman traps
were used and trapping was done twice daily.

Two minor inconsistencies should be noted. Although Otis et al. (1978) said they used data from
morning trap clearances, the capture histories in ‘examples’ from CAPTURE include a ‘pm’ tag
on each record. We assume the error was in the text description, as their numerical results can be
reproduced from the data file. Huggins (1991) reproduced the East Stuart Gulch dataset (omitting
spatial data that were not relevant to his method), but omitted two capture histories.

The data are provided as two single-session capthist objects ‘deermouse.ESG’ and ‘deermouse.WSG’.
Each has a dataframe of individual covariates, but the fields differ between the two study areas. The
individual covariates of deermouse.ESG are sex (factor levels ‘f’, ‘m’), age class (factor levels ‘y’,
‘sa’, ‘a’) and body weight in grams. The individual covariates of deermouse.WSG are sex (factor
levels ‘f’,‘m’) and age class (factor levels ‘j’, ‘y’, ‘sa’, ‘a’) (no data on body weight). The aging
criteria used by Reid are not recorded.

https://www.mbr-pwrc.usgs.gov/software.html

54 deermouse

The datasets were originally in the CAPTURE ‘xy complete’ format which for each detection gives
the ‘column’ and ‘row’ numbers of the trap (e.g. ‘ 9 5’ for a capture in the trap at position (x=9,
y=5) on the grid). Trap identifiers have been recoded as strings with no spaces by inserting zeros
(e.g. ‘905’ in this example).

Sherman traps are designed to capture one animal at a time, but the data include double captures (1
at ESG and 8 at WSG – see Examples). The true detector type therefore falls between ‘single’ and
‘multi’. Detector type is set to ‘multi’ in the distributed data objects.

Object Description
deermouse.ESG capthist object, East Stuart Gulch
deermouse.WSG capthist object, Wet Swizer Gulch

Source

File ‘examples’ distributed with program CAPTURE.

References

Huggins, R. M. (1991) Some practical aspects of a conditional likelihood approach to capture ex-
periments. Biometrics 47, 725–732.

Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D. R. (1978) Statistical inference from
capture data on closed animal populations. Wildlife Monographs 62, 1–135.

Stanley, T. R. and Richards, J. D. (2005) A program for testing capture–recapture data for closure.
Wildlife Society Bulletin 33, 782–785.

See Also

closure.test

Examples

par(mfrow = c(1,2), mar = c(1,1,4,1))
plot(deermouse.ESG, title = "Peromyscus data from East Stuart Gulch",

border = 10, gridlines = FALSE, tracks = TRUE)
plot(deermouse.WSG, title = "Peromyscus data from Wet Swizer Gulch",

border = 10, gridlines = FALSE, tracks = TRUE)

closure.test(deermouse.ESG, SB = TRUE)

reveal multiple captures
table(trap(deermouse.ESG), occasion(deermouse.ESG))
table(trap(deermouse.WSG), occasion(deermouse.WSG))

deleteMaskPoints 55

deleteMaskPoints Edit Mask Points

Description

Mask points may be removed by one of three methods: clicking on points, clicking on vertices to
define a polygon from which points will be removed, or specifying a polygon to which the mask
will be clipped.

Usage

deleteMaskPoints(mask, onebyone = TRUE, add = FALSE, poly = NULL,
poly.habitat = FALSE, ...)

Arguments

mask secr mask object

onebyone logical; see Details

add logical; if true then the initial mask plot will be added to an existing plot

poly polygon defining habitat or non-habitat as described in make.mask

poly.habitat logical; if TRUE polygon represents habitat

... other arguments to plot.mask

Details

The default method (onebyone = TRUE, poly = NULL) is to click on each point to be removed.
The nearest mask point will be selected.

Setting onebyone = FALSE allows the user to click on the vertices of a polygon within which
all points are to be removed (the default) or retained (poly.habitat = TRUE). Vertices need not
coincide with mask points.

Defining poly here is equivalent to calling make.mask with poly defined. poly one of the several
types described in boundarytoSF. Whether poly represents habitat or non-habitat is toggled with
poly.habitat – the default here differs from make.mask.

Value

A mask object, usually with fewer points than the input mask.

See Also

make.mask, subset.mask

56 derived

Examples

if (interactive()) {
mask0 <- make.mask (traps(captdata))
Method 1 - click on each point to remove
mask1 <- deleteMaskPoints (mask0)
Method 2 - click on vertices of removal polygon
mask2 <- deleteMaskPoints (mask0, onebyone = FALSE)
Method 3 - predefined removal polygon
plot(captdata)
poly1 <- locator(5)
mask3 <- deleteMaskPoints (mask0, poly = poly1)

}

derived Derived Parameters of Fitted SECR Model

Description

Compute derived parameters of spatially explicit capture-recapture model. Density is a derived
parameter when a model is fitted by maximizing the conditional likelihood. So also is the effective
sampling area (in the sense of Borchers and Efford 2008).

Usage

derived(object, ...)

S3 method for class 'secr'
derived(object, sessnum = NULL, groups = NULL, alpha = 0.05,

se.esa = FALSE, se.D = TRUE, loginterval = TRUE, distribution = NULL,
ncores = NULL, bycluster = FALSE, ...)

S3 method for class 'secrlist'
derived(object, sessnum = NULL, groups = NULL, alpha = 0.05,

se.esa = FALSE, se.D = TRUE, loginterval = TRUE, distribution = NULL,
ncores = NULL, bycluster = FALSE, ...)

esa(object, sessnum = 1, beta = NULL, real = NULL, noccasions = NULL,
ncores = NULL)

Arguments

object secr object output from secr.fit, or an object of class c("secrlist", "list")

sessnum index of session in object$capthist for which output required

derived 57

groups vector of covariate names to define group(s) (see Details)

alpha alpha level for confidence intervals

se.esa logical for whether to calculate SE(mean(esa))

se.D logical for whether to calculate SE(D-hat)

loginterval logical for whether to base interval on log(D)

distribution character string for distribution of the number of individuals detected

ncores integer number of threads used for parallel processing

bycluster logical; if TRUE results are reported separately for each cluster of detectors

beta vector of fitted parameters on transformed (link) scale

real vector of ‘real’ parameters

noccasions integer number of sampling occasions (see Details)

... other arguments (not used)

Details

The derived estimate of density is a Horvitz-Thompson-like estimate:

D̂ =

n∑
i=1

ai(θ̂)
−1

where ai(θ̂) is the estimate of effective sampling area for animal i with detection parameter vector
θ.

A non-null value of the argument distribution overrides the value in object$details. The
sampling variance of D̂ from secr.fit by default is spatially unconditional (distribution =
"Poisson"). For sampling variance conditional on the population of the habitat mask (and therefore
dependent on the mask area), specify distribution = "binomial". The equation for the condi-
tional variance includes a factor (1− a/A) that disappears in the unconditional (Poisson) variance
(Borchers and Efford 2007). Thus the conditional variance is always less than the unconditional
variance. The unconditional variance may in turn be an overestimate or (more likely) an underesti-
mate if the true spatial variance is non-Poisson.

Derived parameters may be estimated for population subclasses (groups) defined by the user with
the groups argument. Each named factor in groups should appear in the covariates dataframe of
object$capthist (or each of its components, in the case of a multi-session dataset).

esa is used by derived to compute individual-specific effective sampling areas:

ai(θ̂) =

∫
A

p.(X; zi, θ̂) dX

where p.(X) is the probability an individual at X is detected at least once and the zi are optional
individual covariates. Integration is over the area A of the habitat mask.

The argument noccasions may be used to vary the number of sampling occasions; it works only
when detection parameters are constant across individuals and across time.

Setting ncores = NULL uses the existing value from the environment variable RCPP_PARALLEL_NUM_THREADS
(see setNumThreads).

58 derived

The effective sampling area ‘esa’ (a(θ̂)) reported by derived is equal to the harmonic mean of the
ai(θ̂) (arithmetic mean prior to version 1.5). The sampling variance of a(θ̂) is estimated by

v̂ar(a(θ̂)) = ĜTθ V̂θĜθ,

where V̂ is the asymptotic estimate of the variance-covariance matrix of the beta detection param-
eters (θ) and Ĝ is a numerical estimate of the gradient of a(θ) with respect to θ, evaluated at θ̂.

A 100(1–alpha)% asymptotic confidence interval is reported for density. By default, this is asym-
metric about the estimate because the variance is computed by backtransforming from the log scale.
You may also choose a symmetric interval (variance obtained on natural scale).

The vector of detection parameters for esa may be specified via beta or real, with the former
taking precedence. If neither is provided then the fitted values in objectfitpar are used. Spec-
ifying real parameter values bypasses the various linear predictors. Strictly, the ‘real’ parameters
are for a naive capture (animal not detected previously).

The computation of sampling variances is relatively slow and may be suppressed with se.esa and
se.D as desired.

For computing derived across multiple models in parallel see par.derived.

Value

Dataframe with one row for each derived parameter (‘esa’, ‘D’) and columns as below

estimate estimate of derived parameter
SE.estimate standard error of the estimate
lcl lower 100(1–alpha)% confidence limit
ucl upper 100(1–alpha)% confidence limit
CVn relative SE of number observed (Poisson or binomial assumption)
CVa relative SE of effective sampling area
CVD relative SE of density estimate

For a multi-session or multi-group analysis the value is a list with one component for each session
and group.

The result will also be a list if object is an ‘secrlist’.

Warning

derived() may be applied to detection models fitted by maximizing the full likelihood (CL =
FALSE). However, models using g (groups) will not be handled correctly.

Note

Before version 2.1, the output table had columns for ‘varcomp1’ (the variance in D̂ due to variation
in n, i.e., Huggins’ s2), and ‘varcomp2’ (the variance in D̂ due to uncertainty in estimates of
detection parameters).

These quantities are related to CVn and CVa as follows:

CVn =
√

varcomp1/D̂

details 59

CVa =
√

varcomp2/D̂

References

Borchers, D. L. and Efford, M. G. (2007) Supplements to Biometrics paper. Available online at
https://www.otago.ac.nz/density/.

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture–recapture studies. Biometrics, 64, 377–385.

Huggins, R. M. (1989) On the statistical analysis of capture experiments. Biometrika 76, 133–140.

See Also

predict.secr, print.secr, secr.fit, empirical.varD par.derived

Examples

Not run:
extract derived parameters from a model fitted previously
by maximizing the conditional likelihood
derived (secrdemo.CL)

what happens when sampling variance is conditional on mask N?
derived(secrdemo.CL, distribution = "binomial")
fitted g0, sigma
esa(secrdemo.CL)
force different g0, sigma
esa(secrdemo.CL, real = c(0.2, 25))

End(Not run)

details Detail Specification for secr.fit

Description

The function secr.fit allows many options. Some of these are used infrequently and have been
bundled as a single argument details to simplify the documentation. They are described here.

Detail components

details$autoini specifies the session number from which to compute starting values (multi-
session data only; default 1). From 4.0.0, the character value ‘all’ first forms a single-session
capthist using join(); this may be slow or not work at all (especially with telemetry data).

details$centred = TRUE causes coordinates of both traps and mask to be centred on the centroid
of the traps, computed separately for each session in the case of multi-session data. This may be

https://www.otago.ac.nz/density/

60 details

necessary to overcome numerical problems when x- or y-coordinates are large numbers. The default
is not to centre coordinates.

details$chat optionally specifies the overdispersion of unmarked sightings Tu and unidentified
marked sightings Tm. It is used only for mark-resight models, and is usually computed within
secr.fit (details$nsim > 0), but may be provided by the user. For a single session ‘chat‘ is a
vector of length 2; for multiple sessions it is a 2-column matrix.

details$chatonly = TRUE used with details$nsim > 0 causes the overdispersion statistics for
sighting counts Tu and Tm to be estimated and returned as a vector or 2-column matrix (multi-
session models), with no further model fitting.

details$contrasts may be used to specify the coding of factor predictors. The value should be
suitable for the ’contrasts.arg’ argument of model.matrix. See ‘Trend across sessions’ in secr-
multisession.pdf for an example.

details$convexpolygon may be set to FALSE for searches of non-convex polygons. This is
slower than the default which requires poygons to be convex east-west (secr-polygondetectors.pdf).

details$debug is an integer code used to control the printing of intermediate values (1,2) and to
switch on the R code browser (3). In ordinary use it should not be changed from the default (0).

details$Dfn is a function for reparameterizing density models; this is set internally when Dlambda
= TRUE. Exotic variations may be specified directly by the user when Dlambda = FALSE. The
defaults (Dfn = NULL, Dlambda = FALSE) leave the original density model unchanged. Note
there is no connection to userDfn (except that the two are incompatible).

Dlambda if TRUE causes reparameterization of density as the session-on-session finite rate of in-
crease lambda. Details at (secr-trend.pdf).

details$distribution specifies the distribution of the number of individuals detected n; this
may be conditional on the number in the masked area ("binomial") or unconditional ("poisson").
distribution affects the sampling variance of the estimated density. The default is "poisson".
The component ‘distribution’ may also take a numeric value larger than nrow(capthist), rather than
"binomial" or "poisson". The likelihood then treats n as a binomial draw from a superpopulation of
this size, with consequences for the variance of density estimates. This can help to reconcile MLE
with Bayesian estimates using data augmentation.

details$fastproximity controls special handling of data from binary proximity and count detec-
tors. If TRUE and other conditions are met (no temporal variation or groups) then a multi-occasion
capthist is automatically reduced to a count for a single occasion and further compressed by storing
only non-zero counts, which can greatly speed up computation of the likelihood (default TRUE).

details$fixedbeta may be used to fix values of beta parameters. It should be a numeric vector
of length equal to the total number of beta parameters (coefficients) in the model. Parameters to
be estimated are indicated by NA. Other elements should be valid values on the link scale and will
be substituted during likelihood maximisation. Check the order of beta parameters in a previously
fitted model.

details$grain sets the grain argument for multithreading in RcppParallel parallelFor (default 1).
details$grain = 0 suppresses multithreading (equivalent to ncores = 1).

details$hessian is a character string controlling the computation of the Hessian matrix from
which variances and covariances are obtained. Options are "none" (no variances), "auto" (the de-
fault) or "fdhess" (use the function fdHess in nlme). If "auto" then the Hessian from the optimisation
function is used. See also method = "none" below.

https://www.otago.ac.nz/density/pdfs/secr-multisession.pdf
https://www.otago.ac.nz/density/pdfs/secr-multisession.pdf
https://www.otago.ac.nz/density/pdfs/secr-polygondetectors.pdf
https://www.otago.ac.nz/density/pdfs/secr-trend.pdf

details 61

details$ignoreusage = TRUE causes the function to ignore usage (varying effort) information
in the traps component. The default (details$ignoreusage = FALSE) is to include usage in the
model.

details$intwidth2 controls the half-width of the interval searched by optimise() for the maxi-
mum likelihood when there is a single parameter. Default 0.8 sets the search interval to (0.2s, 1.8s)
where s is the ‘start’ value.

details$knownmarks = FALSE causes secr.fit to fit a zero-truncated sightings-only model that
implicitly estimates the number of marked individuals, rather than inferring it from the number of
rows in the capthist object.

details$LLonly = TRUE causes the function to returns a single evaluation of the log likelihood at
the ‘start’ values.

details$maxdistance sets a limit to the centroid-to-mask distances considered. The centroid is the
geometric mean of detection locations for each individual. If no limit is specified then summation
is over all mask points. Specifying maxdistance can speed up computation; it is up to the user to
select a limit that is large enough not to affect the likelihood (5σ?).

details$miscparm (default NULL) is an optional numeric vector of starting values for additional
parameters used in a user-supplied distance function (see ‘userdist’ below). If the vector has a
names attribute then the names will be used for the corresponding coefficients (‘beta’ parameters)
which will otherwise be named ‘miscparm1’, miscparm2’ etc. These parameters are constant across
each model and do not appear in the model formula, but are estimated along with other coefficients
when the likelihood is maximised. Any transformation (link function) etc. is handled by the user
in the userdist function. The coefficients appear in the output from coef.secr and vcov.secr, but
not predict.secr.

details$newdetector specifies a detector type to use for this fit, replacing the previous detector(traps(capthist)).
The value may be a vector (one value per occasion) or for multi-session data, a list of vectors. A
scalar value (e.g. "proximity") is otherwise used for all occasions and sessions. The true detector
type is usually known and will be specified in the ’traps’ attribute; newdetector is useful in sim-
ulation studies that examine the effect of misspecification. The capthist component of the output
from secr.fit has the new type.

details$nsim specifies the number of replicate simulations to perform to estimate the overdisper-
sion statistics for the sighting counts Tu and Tm. See also details$chat and details$chatonly.

details$param chooses between various parameterisations of the SECR model. The default details$param
= 0 is the formulation in Borchers and Efford (2008) and later papers.

details$param = 1 was once used to select the Gardner & Royle parameterisation of the detection
model (p0, σ; Gardner et al. 2009) when the detector type is ‘multi’. This parameterisation was
discontinued in 2.10.0.

details$param = 2 selects parameterisation in terms of (esa(g0, σ), σ) (Efford and Mowat 2014).

details$param = 3 selects parameterisation in terms of (a0(λ0, σ), σ) (Efford and Mowat 2014).
This parameterization is used automatically if a0 appears in the model (e.g., a0 ~ 1).

details$param = 4 selects parameterisation of sigma in terms of the coefficient sigmak and con-
stant c (sigma = sigmak / D^0.5 + c) (Efford et al. 2016). If c is not included explicitly in the model
(e.g., c ~ 1) then it is set to zero. This parameterization is used automatically if sigmak appears in
the model (e.g., sigmak ~ 1)

details$param = 5 combines parameterisations (3) and (4) (first compute sigma from D, then com-
pute lambda0 from sigma).

62 details

details$relativeD fits a density model conditional on n that describes relative density instead of
absolute density. This describes the distribution of tagged animals.

details$savecall determines whether the full call to secr.fit is saved in the output object. The
default is TRUE except when called by list.secr.fit as names in the call are then evaluated,
causing the output to become unwieldy.

details$splitmarked determines whether the home range centre of marked animals is allowed to
move between the marking and sighting phases of a spatial capture–mark–resight study. The default
is to assume a common home-range centre (splitmarked = FALSE).

details$telemetrytype determines how telemetry data in the attribute ‘xylist’ are treated. ‘none’
causes the xylist data to be ignored. ‘dependent’ uses information on the sampling distribution of
each home-range centre in the SECR likelihood. ‘concurrent’ does that and more: it splits capthist
according to telemetry status and appends all-zero histories to the telemetry part for any animals
present in xylist. The default is ‘concurrent’.

details$usecov selects the mask covariate to be used for normalization. NULL limits denomina-
tor for normalization to distinguishing habitat from non-habitat.

details$userDfn is a user-provided function for modelling a density surface. See secr-densitysurfaces.pdf

details$userdist is either a function to compute non-Euclidean distances between detectors and
mask points, or a pre-computed matrix of such distances. The first two arguments of the function
should be 2-column matrices of x-y coordinates (respectively k detectors and m mask points). The
third argument is a habitat mask that defines a non-Euclidean habitat geometry (a linear geometry is
described in documentation for the package ‘secrlinear’). The matrix returned by the function must
have exactly k rows and m columns. When called with no arguments the function should return a
character vector of names for the required covariates of ‘mask’, possibly including the dynamically
computed density ‘D‘ and a parameter ‘noneuc’ that will be fitted. A slightly expanded account is
at userdist, and full documentation is in the separate document secr-noneuclidean.pdf.

Do not use ‘userdist’ for polygon or transect detectors

References

Efford, M. G., Dawson, D. K., Jhala, Y. V. and Qureshi, Q. (2016) Density-dependent home-range
size revealed by spatially explicit capture–recapture. Ecography 39, 676–688.

Efford, M. G. and Mowat, G. (2014) Compensatory heterogeneity in capture–recapture data.Ecology
95, 1341–1348.

Gardner, B., Royle, J. A. and Wegan, M. T. (2009) Hierarchical models for estimating density from
DNA mark-recapture studies. Ecology 90, 1106–1115.

Royle, J. A., Chandler, R. B., Sun, C. C. and Fuller, A. K. (2013) Integrating resource selection
information with spatial capture–recapture. Methods in Ecology and Evolution 4, 520–530.

See Also

secr.fit , userdist

Examples

Not run:

https://www.otago.ac.nz/density/pdfs/secr-densitysurfaces.pdf
https://www.otago.ac.nz/density/pdfs/secr-noneuclidean.pdf

detectfn 63

Demo of miscparm and userdist
We fix the usual 'sigma' parameter and estimate the same
quantity as miscparm[1]. Differences in CI reflect the implied use
of the identity link for miscparm[1].

mydistfn3 <- function (xy1,xy2, mask) {
if (missing(xy1)) return(character(0))
xy1 <- as.matrix(xy1)
xy2 <- as.matrix(xy2)
miscparm <- attr(mask, 'miscparm')
distmat <- edist(xy1,xy2) / miscparm[1]
distmat

}

fit0 <- secr.fit (captdata)
fit <- secr.fit (captdata, fixed = list(sigma=1), details =

list(miscparm = c(sig = 20), userdist = mydistfn3))
predict(fit0)
coef(fit)

End(Not run)

detectfn Detection Functions

Description

A detection function relates the probability of detection g or the expected number of detections λ
for an animal to the distance of a detector from a point usually thought of as its home-range centre.
In secr only simple 2- or 3-parameter functions are used. Each type of function is identified by its
number or by a 2–3 letter code (version ≥ 2.6.0; see below). In most cases the name may also be
used (as a quoted string).

Choice of detection function is usually not critical, and the default ‘HN’ is usually adequate.

Functions (14)–(20) are parameterised in terms of the expected number of detections λ, or cu-
mulative hazard, rather than probability. ‘Exposure’ (e.g. Royle and Gardner 2011) is another
term for cumulative hazard. This parameterisation is natural for the ‘count’ detector type or if
the function is to be interpreted as a distribution of activity (home range). When one of the
functions (14)–(19) is used to describe detection probability (i.e., for the binary detectors ‘sin-
gle’, ‘multi’,‘proximity’,‘polygonX’ or ‘transectX’), the expected number of detections is internally
transformed to a binomial probability using g(d) = 1− exp(−λ(d)).

The hazard halfnormal (14) is similar to the halfnormal exposure function used by Royle and Gard-
ner (2011) except they omit the factor of 2 on σ2, which leads to estimates of σ that are larger by a
factor of sqrt(2). The hazard exponential (16) is identical to their exponential function.

Code Name Parameters Function

64 detectfn

0 HN halfnormal g0, sigma g(d) = g0 exp
(
−d2
2σ2

)
1 HR hazard rate g0, sigma, z g(d) = g0[1− exp{−(d/σ)−z}]
2 EX exponential g0, sigma g(d) = g0 exp{−(d/σ)}
3 CHN compound halfnormal g0, sigma, z g(d) = g0[1− {1− exp

(
−d2
2σ2

)
}z]

4 UN uniform g0, sigma g(d) = g0, d <= σ; g(d) = 0, otherwise
5 WEX w exponential g0, sigma, w g(d) = g0, d < w; g(d) = g0 exp

(
−d−wσ

)
, otherwise

6 ANN annular normal g0, sigma, w g(d) = g0 exp{−(d−w)2

2σ2 }
7 CLN cumulative lognormal g0, sigma, z g(d) = g0[1− F{(d− µ)/s}]
8 CG cumulative gamma g0, sigma, z g(d) = g0{1−G(d; k, θ)}
9 BSS binary signal strength b0, b1 g(d) = 1− F{−(b0 + b1d)}
10 SS signal strength beta0, beta1, sdS g(d) = 1− F [{c− (β0 + β1d)}/s]
11 SSS signal strength spherical beta0, beta1, sdS g(d) = 1− F [{c− (β0 + β1(d− 1)− 10 log10 d

2)}/s]
14 HHN hazard halfnormal lambda0, sigma λ(d) = λ0 exp

(
−d2
2σ2

)
; g(d) = 1− exp(−λ(d))

15 HHR hazard hazard rate lambda0, sigma, z λ(d) = λ0(1− exp{−(d/σ)−z}); g(d) = 1− exp(−λ(d))
16 HEX hazard exponential lambda0, sigma λ(d) = λ0 exp{−(d/σ)}; g(d) = 1− exp(−λ(d))

17 HAN hazard annular normal lambda0, sigma, w λ(d) = λ0 exp{−(d−w)2

2σ2 }; g(d) = 1− exp(−λ(d))
18 HCG hazard cumulative gamma lambda0, sigma, z λ(d) = λ0{1−G(d; k, θ)}; g(d) = 1− exp(−λ(d))
19 HVP hazard variable power lambda0, sigma, z λ(d) = λ0 exp{−(d/σ)z}; g(d) = 1− exp(−λ(d))
20 HPX hazard pixelar lambda0, sigma g(d′) = 1− exp(−λ(d′)), d′ <= σ; g(d′) = 0, otherwise

Functions (1) and (15), the "hazard-rate" detection functions described by Hayes and Buckland
(1983), are not recommended for SECR because of their long tail, and care is also needed with (2)
and (16).

Function (3), the compound halfnormal, follows Efford and Dawson (2009).

Function (4) uniform is defined only for simulation as it poses problems for likelihood maximisation
by gradient methods. Uniform probability implies uniform hazard, so there is no separate function
‘HUN’.

For function (7), ‘F’ is the standard normal distribution function and µ and s are the mean and
standard deviation on the log scale of a latent variable representing a threshold of detection distance.
See Note for the relationship to the fitted parameters sigma and z.

For functions (8) and (18), ‘G’ is the cumulative distribution function of the gamma distribution
with shape parameter k (= z) and scale parameter θ (= sigma/z). See R’s pgamma.

For functions (9), (10) and (11), ‘F’ is the standard normal distribution function and c is an arbitrary
signal threshold. The two parameters of (9) are functions of the parameters of (10) and (11): b0 =
(β0− c)/sdS and b1 = β1/s (see Efford et al. 2009). Note that (9) does not require signal-strength
data or c.

Function (11) includes an additional ‘hard-wired’ term for sound attenuation due to spherical spread-
ing. Detection probability at distances less than 1 m is given by g(d) = 1− F{(c− β0)/sdS}

Functions (12) and (13) are undocumented methods for sound attenuation.

Function (19) has been used in some published papers and is included for comparison (see e.g.
Ergon and Gardner 2014).

detector 65

Function (20) assigns positive probability of detection only to points within a square pixel (cell) with
side 2 sigma that is centred on the detector. (Typically used with fixed sigma = detector spacing /
2).

Note

The parameters of function (7) are potentially confusing. The fitted parameters describe a latent
threshold variable on the natural scale: sigma (mean) = exp(µ+ s2/2) and z (standard deviation) =√

exp(s2 + 2µ)(exp(s2)− 1). As with other detection functions, sigma is a spatial scale parame-
ter, although in this case it corresponds to the mean of the threshold variable; the standard deviation
of the threshold variable (z) determines the shape (roughly 1/max(slope)) of the detection function.

References

Efford, M. G. and Dawson, D. K. (2009) Effect of distance-related heterogeneity on population size
estimates from point counts. Auk 126, 100–111.

Efford, M. G., Dawson, D. K. and Borchers, D. L. (2009) Population density estimated from loca-
tions of individuals on a passive detector array. Ecology 90, 2676–2682.

Ergon, T. and Gardner, B. (2014) Separating mortality and emigration: modelling space use, dis-
persal and survival with robust-design spatial capture–recapture data. Methods in Ecology and
Evolution 5, 1327–1336.

Hayes, R. J. and Buckland, S. T. (1983) Radial-distance models for the line-transect method. Bio-
metrics 39, 29–42.

Royle, J. A. and Gardner, B. (2011) Hierarchical spatial capture–recapture models for estimating
density from trapping arrays. In: A.F. O’Connell, J.D. Nichols & K.U. Karanth (eds) Camera Traps
in Animal Ecology: Methods and Analyses. Springer, Tokyo. Pp. 163–190.

See Also

detectfnplot

detector Detector Type

Description

Extract or replace the detector type.

Usage

detector(object, ...)
detector(object) <- value

Arguments

object object with ‘detector’ attribute e.g. traps
value character string for detector type
... other arguments (not used)

66 deviance

Details

Valid detector types are ‘single’, ‘multi’, ‘proximity’, ‘count’, ‘capped’, ‘signal’, ‘polygon’, ‘tran-
sect’, ‘polygonX’, and ‘transectX’. The detector type is stored as an attribute of a traps object. De-
tector types are mostly described by Efford et al. (2009a,b; see also secr-overview.pdf). Polygon and
transect detector types are for area and linear searches as described in secr-polygondetectors.pdf and
Efford (2011). The ‘signal’ detector type is used for acoustic data as described in secr-sound.pdf.

The ‘capped’ detector type refers to binary proximity data in which no more than one individual
may be detected at a detector on any occasion. The type is partially implemented in secr 3.1.1:
data may be simulated and manipulated, but for model fitting these are treated as proximity data by
secr.fit().

Value

character string for detector type

References

Efford, M. G. (2011) Estimation of population density by spatially explicit capture–recapture with
area searches. Ecology 92, 2202–2207.

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009a) Density estimation by spatially explicit
capture-recapture: likelihood-based methods. In: D. L. Thomson, E. G. Cooch and M. J. Conroy
(eds) Modeling Demographic Processes in Marked Populations. Springer, New York. Pp. 255–269.

Efford, M. G., Dawson, D. K. and Borchers, D. L. (2009b) Population density estimated from
locations of individuals on a passive detector array. Ecology 90, 2676–2682.

See Also

traps, RShowDoc

Examples

Default detector type is "multi"
temptrap <- make.grid(nx = 6, ny = 8)
detector(temptrap) <- "proximity"
summary(temptrap)

deviance Deviance of fitted secr model and residual degrees of freedom

Description

Compute the deviance or residual degrees of freedom of a fitted secr model, treating multiple ses-
sions and groups as independent. The likelihood of the saturated model depends on whether the
‘conditional’ or ‘full’ form was used, and on the distribution chosen for the number of individuals
observed (Poisson or binomial).

https://www.otago.ac.nz/density/pdfs/secr-polygondetectors.pdf
https://www.otago.ac.nz/density/pdfs/secr-sound.pdf

deviance 67

Usage

S3 method for class 'secr'
deviance(object, ...)
S3 method for class 'secr'
df.residual(object, ...)

Arguments

object secr object from secr.fit

... other arguments (not used)

Details

The deviance is −2log(L̂) + 2log(Lsat), where L̂ is the value of the log-likelihood evaluated at its
maximum, and Lsat is the log-likelihood of the saturated model, calculated thus:

Likelihood conditional on n -

Lsat = log(n!) +
∑
ω

[nω log(nω

n)− log(nω!)]

Full likelihood, Poisson n -

Lsat = n log(n)− n+
∑
ω

[nω log(nω

n)− log(nω!)]

Full likelihood, binomial n -

Lsat = n log(nN) + (N − n) log(N−nN) + log(N !
(N−n)!) +

∑
ω

[nω log(nω

n)− log(nω!)]

n is the number of individuals observed at least once, nω is the number of distinct histories, and N
is the number in a chosen area A that we estimate by N̂ = D̂A.

The residual degrees of freedom is the number of distinct detection histories minus the number of
parameters estimated. The detection histories of two animals are always considered distinct if they
belong to different groups.

When samples are (very) large the deviance is expected to be distributed as χ2 with nω − p degrees
of freedom when p parameters are estimated. In reality, simulation is needed to assess whether a
given value of the deviance indicates a satisfactory fit, or to estimate the overdispersion parameter
c. sim.secr is a convenient tool.

Value

The scalar numeric value of the deviance or the residual degress of freedom extracted from the fitted
model.

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture–recapture studies. Biometrics 64, 377–385.

See Also

secr.fit, sim.secr

68 discretize

Examples

deviance(secrdemo.0)
df.residual(secrdemo.0)

discretize Rasterize Area Search or Transect Data

Description

It is sometimes useful to re-cast area-search (polygon or polygonX) data as if it was from a set of
closely spaced point detectors, i.e. to rasterize the detection locations. This function makes that
conversion. Each polygon detector in the input is replaced by a number of point detectors, each
representing a square pixel. Detections are mapped to the new detectors on the basis of their x-y
coordinates.

If object contains transect data the problem is passed to snip and reduce.capthist.

Usage

discretize(object, spacing = 5, outputdetector = c("proximity", "count", "multi"),
tol = 0.001, cell.overlap = FALSE, type = c("centre","any", "all"), ...)

Arguments

object secr capthist or traps object

spacing numeric spacing between point detectors in metres

outputdetector character output detector type

tol numeric fractional inflation of perimeter (see Details)

cell.overlap logical; if TRUE the area of overlap is stored in usage attribute

type character; see Details

... other arguments passed to snip if object is transect

Details

The input should have detector type ‘polygon’ or ‘polygonX’.

A new array of equally spaced detectors is generated within each polygon of the input, inflated
radially by 1 + tol to avoid some inclusion problems. The origin of the superimposed grid is fixed
automatically. If type = "centre" detectors are included if they lie within the (inflated) polygon.
Otherwise, the decision on whether to include a candidate new detector is based on the corner
vertices of the cell around the detector (side = spacing); type = "any" and type = "all" have the
obvious meanings.

discretize 69

tol may be negative, in which case the array(s) will be shrunk relative to the polygon(s).

For irregular polygons the edge cells in the output may be only partially contained within the poly-
gon they represent. Set cell.overlap = TRUE to retain the proportion of overlap as the ‘usage’ of
the new traps object. This can take a few seconds to compute. If ‘usage’ is already defined then the
new ‘usage’ is the old multiplied by the proportion of overlap.

Combining type = "any" and cell.overlap = TRUE with tol > 0 can have the odd effect of in-
cluding some marginal detectors that are assigned zero usage.

With type = "any", the sum of the overlap proportions times cell area is equal to the area of the
polygons.

Value

A capthist or traps object of the requested detector type, but otherwise carrying forward all attributes
of the input. The embedded traps object has a factor covariate ‘polyID’ recording the polygon to
which each point detector relates.

Note

Consider the likely number of detectors in the output before you start.

See Also

reduce.capthist, snip

Examples

Not run:

generate some polygon data
pol <- make.poly()
CH <- sim.capthist(pol, popn = list(D = 30), detectfn = 'HHN',

detectpar = list(lambda0 = 0.3))
plot(CH, border = 10, gridl = FALSE, varycol = FALSE)

discretize and plot
CH1 <- discretize(CH, spacing = 10, output = 'count')
plot(CH1, add = TRUE, cappar = list(col = 'orange'), varycol =

FALSE, rad = 0)
plot(traps(CH1), add = TRUE)
overlay cell boundaries
plot(as.mask(traps(CH1)), dots = FALSE, col = NA, meshcol = 'green',

add = TRUE)

show how detections are snapped to new detectors
newxy <- traps(CH1)[nearesttrap(xy(CH),traps(CH1)),]
segments(xy(CH)[,1], xy(CH)[,2], newxy[,1], newxy[,2])

plot(traps(CH), add = TRUE) # original polygon

70 distancetotrap

Incomplete overlap

pol <- rotate(make.poly(), 45)
CH2 <- sim.capthist(pol, popn = list(D = 30), detectfn = 'HHN',

detectpar = list(lambda0 = 0.3))
plot(CH2, border = 10, gridl = FALSE, varycol = FALSE)
CH3 <- discretize(CH2, spacing = 10, output = 'count', type = 'any',

cell.overlap = TRUE, tol=0.05)

plot(CH3, add = TRUE, cappar = list(col = 'orange'), varycol =
FALSE, rad = 0)

plot(traps(CH3), add = TRUE)

overlay cell boundaries and usage
msk <- as.mask(traps(CH3))
covariates(msk) <- data.frame(usage = usage(traps(CH3))[,1])
plot(msk, dots = FALSE, cov='usage', meshcol = 'green',

add = TRUE)

End(Not run)

distancetotrap Distance To Nearest Detector

Description

Compute Euclidean distance from each of a set of points to the nearest detector in an array, or return
the sequence number of the detector nearest each point.

Usage

distancetotrap(X, traps)

nearesttrap(X, traps)

Arguments

X coordinates
traps traps object or 2-column matrix of coordinates

Details

distancetotrap returns the distance from each point in X to the nearest detector in traps. It may
be used to restrict the points on a habitat mask.

For traps objects with polygon detector type (polygon, polygonX), and for SpatialPolygons, the
function sf::st_distance is used internally(from secr 4.5.2).

Dsurface 71

Value

distancetotrap returns a vector of distances (assumed to be in metres).

nearesttrap returns the index of the nearest trap.

See Also

make.mask

Examples

restrict a habitat mask to points within 70 m of traps
this is nearly equivalent to using make.mask with the
`trapbuffer' option
temptrap <- make.grid()
tempmask <- make.mask(temptrap)
d <- distancetotrap(tempmask, temptrap)
tempmask <- subset(tempmask, d < 70)

Dsurface Density Surfaces

Description

S3 class for rasterized fitted density surfaces. A Dsurface is a type of ‘mask’ with covariate(s) for
the predicted density at each point.

Usage

S3 method for class 'Dsurface'
print(x, scale = 1, ...)
S3 method for class 'Dsurface'
summary(object, scale = 1, ...)

Arguments

x, object Dsurface object to display

scale numeric multiplier for density

... other arguments passed to print method for data frames or summary method for
masks

72 ellipse.secr

Details

A Dsurface will usually have been constructed with predictDsurface.

The ‘scale’ argument may be used to change the units of density from the default (animals / hectare)
to animals / km^2 (scale = 100) or animals / 100km^2 (scale = 10000).

A virtual S4 class ‘Dsurface’ is defined to allow the definition of a method for the generic function
raster from the raster package.

See Also

predictDsurface, plot.Dsurface

ellipse.secr Confidence Ellipses

Description

Plot joint confidence ellipse for two parameters of secr model, or for a distribution of points.

Usage

ellipse.secr(object, par = c("g0", "sigma"), alpha = 0.05,
npts = 100, plot = TRUE, linkscale = TRUE, add = FALSE,
col = palette(), ...)

ellipse.bvn(xy, alpha = 0.05, npts = 100, centroid = TRUE, add = FALSE, ...)

Arguments

object secr object output from secr.fit

par character vector of length two, the names of two ‘beta’ parameters

alpha alpha level for confidence intervals

npts number of points on perimeter of ellipse

plot logical for whether ellipse should be plotted

linkscale logical; if FALSE then coordinates will be backtransformed from the link scale

add logical to add ellipse to an existing plot

col vector of one or more plotting colours

... arguments to pass to plot functions (or polygon() in the case of ellipse.bvn)

xy 2-column matrix of coordinates

centroid logical; if TRUE the plotted ellipse is a confidence region for the centroid of
points in xy

empirical.varD 73

Details

ellipse.secr calculates coordinates of a confidence ellipse from the asymptotic variance-covariance
matrix of the beta parameters (coefficients), and optionally plots it.

If linkscale == FALSE, the inverse of the appropriate link transformation is applied to the coor-
dinates of the ellipse, causing it to deform.

If object is a list of secr models then one ellipse is constructed for each model. Colours are recycled
as needed.

ellipse.bvn plots a bivariate normal confidence ellipse for the centroid of a 2-dimensional distri-
bution of points (default centroid = TRUE), or a Jennrich and Turner (1969) elliptical home-range
model.

Value

A list containing the x and y coordinates is returned invisibly from either function.

References

Jennrich, R. I. and Turner, F. B. (1969) Measurement of non-circular home range. Journal of
Theoretical Biology, 22, 227–237.

Examples

ellipse.secr(secrdemo.0)

empirical.varD Empirical Variance of H-T Density Estimate

Description

Compute Horvitz-Thompson-like estimate of population density from a previously fitted spatial de-
tection model, and estimate its sampling variance using the empirical spatial variance of the number
observed in replicate sampling units. Wrapper functions are provided for several different scenar-
ios, but all ultimately call derivednj. The function derived also computes Horvitz-Thompson-like
estimates, but it assumes a Poisson or binomial distribution of total number when computing the
sampling variance.

Usage

derivednj (nj, esa, se.esa = NULL, method = c("SRS", "R2", "R3", "local",
"poisson", "binomial"), xy = NULL, alpha = 0.05, loginterval = TRUE,
area = NULL, independent.esa = FALSE)

derivedMash (object, sessnum = NULL, method = c("SRS", "local"),

74 empirical.varD

alpha = 0.05, loginterval = TRUE)

derivedCluster (object, method = c("SRS", "R2", "R3", "local", "poisson", "binomial"),
alpha = 0.05, loginterval = TRUE)

derivedSession (object, method = c("SRS", "R2", "R3", "local", "poisson", "binomial"),
xy = NULL, alpha = 0.05, loginterval = TRUE, area = NULL, independent.esa = FALSE)

derivedExternal (object, sessnum = NULL, nj, cluster, buffer = 100,
mask = NULL, noccasions = NULL, method = c("SRS", "local"), xy = NULL,
alpha = 0.05, loginterval = TRUE)

derivedSystematic(object, xy, design = list(), basenx = 10, df = 9, extrapolate = TRUE,
alpha = 0.05, loginterval = TRUE, independent.esa = FALSE, keep = FALSE,
ncores = NULL)

Arguments

object fitted secr model

nj vector of number observed in each sampling unit (cluster)

esa estimate of effective sampling area (â)

se.esa estimated standard error of effective sampling area (ŜE(â))

method character string ‘SRS’ or ‘local’

xy dataframe of x- and y- coordinates (method = "local" only)

alpha alpha level for confidence intervals

loginterval logical for whether to base interval on log(N)

area area of region for method = "binomial" (hectares)
independent.esa

logical; controls variance contribution from esa (see Details)

sessnum index of session in object$capthist for which output required

cluster ‘traps’ object for a single cluster

buffer width of buffer in metres (ignored if mask provided)

mask mask object for a single cluster of detectors

noccasions number of occasions (for nj)

design list specifying systematic design (see Details)

basenx integer number of basis grid points in x-dimension

df integer number of degrees of freedom for gam

extrapolate logical; if FALSE then boxlet p values are inferred from nearest point inside
convex hull of grid

keep logical; if TRUE then derivedSystematic saves key intermediate values as at-
tributes

ncores integer

empirical.varD 75

Details

derivednj accepts a vector of counts (nj), along with â and ŜE(â). The argument esa may be a
scalar or (if se.esa is NULL) a 2-column matrix with âj and ŜE(âj) for each replicate j (row). In the
special case that nj is of length 1, or method takes the values ‘poisson’ or ‘binomial’, the variance
is computed using a theoretical variance rather than an empirical estimate. The value of method
corresponds to ‘distribution’ in derived, and defaults to ‘poisson’. For method = 'binomial' you
must specify area (see Examples).

If independent.esa is TRUE then independence is assumed among cluster-specific estimates of
esa, and esa variances are summed. The default is a weighted sum leading to higher overall variance.

derivedCluster accepts a model fitted to data from clustered detectors; each cluster is interpreted
as a replicate sample. It is assumed that the sets of individuals sampled by different clusters do not
intersect, and that all clusters have the same geometry (spacing, detector number etc.).

derivedMash accepts a model fitted to clustered data that have been ‘mashed’ for fast processing
(see mash); each cluster is a replicate sample: the function uses the vector of cluster frequencies
(nj) stored as an attribute of the mashed capthist by mash.

derivedExternal combines detection parameter estimates from a fitted model with a vector of
frequencies nj from replicate sampling units configured as in cluster. Detectors in cluster are
assumed to match those in the fitted model with respect to type and efficiency, but sampling duration
(noccasions), spacing etc. may differ. The mask should match cluster; if mask is missing, one
will be constructed using the buffer argument and defaults from make.mask.

derivedSession accepts a single fitted model that must span multiple sessions; each session is
interpreted as a replicate sample.

Spatial variance is calculated by one of these methods

Method Description
"SRS" simple random sampling with identical clusters
"R2" variable cluster size cf Thompson (2002:70) estimator for line transects
"R3" variable cluster size cf Buckland et al. (2001)
"local" neighbourhood variance estimator (Stevens and Olsen 2003) SUSPENDED in 4.4.7
"poisson" theoretical (model-based) variance
"binomial" theoretical (model-based) variance in given area

The weighted options R2 and R3 substitute âj for line length lk in the corresponding formulae of
Fewster et al. (2009, Eq 3,5). Density is estimated by D = n/A where A =

∑
aj . The variance of

A is estimated as the sum of the cluster-specific variances, assuming independence among clusters.
Fewster et al. (2009) found that an alternative estimator for line transects derived by Thompson
(2002) performed better when there were strong density gradients correlated with line length (R2 in
Fewster et al. 2009, Eq 3).

The neighborhood variance estimator is implemented in package spsurvey and was originally pro-
posed for generalized random tessellation stratified (GRTS) samples. For ‘local’ variance estimates,
the centre of each replicate must be provided in xy, except where centres may be inferred from the
data. It is unclear whether ‘local’ can or should be used when clusters vary in size.

derivedSystematic implements the ’boxlet’ variance estimator of Fewster (2011) for systematic
designs using clustered detectors (an alternative to derivedCluster and derivedSessions). The

76 empirical.varD

method is experimental in secr 3.2.0 and may change. The ‘design’ argument is a list with compo-
nents corresponding to arguments of make.systematic, (n and origin are ignored if provided):

Component Description
cluster traps object for a single cluster
region 2-column matrix or SpatialPolygons
spacing spacing between cluster origins
... other arguments passed to trap.builder

e.g. edgemethod, exclude, exclmethod

If region is omitted from design then an attempt will be made to retrieve it from the mask attribute
of object (this works if the call to make.mask used keep.poly = TRUE).

Value

Dataframe with one row for each derived parameter (‘esa’, ‘D’) and columns as below

estimate estimate of derived parameter
SE.estimate standard error of the estimate
lcl lower 100(1–alpha)% confidence limit
ucl upper 100(1–alpha)% confidence limit
CVn relative SE of number observed (across sampling units)
CVa relative SE of effective sampling area
CVD relative SE of density estimate

Note

The variance of a Horvitz-Thompson-like estimate of density may be estimated as the sum of two
components, one due to uncertainty in the estimate of effective sampling area (â) and the other due
to spatial variance in the total number of animals n observed on J replicate sampling units (n =∑J
j=1 nj). We use a delta-method approximation that assumes independence of the components:

v̂ar(D̂) = D̂2{ v̂ar(n)

n2
+

v̂ar(â)

â2
}

where v̂ar(n) = J
J−1

∑J
j=1(nj−n/J)2. The estimate of var(â) is model-based while that of var(n)

is design-based. This formulation follows that of Buckland et al. (2001, p. 78) for conventional dis-
tance sampling. Given sufficient independent replicates, it is a robust way to allow for unmodelled
spatial overdispersion.

There is a complication in SECR owing to the fact that â is a derived quantity (actually an integral)
rather than a model parameter. Its sampling variance var(â) is estimated indirectly in secr by
combining the asymptotic estimate of the covariance matrix of the fitted detection parameters θ
with a numerical estimate of the gradient of a(θ) with respect to θ. This calculation is performed in
derived.

empirical.varD 77

References

Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L. and Thomas,
L. (2001) Introduction to Distance Sampling: Estimating Abundance of Biological Populations.
Oxford University Press, Oxford.

Fewster, R. M. (2011) Variance estimation for systematic designs in spatial surveys. Biometrics 67,
1518–1531.

Fewster, R. M., Buckland, S. T., Burnham, K. P., Borchers, D. L., Jupp, P. E., Laake, J. L. and
Thomas, L. (2009) Estimating the encounter rate variance in distance sampling. Biometrics 65,
225–236.

Stevens, D. L. Jr and Olsen, A. R. (2003) Variance estimation for spatially balanced samples of
environmental resources. Environmetrics 14, 593–610.

Thompson, S. K. (2002) Sampling. 2nd edition. Wiley, New York.

See Also

derived, esa

Examples

The `ovensong' data are pooled from 75 replicate positions of a
4-microphone array. The array positions are coded as the first 4
digits of each sound identifier. The sound data are initially in the
object `signalCH'. We first impose a 52.5 dB signal threshold as in
Dawson & Efford (2009, J. Appl. Ecol. 46:1201--1209). The vector nj
includes 33 positions at which no ovenbird was heard. The first and
second columns of `temp' hold the estimated effective sampling area
and its standard error.

Not run:

signalCH.525 <- subset(signalCH, cutval = 52.5)
nonzero.counts <- table(substring(rownames(signalCH.525),1,4))
nj <- c(nonzero.counts, rep(0, 75 - length(nonzero.counts)))
temp <- derived(ovensong.model.1, se.esa = TRUE)
derivednj(nj, temp["esa",1:2])

The result is very close to that reported by Dawson & Efford
from a 2-D Poisson model fitted by maximizing the full likelihood.

If nj vector has length 1, a theoretical variance is used...
msk <- ovensong.model.1$mask
A <- nrow(msk) * attr(msk, "area")
derivednj (sum(nj), temp["esa",1:2], method = "poisson")
derivednj (sum(nj), temp["esa",1:2], method = "binomial", area = A)

Set up an array of small (4 x 4) grids,
simulate a Poisson-distributed population,
sample from it, plot, and fit a model.
mash() condenses clusters to a single cluster

78 empirical.varD

testregion <- data.frame(x = c(0,2000,2000,0),
y = c(0,0,2000,2000))

t4 <- make.grid(nx = 4, ny = 4, spacing = 40)
t4.16 <- make.systematic (n = 16, cluster = t4,

region = testregion)
popn1 <- sim.popn (D = 5, core = testregion,

buffer = 0)
capt1 <- sim.capthist(t4.16, popn = popn1)
fit1 <- secr.fit(mash(capt1), CL = TRUE, trace = FALSE)

Visualize sampling
tempmask <- make.mask(t4.16, spacing = 10, type =

"clusterbuffer")
plot(tempmask)
plot(t4.16, add = TRUE)
plot(capt1, add = TRUE)

Compare model-based and empirical variances.
Here the answers are similar because the data
were simulated from a Poisson distribution,
as assumed by \code{derived}

derived(fit1)
derivedMash(fit1)

Now simulate a patchy distribution; note the
larger (and more credible) SE from derivedMash().

popn2 <- sim.popn (D = 5, core = testregion, buffer = 0,
model2D = "hills", details = list(hills = c(-2,3)))

capt2 <- sim.capthist(t4.16, popn = popn2)
fit2 <- secr.fit(mash(capt2), CL = TRUE, trace = FALSE)
derived(fit2)
derivedMash(fit2)

The detection model we have fitted may be extrapolated to
a more fine-grained systematic sample of points, with
detectors operated on a single occasion at each...
Total effort 400 x 1 = 400 detector-occasions, compared
to 256 x 5 = 1280 detector-occasions for initial survey.

t1 <- make.grid(nx = 1, ny = 1)
t1.100 <- make.systematic (cluster = t1, spacing = 100,

region = testregion)
capt2a <- sim.capthist(t1.100, popn = popn2, noccasions = 1)
one way to get number of animals per point
nj <- attr(mash(capt2a), "n.mash")
derivedExternal (fit2, nj = nj, cluster = t1, buffer = 100,

noccasions = 1)

Review plots
library(MASS)

esa.plot 79

base.plot <- function() {
eqscplot(testregion, axes = FALSE, xlab = "",

ylab = "", type = "n")
polygon(testregion)

}
par(mfrow = c(1,3), xpd = TRUE, xaxs = "i", yaxs = "i")
base.plot()
plot(popn2, add = TRUE, col = "blue")
mtext(side=3, line=0.5, "Population", cex=0.8, col="black")
base.plot()
plot (capt2a, add = TRUE,title = "Extensive survey")
base.plot()
plot(capt2, add = TRUE, title = "Intensive survey")
par(mfrow = c(1,1), xpd = FALSE, xaxs = "r", yaxs = "r") ## defaults

Weighted variance

derivedSession(ovenbird.model.1, method = "R2")

End(Not run)

esa.plot Mask Buffer Diagnostic Plot

Description

Plot effective sampling area (Borchers and Efford 2008) as a function of increasing buffer width.

Usage

esa.plot (object, max.buffer = NULL, spacing = NULL, max.mask = NULL,
detectfn, detectpar, noccasions, binomN = NULL, thin = 0.1,
poly = NULL, poly.habitat = TRUE, session = 1, plt = TRUE,
type = c('density', 'esa', 'meanpdot', 'CVpdot'), n = 1, add = FALSE,
overlay = TRUE, conditional = FALSE, ...)

Arguments

object traps object or secr object output from secr.fit

max.buffer maximum width of buffer in metres

spacing distance between mask points

max.mask mask object

80 esa.plot

detectfn integer code or character string for shape of detection function 0 = halfnormal
etc. – see detectfn

detectpar list of values for named parameters of detection function

noccasions number of sampling occasions

binomN integer code for discrete distribution (see secr.fit)

thin proportion of mask points to retain in plot and output

poly matrix of two columns interpreted as the x and y coordinates of a bounding
polygon (optional)

poly.habitat logical as in make.mask

session vector of session indices (used if object spans multiple sessions)

plt logical to plot results

type character, what to plot

n integer number of distinct individuals detected

add logical to add line to an existing plot

overlay logical; if TRUE then automatically add = TRUE for plots after the first

conditional logical; if TRUE the reported mean and CV are conditional on detection (see
CVpdot)

... graphical arguments passed to plot() and lines()

Details

Effective sampling area (esa) is defined as the integral of net capture probability (p.(X)) over a
region. esa.plot shows the effect of increasing region size on the value of esa for fixed values of
the detection parameters. The max.buffer or max.mask arguments establish the maximum extent
of the region; points (cells) within this mask are sorted by their distance dk from the nearest detector.
esa(buffer) is defined as the cumulative sum of cp.(X) for dk(X) <= buffer, where c is the area
associated with each cell.

The default (type = 'density') is to plot the reciprocal of esa multiplied by n; this is on a more
familiar scale (the density scale) and hence is easier to interpret.

Because esa.plot uses the criterion ‘distance to nearest detector’, max.mask should be constructed
to include all habitable cells within the desired maximum buffer and no others. This is achieved with
type = "trapbuffer" in make.mask. It is a good idea to set the spacing argument of make.mask
rather than relying on the default based on nx. Spacing may be small (e.g. sigma/10) and the buffer
of max.mask may be quite large (e.g. 10 sigma), as computation is fast.

Thinning serves to reduce redundancy in the plotted points, and (if the result is saved and printed)
to generate more legible numerical output. Use thin=1 to include all points.

esa.plot calls the internal function esa.plot.secr when object is a fitted model. In this case
detectfn, detectpar and noccasions are inferred from object.

Value

A dataframe with columns

buffer buffer width

esa.plot 81

esa computed effective sampling area

density n/esa

pdot p.(X)

pdotmin cumulative minimum (p.(X))

meanpdot expected pdot across mask (see CVpdot)

CVpdot CV of pdot across mask (see CVpdot)

If plt = TRUE the dataframe is returned invisibly.

Note

The response of effective sampling area to buffer width is just one possible mask diagnostic; it’s fast,
graphic, and often sufficient. mask.check performs more intensive checks, usually for a smaller
number of buffer widths.

The old argument ’as.density’ was superceded by ’type’ in 3.1.7.

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture–recapture studies. Biometrics 64, 377–385.

See Also

mask, pdot, CVpdot, make.mask, mask.check, Detection functions

Examples

Not run:

with previously fitted model
esa.plot(secrdemo.0)

from scratch
trps <- make.grid()
msk <- make.mask(trps, buffer = 200, spacing = 5, type = "trapbuffer")
detectpar <- list(g0 = 0.2, sigma = 25)
esa.plot(trps,,, msk, 0, detectpar, nocc = 10, col = "blue")
esa.plot(trps,,, msk, 0, detectpar, nocc = 5, col = "green",

add = TRUE)

esa.plot(trps,,, msk, 0, detectpar, nocc = 5, thin = 0.002, plt = FALSE)

End(Not run)

82 esa.plot.secr

esa.plot.secr Mask Buffer Diagnostic Plot (internal)

Description

Internal function used to plot effective sampling area (Borchers and Efford 2008) as a function of
increasing buffer width given an ‘secr’ object

Usage

esa.plot.secr (object, max.buffer = NULL, max.mask = NULL,
thin = 0.1, poly = NULL, poly.habitat = TRUE, session = 1, plt = TRUE,
type = "density", add = FALSE, overlay = TRUE, conditional = FALSE, ...)

Arguments

object secr object output from secr.fit

max.buffer maximum width of buffer in metres

max.mask mask object

thin proportion of mask points to retain in plot and output

poly matrix of two columns interpreted as the x and y coordinates of a bounding
polygon (optional)

poly.habitat logical as in make.mask

session vector of session indices (used if object spans multiple sessions)

plt logical to plot results

type character; see esa.plot

add logical to add line to an existing plot

overlay logical; if TRUE then automatically add = TRUE for plots after the first

conditional logical; see esa.plot

... graphical arguments passed to plot() and lines()

Details

esa.plot.secr provides a wrapper for esa.plot that is called internally from esa.plot when it is
presented with an secr object. Arguments of esa.plot such as detectfn are inferred from the
fitted model.

If max.mask is not specified then a maximal mask of type ‘trapbuffer’ is constructed using max.buffer
and the spacing of the mask in object. In this case, if max.buffer is not specified then it is set
either to the width of the existing plot (add = TRUE) or to 10 x sigma-hat from the fitted model in
object (add = FALSE).

expected.n 83

Value

see esa.plot

See Also

esa.plot, mask, pdot, make.mask, mask.check, Detection functions

expected.n Expected Number of Individuals

Description

Computes the expected number of individuals detected across a detector layout or at each cluster of
detectors.

Usage

expected.n(object, session = NULL, group = NULL, bycluster
= FALSE, splitmask = FALSE, ncores = NULL)

Arguments

object secr object output from secr.fit

session character session vector

group group – for future use

bycluster logical to output the expected number for clusters of detectors rather than whole
array

splitmask logical for computation method (see Details)

ncores integer number of threads to be used for parallel processing

Details

The expected number of individuals detected is E(n) =
∫
p.(X)D(X)dX where the integration

is a summation over object$mask. p.(X) is the probability an individual at X will be detected at
least once either on the whole detector layout (bycluster = FALSE) or on the detectors in a single
cluster (see pdot for more on p.). D(X) is the expected density at X , given the model. D(X) is
constant (i.e. density surface flat) if object$CL == TRUE or object$model$D == ~1, and for some
other possible models.

If the bycluster option is selected and detectors are not, in fact, assigned to clusters then each
detector will be treated as a cluster, with a warning.

Setting ncores = NULL uses the existing value from the environment variable RCPP_PARALLEL_NUM_THREADS
(see setNumThreads).

84 expected.n

By default, a full habitat mask is used for each cluster. This is the more robust option. Alternatively,
the mask may be split into subregions defined by the cells closest to each cluster.

The calculation takes account of any fitted continuous model for spatial variation in density (note
Warning).

Value

The expected count (bycluster = FALSE) or a vector of expected counts, one per cluster. For multi-
session data, a list of such vectors.

Warning

This function changed slightly between 2.1.0 and 2.1.1, and now performs as indicated here when
bycluster = TRUE and clusters are not specified.

Clusters of detectors are assumed to be independent (always true with detector types ‘proximity’,
‘count’ etc.). The computed E(n) does not apply when there is competition among clusters of
detectors.

The prediction of density at present considers only the base level of density covariates, such as
cell-specific habitat variables.

See Also

region.N

Examples

Not run:

expected.n(secrdemo.0)
expected.n(secrdemo.0, bycluster = TRUE)
expected.n(ovenbird.model.D)

Clustered design
mini <- make.grid(nx = 3, ny = 3, spacing = 50, detector =

"proximity")
tempgrids <- trap.builder (cluster = mini , method = "all",

frame = expand.grid(x = seq(1000, 9000, 2000),
y = seq(1000, 9000, 2000)), plt = TRUE)

capt <- sim.capthist(tempgrids, popn = list(D = 2))
tempmask <- make.mask(tempgrids, buffer = 100,

type = "clusterbuffer")
fit <- secr.fit(capt, mask = tempmask, trace = FALSE)
En <- expected.n(fit, bycluster = TRUE)

GoF or overdispersion statistic
p <- length(fitfitpar)
y <- cluster.counts(capt)
scaled by n-p
sum((y - En)^2 / En) / (length(En)-p)

extractMoves 85

sum((y - En)^2 / En) / sum(y/En)

End(Not run)

extractMoves Simulated Movements

Description

Extract movements from a previously simulated multi-session population.

Usage

extractMoves(pop, plotn = NULL, add = FALSE, collapse = TRUE, maxradius = Inf, ...)

Arguments

pop popn object from sim.popn

plotn integer maximum number of instances to plot at each session

add logical for whether to add to existing plot

collapse logical; if TRUE plots for sessions 2, 3,... are added to the first

maxradius numeric radius for selecting subset of initial locations

... arguments passed to arrows

Details

This function is mostly used to check the movement simulations.

Moves are constrained by the edge (argument ‘edgemethod’ of sim.popn). ‘maxradius’ may be
set to restrict the extraction to the subset of animals initially near the centroid of the arena in each
session.

Plotting uses the graphics function arrows that has some quirks, such as difficult-to-suppress warn-
ings for zero-length moves. Set code = 0 to suppress arrowheads; length = 0.1 to shorten to 0.1
inches, etc.

Value

List of data frames, one for each session but the last (columns ‘x1’,‘y1’,‘x2’,‘y2’,‘d’).

See Also

turnover, sim.popn

86 FAQ

Examples

set.seed(12345)
pop3 <- sim.popn(D = 2, core = make.grid(), buffer = 200, nsessions = 3,

details = list(lambda = 1.0, movemodel = 'BVE', move.a = 50,
edgemethod = 'stop'))

m <- extractMoves(pop3, plotn = 10, length = 0.1)
mean(unlist(sapply(m, '[', 'd'))) # less than nominal 2 x move.a

For distances closer to nominal for BVE (2 x move.a = 100),
increase size of arena (e.g., buffer = 500) and consider only
central animals (e.g., maxradius = 300).

FAQ Frequently Asked Questions, And Others

Description

A place for hints and miscellaneous advice.

How do I install and start secr?

Follow the usual procedure for installing from CRAN archive (see menu item Packages | Install
package(s)... in Windows). You also need to get the package abind from CRAN.

Like other contributed packages, secr needs to be loaded before each use e.g.,library(secr).

You can learn about changes in the current version with news(package = "secr").

How can I get help?

There are three general ways of displaying documentation from within R. Firstly, you can bring up
help pages for particular functions from the command prompt. For example:

?secr or ?secr.fit

Secondly, help.search() lets you ask for a list of the help pages on a vague topic (or just use ?? at
the prompt). For example:

?? "linear models"

Thirdly, you can display various secr documents listed in secr-package.

Tip: to search all secr help pages open the pdf version of the manual in Acrobat Reader (secr-
manual.pdf; see also ?secr) and use <ctrl> F.

There is a support forum at http://www.phidot.org/forum/ under ‘DENSITY|secr’ and another
at secrgroup. See below for more R tips. Some specific problems with secr.fit are covered in
Troubleshooting.

https://www.otago.ac.nz/density/pdfs/secr-manual.pdf
https://www.otago.ac.nz/density/pdfs/secr-manual.pdf
http://www.phidot.org/forum/
https://groups.google.com/forum/#!forum/secrgroup

FAQ 87

How should I report a problem?

If you get really stuck or find something you think is a bug then please report the problem to one of
the online lists.

You may be asked to send an actual dataset - ideally, the simplest one that exhibits the prob-
lem. Use save to wrap several R objects together in one .RData file, e.g., save("captdata",
"secrdemo.0", "secrdemo.b", file = "mydata.RData"). Also, paste into the text of your mes-
sage the output from packageDescription("secr").

Why do I get different answers from secr and Density?

Strictly speaking, this should not happen if you have specified the same model and likelihood,
although you may see a little variation due to the different maximization algorithms. Likelihoods
(and estimates) may differ if you use different integration meshes (habitat masks), which can easily
happen because the programs differ in how they set up the mesh. If you want to make a precise
comparison, save the Density mesh to a file and read it into secr, or vice versa.

Extreme data, especially rare long-distance movements, may be handled differently by the two
programs. The ‘minprob’ component of the ‘details’ argument of secr.fit sets a lower threshold
of probability for capture histories (smaller values are all set to minprob), whereas Density has no
explicit limit.

How can I speed up model fitting and model selection?

There are many ways - see Speed tips and secr-troubleshooting.pdf.

Keep the number of mask points to a minimum and avoid detection covariates with many levels.

Does secr use multiple cores?

Some computations can be run in parallel on multiple processors (most desktops these days have
multiple cores). Likelihood calculations in secr.fit assign capture histories to multiple parallel
threads whenever possible.

The number of threads (cores) is controlled by an environment variable set by setNumThreads or
the ’ncores’ argument of some functions.

Can a model use detector-level covariates that vary over time?

Yes. See ?timevaryingcov. However, a more direct way to control for varying effort is provided -
see the ‘usage’ atribute, which now allows a continuous measure of effort (secr-varyingeffort.pdf).

A tip: covariate models for detection fit more quickly when the covariate takes only a few different
values. Use binCovariate to bin values.

Things You Might Need To Know About R

The function findFn in package sos lets you search CRAN for R functions by matching text in their
documentation.

There is now a vast amount of R advice available on the web. For the terminally frustrated,
‘R inferno’ by Patrick Burns is recommended (https://www.burns-stat.com/pages/Tutor/R_
inferno.pdf). "If you are using R and you think you’re in hell, this is a map for you".

https://www.otago.ac.nz/density/pdfs/secr-troubleshooting.pdf
https://www.otago.ac.nz/density/pdfs/secr-varyingeffort.pdf
https://www.burns-stat.com/pages/Tutor/R_inferno.pdf
https://www.burns-stat.com/pages/Tutor/R_inferno.pdf

88 Fletcher.chat

Method functions for S3 classes cannot be listed in the usual way by typing the function name at
the R prompt because they are ‘hidden’ in a namespace. Get around this with getAnywhere(). For
example:

getAnywhere(print.secr)

R objects have ‘attributes’ that usually are kept out of sight. Important attributes are ‘class’ (all
objects), ‘dim’ (matrices and arrays) and ‘names’ (lists). secr hides quite a lot of useful data as
named ‘attributes’. Usually you will use summary and extraction methods (traps, covariates,
usage etc.) to view and change the attributes of the various classes of object in secr. If you’re
curious, you can reveal the lot with ‘attributes’. For example, with the demonstration capture history
data ‘captdata’:

traps(captdata) ## extraction method for `traps'

attributes(captdata) ## all attributes

Also, the function str provides a compact summary of any object:

str(captdata)

References

Claeskens, G. and Hjort N. L. (2008) Model Selection and Model Averaging. Cambridge: Cam-
bridge University Press.

Fletcher.chat Estimate overdispersion

Description

General function for estimating a variance inflation factor (ĉ) from observed counts.

Usage

Fletcher.chat (observed, expected, np, verbose = TRUE,
type = c('Fletcher', 'Wedderburn', 'both'), multinomial = FALSE)

Arguments

observed integer vector of observed counts, or a list of such vectors

expected numeric vector of expected counts

np integer number of parameters estimated

verbose logical; if TRUE returns extended output

type character

multinomial logical; if TRUE, one df is subtracted for the constraint

fx.total 89

Details

Fletcher.chat applies the overdispersion formula of Fletcher (2012) or computes the conventional
(Wedderburn 1974) variance inflation factor X2/df . It is used by chat.nk and adjustVarD. The
inputs ‘observed’ and ‘expected’ are vectors of counts (e.g., number of distinct individuals per
detector); ‘observed’ may also be a list of such vectors, possibly simulated.

Value

Output depends on ‘verbose’, ‘observed’ and ‘type’:

– if ‘observed’ is a list of nk vectors (usually generated by simulation) then the output is a vector
of (Fletcher or Wedderburn) ĉ values, one element for each component of ‘observed’, unless type =
"both" when the output is a list of two such vectors. Argument ‘verbose’ is ignored.

– if ‘observed’ is a simple vector then ‘verbose’ output is a list comprising input values, various
summary statistics, and the computed Fletcher overdispersion (‘chat’). The statistic ‘cX2’ is the
conventional variance inflation factor of Wedderburn (1974) – X2/df . For verbose = FALSE, a
single estimate of ĉ is returned when type = "Fletcher" or type = "Wedderburn", otherwise a
vector of the two estimates.

References

Fletcher, D. (2012) Estimating overdispersion when fitting a generalized linear model to sparse data.
Biometrika 99, 230–237.

Wedderburn, R. W. M. (1974) Quasi-likelihood functions, generalized linear models, and the Gauss-
Newton method. Biometrika 61, 439–47.

See Also

chat.nk, adjustVarD

fx.total Activity Centres of Detected and Undetected Animals

Description

The summed probability densities of both observed and unobserved individuals are computed for a
fitted model and dataset.

Usage

fx.total(object, sessnum = 1, mask = NULL, ncores = NULL, ...)

90 fx.total

Arguments

object a fitted secr model

sessnum session number if object$capthist spans multiple sessions

mask x- and y- coordinates of points at which density will be computed

ncores integer number of threads to be used for parallel processing

... other arguments passed to detectpar and thence to predict.secr

Details

This function calls fxi.secr for each detected animal and overlays the results to obtain a summed
probability density surface D.fx for the locations of the home-range centres of detected individuals.

A separate calculation using pdot provides the expected spatial distribution of undetected animals,
as another density surface: crudely, D.nc(X) = D(X) * (1 – pdot(X)).

The pointwise sum of the two surfaces is sometimes used to represent the spatial distrbution of the
population, but see Notes.

Setting ncores = NULL uses the existing value from the environment variable RCPP_PARALLEL_NUM_THREADS
(see setNumThreads).

Value

An object of class ‘Dsurface’ (a variety of mask) with a ‘covariates’ attribute that is a dataframe
with columns –

D.fx sum of fxi over all detected individuals

D.nc expected density of undetected (‘not caught’) individuals

D.sum sum of D.fx and D.nc

All densities are in animals per hectare (the ‘scale’ argument of plot.Dsurface allows the units to
be varied later).

Note

The surface D.sum represents what is known from the data about a specific realisation of the spatial
point process for home range centres: varying the intensity of sampling will change its shape. It is
not an unbiased estimate of a biologically meaningful density surface. The surface will always tend
to lack relief towards the edge of a habitat mask where the main or only contribution is from D.nc.

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture–recapture studies. Biometrics 64, 377–385.

See Also

fxi.secr, fxi.contour, pdot

fxi 91

Examples

Not run:

tmp <- fx.total(secrdemo.0)

to plot we must name one of the covariates:
the Dsurface default 'D.0' causes an error

plot(tmp, covariate = 'D.sum', col = terrain.colors(16),
plottype = 'shaded')

plot(tmp, covariate = 'D.sum', col = 'white', add = TRUE,
plottype = 'contour')

if (interactive()) {
spotHeight(tmp, prefix = 'D.sum')

}

fxsurface <- fx.total(ovenbird.model.D, sessnum = 3)
plot(fxsurface, covariate = 'D.sum')

End(Not run)

fxi Probability Density of Home Range Centre

Description

Display contours of the probability density function for the estimated location of one or more range
centres, compute values for particular points X, or compute mode of pdf. The pdf is given by
f(Xj |ωi) = Pr(ωi|Xj)π(Xj), where π(X) is the probability density of range centres across the
mask (Borchers and Efford 2008).

Usage

fxi.contour (object, i = 1, sessnum = 1, border = 100, nx = 64,
levels = NULL, p = seq(0.1,0.9,0.1), plt = TRUE, add = FALSE,
fitmode = FALSE, plotmode = FALSE, fill = NULL,
output = c('list','sf','SPDF'), ncores = NULL, ...)

fxi.secr(object, i = NULL, sessnum = 1, X = NULL, ncores = NULL)
fxi.mode(object, i = 1, sessnum = 1, start = NULL, ncores = NULL, ...)

Arguments

object a fitted secr model

i integer or character vector of individuals (defaults to all in fxi.secr), or a single
individual as input to fxi.mode

92 fxi

sessnum session number if object$capthist spans multiple sessions

border width of blank margin around the outermost detectors

nx dimension of interpolation grid in x-direction

levels numeric vector of confidence levels for Pr(X|wi)

p numeric vector of contour levels as probabilities

plt logical to plot contours

add logical to add contour(s) to an existing plot

fitmode logical to refine estimate of mode of each pdf

plotmode logical to plot mode of each pdf

X 2-column matrix of x- and y- coordinates (defaults to mask)

fill vector of colours to fill contours (optional)

output character; format of output (list, sf or SpatialPolygonsDataFrame)

ncores integer number of threadss to be used for parallel processing

start vector of x-y coordinates for maximization

... additional arguments passed to contour or nlm

Details

fxi.contour computes contours of probability density for one or more detection histories. Increase
nx for smoother contours. If levels is not set, contour levels are set to approximate the confidence
levels in p.

fxi.secr computes the probability density for one or more detection histories; X may contain
coordinates for one or several points; a dataframe or vector (x then y) will be coerced to a matrix.

fxi.mode attempts to find the x- and y-coordinates corresponding to the maximum of the pdf for a
single detection history (i.e. i is of length 1). fxi.mode calls nlm.

fxi.contour with fitmode = TRUE calls fxi.mode for each individual. Otherwise, the reported
mode is an approximation (mean of coordinates of highest contour).

If i is character it will be matched to row names of object$capthist (restricted to the relevant session
in the case of a multi-session fit); otherwise it will be interpreted as a row number.

Values of the pdf are normalised by dividing by the integral of Pr(ωi|X)π(X) over the habitat mask
in object. (May differ in secr 4.0).

Setting ncores = NULL uses the existing value from the environment variable RCPP_PARALLEL_NUM_THREADS
(see setNumThreads).

If start is not provided to fit.mode then (from 2.9.4) the weighted mean of all detector sites is
used (see Warning below).

The . . . argument gives additional control over a contour plot; for example, set drawlabels = FALSE
to suppress contour labels.

fxi 93

Value

fxi.contour (output = ’list’) –

Coordinates of the plotted contours are returned as a list with one component per polygon. The list
is returned invisibly if plt = TRUE.

An additional component ‘mode’ reports the x-y coordinates of the highest point of each pdf (see
Details).

fxi.contour (output = ’SPDF’) –

Contours are returned as a SpatialPolygonsDataFrame (see package sp) with one component per
animal. The attributes dataframe has two columns, the x- and y-coordinates of the mode. The
SpatialPolygonsDataFrame is returned invisibly if plt = TRUE.

fxi.contour (output = ’sf’) – simple features ’sf’ object, as for SPDF.

fxi.secr –

Vector of probability densities

fxi.mode –

List with components ‘x’ and ‘y’

Warnings

fxi.mode may fail to find the true mode unless a good starting point is provided. Note that the
distribution may have multiple modes and only one is reported. The default value of start before
secr 2.9.4 was the first detected location of the animal.

Note

From secr 2.8.3, these functions work with both homogeneous and inhomogeneous Poisson density
models, and fxi.secr accepts vector-valued i.

See fx.total for a surface summed across individuals.

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture–recapture studies. Biometrics 64, 377–385.

See Also

pdot.contour, contour, fx.total

Examples

Not run:

fxi.secr(secrdemo.0, i = 1, X = c(365,605))

contour first 5 detection histories
plot(secrdemo.0$capthist)

94 gridCells

fxi.contour (secrdemo.0, i = 1:5, add = TRUE,
plotmode = TRUE, drawlabels = FALSE)

extract modes only
these are more reliable than those from fit.mode called directly as
they use a contour-based approximation for the starting point
fxiout <- fxi.contour (secrdemo.0, i = 1:5, plt = FALSE, fitmode = TRUE)
t(sapply(fxiout, "[[", "mode"))

using fill colours
lty = 0 suppresses contour lines
nx = 256 ensures smooth outline
plot(traps(captdata))
fxi.contour(secrdemo.0, i = 1:5, add = TRUE, p = c(0.5,0.95), drawlabels

= FALSE, nx = 256, fill = topo.colors(4), lty = 0)

output as simple features
sf <- fxi.contour(secrdemo.0, i = 1:3, plt = FALSE, p = c(0.5,0.95),

nx = 256, output = 'sf', fitmode = TRUE)

save as ESRI shapefile testsf.shp etc.
library(sf)
st_write(sf, 'testsf.shp')
plot contours and modes
plot(st_as_sfc(sf)) # outline only
points(sf$modex, sf$modey)

output as SpatialPolygonsDataFrame
spdf <- fxi.contour(secrdemo.0, i = 1:3, plt = FALSE, p = c(0.5,0.95),

nx = 256, output = 'SPDF', fitmode = TRUE)
sp::plot(spdf)
points(data.frame(spdf))

End(Not run)

gridCells Construct Grid Cells

Description

Forms grid cells centred on input points.

Usage

gridCells(x, cellsize = spacing(x), crs = NA)

hcov 95

Arguments

x matrix or dataframe with x- and y-coordinates
cellsize length of gridcell side
crs crs description suitable for st_crs

Details

The argument x will often be a traps or mask object with spacing attribute. Otherwise cellsize
must be provided.

Value

A simple features (sf) object of class ‘sfc_MULTIPOLYGON’.

crs may be the integer EPSG code (e.g. 3578 Yukon Albers).

See Also

plotMaskEdge, spacing

Examples

plot(gridCells(traps(captdata)))
plot(traps(captdata), add = TRUE)

hcov Hybrid Mixture Model

Description

The argument hcov in secr.fit is used to fit a hybrid mixture model. ‘Hybrid’ refers to a flexible
combination of latent classes (as in a finite mixture) and known classes (cf groups or sessions).
A hybrid mixture model includes a parameter ‘pmix’ for the mixing proportion and optionally
allows detection parameters to be modelled as class-specific (~ h2). This is particularly useful for
modelling sex ratio and sex differences in detection, and matches the Bayesian sex-specific model
of Gardner et al. (2010).

For observed animals all of unknown class the model is identical to a finite mixture (i.e. latent-class)
model. For observed animals all of known class, the classes are no longer ‘latent’ and the model is
equivalent to a grouped model with an additional binomial factor for class membership.

Assumptions

hcov identifies a single individual covariate (the class covariate) that should be a factor with two
levels, or contain character values that will be coerced to a factor (e.g., ‘f’, ‘m’). Missing values
(NA) are used for individuals of unknown class. If hcov has more than two levels, all but the first
two levels are converted to NA (but see exception for h3 models below).

It is assumed that the probability of recording a missing value for the class covariate is independent
of the true class membership (e.g., sex equally likely to be recorded for males and females).

96 hcov

Operational details

A hybrid mixture model is fitted whenever hcov is not NULL. Mixture models include a parameter
‘pmix’, the mixing proportion. If the covariate identified by hcov is missing (‘’ or NA) for all
individuals and a mixture term (h2 or h3) appears in the detection model (e.g., g0 ~ h2) then a
conventional finite mixture model is fitted (cf Pledger 2000, Borchers & Efford 2008).

As with finite mixture models, any detection parameter (g0, sigma etc.) may be modelled as de-
pending on mixture class by model specifications such as (g0 ~ h2, sigma ~ h2). See Examples.

In general hcov has been designed for two classes and two classes are assumed if neither ‘h2’ nor
‘h3’ appears in the model formulae. However, there is a small exception: hcov may have three
non-missing levels if ‘h3’ appears in a model formula. Note that h2 cannot be combined with h3;
h3 is for advanced use only and has not been fully tested.

The number of fitted parameters is the same as the corresponding finite mixture model if mixture
terms (‘h2’, ‘h3’) appear in the model formulae. Otherwise (no mixture terms) estimating pmix
requires a single extra parameter. The estimate of pmix then depends solely on the observed class
proportions in the covariate, and the beta variance-covariance matrix will show zero covariance of
pmix with other detection parameters.

Models for pmix

Variation in the parameter pmix may be modelled across sessions i.e., models such as pmix ~ session
or pmix ~ Session are valid, as are formulae involving session covariates defined in the sessioncov
argument of secr.fit.

If no mixture term appears in the formula for pmix then one is added automatically (usually ‘h2’).
This serves mostly to keep track of values in the output.

Attempting to model pmix as a function of individual covariates or other within-session terms (t, b
etc.) will cause an error.

Interpreting output

When you display a fitted secr model the parameter estimates are in a final section headed ‘Fitted
(real) parameters evaluated at base levels of covariates’. The same output may be obtained by calling
the predict method directly. Calling predict has the advantage that you can obtain estimates for
levels of the covariates other than the base levels, by specifying newdata. An example below shows
how to specify h2 in newdata. [Note: predict is generic, and you must consult ?predict.secr to see
the help for the specific implementation of this method for fitted secr objects].

The output from predict.secr for a mixture model is a list with one component for each (possibly
latent) class. Each row corresponds to a fitted real parameter: ordinarily these include the detection
parameters (e.g., g0, sigma) and the mixing proportion (pmix).

In the case of a model fitted by maximizing the full likelihood (CL = FALSE), density D will also
appear in the output. Note that only one parameter for density is estimated, the total density across
classes. This total density figure appears twice in the output, once for each class.

The standard error (SE.estimate) is shown for each parameter. These are asymptotic estimates back-
transformed from the link scale. The confidence limits are also back-transformed from the link scale
(95% CI by default; vary alpha in predict.secr if you want e.g. 90% CI).

The mixing proportion pmix depends on the composition of the sample with respect to hcov and
the detection model. For a null detection model the mixing proportion is exactly the proportion in

hcov 97

the sample, with appropriate binomial confidence limits. Otherwise, the mixing proportion adjusts
for class differences in the probability and scale of detection (see Examples).

The preceding refers to the default behaviour when pmix ~ h2. It is possible also to fix the mixing
proportion at any arbitrary value (e.g., fixed = list(pmix = 0.5) for 1:1 sex ratio).

On output the classes are tagged with the factor levels of hcov, regardless of how few or how many
individuals were actually of known class. If only a small fraction were of known class, and there is
cryptic variation unrelated to hcov, then the association between the fitted classes and the nominal
classes (i.e. levels of hcov) may be weak, and should not be trusted.

Limitations

Hybrid mixture models are incompatible with groups as presently implemented.

The hcov likelihood conditions on the number of known-class individuals. A model fitted with hcov
= NULL or with a different hcov covariate has in effect a different data set, and likelihoods, deviances
or AICs cannot be compared. AIC can be used to compare models provided they all have the same
hcov covariate in the call to secr.fit, whether or not h2 appears in the model definition.

Likelihood

The likelihood of the hybrid mixture model is detailed in an appendix of the vignette secr-finitemixtures.pdf.

References

Borchers, D.L. and Efford, M.G. (2008) Spatially explicit maximum likelihood methods for capture–
recapture studies. Biometrics 64, 377–385.

Gardner, B., Royle, J.A., Wegan, M.T., Rainbolt, R. and Curtis, P. (2010) Estimating black bear
density using DNA data from hair snares. Journal of Wildlife Management 74, 318–325.

Pledger, S. (2000) Unified maximum likelihood estimates for closed capture–recapture models us-
ing mixtures. Biometrics 56, 434–442.

See Also

secr.fit

Examples

Not run:

house mouse dataset, morning trap clearances
81 female, 78 male, 1 unknown
morning <- subset(housemouse, occ = c(1,3,5,7,9))
summary(covariates(morning))

speedy model fitting with coarse mask
mmask <- make.mask(traps(morning), buffer = 20, nx = 32)

assuming equal detection of males and females
fitted sex ratio p(female) = 0.509434 = 81 / (81 + 78)

https://www.otago.ac.nz/density/pdfs/secr-finitemixtures.pdf

98 head

fit.0 <- secr.fit(morning, hcov = "sex", mask = mmask, trace = FALSE)
predict(fit.0)

allowing sex-specific detection parameters
this leads to new estimate of sex ratio
fit.h2 <- secr.fit(morning, hcov = "sex", mask = mmask, trace = FALSE,

model = list(g0 ~ h2, sigma ~ h2))
predict(fit.h2)

specifying newdata for h2 - equivalent to predict(fit.h2)
predict(fit.h2, newdata = data.frame(h2 = factor(c('f','m'))))

conditional likelihood fit of preceding model
estimate of sex ratio does not change
fit.CL.h2 <- secr.fit(morning, hcov = "sex", mask = mmask, trace = FALSE,

CL = TRUE, model = list(g0 ~ h2, sigma ~ h2))
predict(fit.CL.h2)

did sexes differ in detection parameters?
fit.CL.0 <- secr.fit(morning, hcov = "sex", mask = mmask, trace = FALSE,

CL = TRUE, model = list(g0 ~ 1, sigma ~ 1))
LR.test(fit.CL.h2, fit.CL.0)

did sex ratio deviate from 1:1?
fit.CL.h2.50 <- secr.fit(morning, hcov = "sex", mask = mmask, trace = FALSE,

CL = TRUE, model = list(g0 ~ h2, sigma ~ h2), fixed = list(pmix = 0.5))
LR.test(fit.CL.h2, fit.CL.h2.50)

did sexes show extra-compensatory variation in lambda0?
(Efford and Mowat 2014)
fit.CL.a0 <- secr.fit(morning, hcov = "sex", mask = mmask, trace = FALSE,

CL = TRUE, model = list(a0 ~ 1, sigma ~ h2))
LR.test(fit.CL.h2, fit.CL.a0)

trend in ovenbird sex ratio, assuming sex-specific detection
omask <- make.mask(traps(ovenCH), buffer = 300, nx = 32)
fit.sextrend <- secr.fit(ovenCH, model = list(g0~h2, sigma~h2, pmix~Session),

hcov = "Sex", CL = TRUE, mask = omask, trace = FALSE)
predict(fit.sextrend)[1:5]

End(Not run)

head First or Last Part of an Object

Description

Returns the first or last parts of secr objects

head 99

Usage

S3 method for class 'mask'
head(x, n=6L, ...)
S3 method for class 'Dsurface'
head(x, n=6L, ...)
S3 method for class 'traps'
head(x, n=6L, ...)
S3 method for class 'capthist'
head(x, n=6L, ...)
S3 method for class 'mask'
tail(x, n=6L, ...)
S3 method for class 'Dsurface'
tail(x, n=6L, ...)
S3 method for class 'traps'
tail(x, n=6L, ...)
S3 method for class 'capthist'
tail(x, n=6L, ...)

Arguments

x ‘mask’, ‘traps’ or ‘capthist’ object

n a single integer. If positive, size for the resulting object: number of elements for
a vector (including lists), rows for a matrix or data frame or lines for a function.
If negative, all but the n last/first number of elements of x.

... other arguments passed to subset

Details

These custom S3 methods retain the class of the target object, unlike the default methods applied to
‘mask’, ‘Dsurface’, ‘traps’ or ‘capthist’ objects.

Value

An object of the same class as x, but (usually) fewer rows.

See Also

head, tail

Examples

head(possummask)

100 homerange

homerange Home Range Statistics

Description

Some ad hoc measures of home range size may be calculated in secr from capture–recapture data:

dbar is the mean distance between consecutive capture locations, pooled over individuals (e.g.
Efford 2004). moves returns the raw distances.

MMDM (for ‘Mean Maximum Distance Moved’) is the average maximum distance between detections
of each individual i.e. the observed range length averaged over individuals (Otis et al. 1978).

ARL (or ‘Asymptotic Range Length’) is obtained by fitting an exponential curve to the scatter of
observed individual range length vs the number of detections of each individual (Jett and Nichols
1987: 889).

RPSV (for ‘Root Pooled Spatial Variance’) is a measure of the 2-D dispersion of the locations at
which individual animals are detected, pooled over individuals (cf Calhoun and Casby 1958, Slade
and Swihart 1983).

moves reports the distance between successive detections of each animal.

centroids reports the averaged coordinates of each animal’s detections

ORL reports the observed range length of each animal, the maximum distance between any two
detections.

trapsPerAnimal tabulates the number of animals recorded at 1, 2, ..., K detectors

Usage

dbar(capthist, userdist = NULL, mask = NULL)
MMDM(capthist, min.recapt = 1, full = FALSE, userdist = NULL, mask = NULL)
ARL(capthist, min.recapt = 1, plt = FALSE, full = FALSE, userdist = NULL, mask = NULL)
moves(capthist, userdist = NULL, mask = NULL, names = FALSE)
RPSV(capthist, CC = FALSE)
ORL(capthist, userdist = NULL, mask = NULL)
centroids(capthist)
trapsPerAnimal(capthist)

Arguments

capthist object of class capthist

userdist function or matrix with user-defined distances

mask habitat mask passed to userdist function, if required

names logical; should results be ordered alphanumerically by row names?

min.recapt integer minimum number of recaptures for a detection history to be used

plt logical; if TRUE observed range length is plotted against number of recaptures

full logical; set to TRUE for detailed output

CC logical for whether to use Calhoun and Casby formula

homerange 101

Details

dbar is defined as –

d =

n∑
i=1

ni−1∑
j=1

√
(xi,j − xi,j+1)2 + (yi,j − yi,j+1)2

n∑
i=1

(ni − 1)

When CC = FALSE, RPSV is defined as –

RPSV =

√√√√√√√
n∑
i=1

ni∑
j=1

[(xi,j − xi)2 + (yi,j − yi)2]

n∑
i=1

(ni − 1)− 1

.

Otherwise (CC = TRUE), RPSV uses the formula of Calhoun and Casby (1958) with a different de-
nominator –

s =

√√√√√√√
n∑
i=1

ni∑
j=1

[(xi,j − xi)2 + (yi,j − yi)2]

2
n∑
i=1

(ni − 1)

.

The Calhoun and Casby formula (offered from 2.9.1) correctly estimates σ when trapping is on an
infinite, fine grid, and is preferred for this reason. The original RPSV (CC = FALSE) is retained as
the default for compatibility with previous versions of secr.

RPSV has a specific role as a proxy for detection scale in inverse-prediction estimation of density
(Efford 2004, 2023).

RPSV is used in autoini to obtain plausible starting values for maximum likelihood estimation.

MMDM and ARL discard data from detection histories containing fewer than min.recapt+1 detections.

The userdist option is included for exotic non-Euclidean cases (see e.g. secr.fit details). RPSV
is not defined for non-Euclidean distances.

If capthist comprises standalone telemetry data (all detector ’telemetry’) then calculations are
performed on the telemetry coordinates. If capthist combines telemetry data and conventional
detections (‘multi’, ‘proximity’ etc.) then only the conventional data are summarised.

Movements are reliably reported by moves only if there is a maximum of one detection per animal
per occasion. The sequence of detections within any occasion is not known; where these occur the
sequence used by moves is arbitrary (sequence follows detector index).

Value

For dbar, MMDM, ARL and RPSV –

Scalar distance in metres, or a list of such values if capthist is a multi-session list.

The full argument may be used with MMDM and ARL to return more extensive output, particularly
the observed range length for each detection history.

102 homerange

For moves –

List with one component for each animal, a vector of distances, or numeric(0) if the animal is
detected only once. A list of such lists if capthist is a multi-session list.

For centroids –

For a single-session capthist, a matrix of two columns, the x- and y-coordinates of the centroid of
the detections of each animal. The number of detections is returned as the attribute ‘Ndetections’, a
1-column matrix.

For a multi-session capthist, a 3-D array as before, but with a third dimension for the session.
Centroid coordinates are missing (NA) if the animal was not detected in a session. The attribute
‘Ndetections’ with the number of detections per animal and session is a matrix.

For trapsPerAnimal –

A vector with the number of animals detected at k detectors.

Note

All measures are affected by the arrangement of detectors. dbar is also affected quite strongly by
serial correlation in the sampled locations. Using dbar with ‘proximity’ detectors raises a problem
of interpretation, as the original sequence of multiple detections within an occasion is unknown.
RPSV is a value analogous to the standard deviation of locations about the home range centre.

The value returned by dbar for ‘proximity’ or ‘count’ detectors is of little use because multiple
detections of an individual within an occasion are in arbitrary order.

Inclusion of these measures in the secr package does not mean they are recommended for general
use! It is usually better to use a spatial parameter from a fitted model (e.g., σ of the half-normal
detection function). Even then, be careful that σ is not ‘contaminated’ with behavioural effects (e.g.
attraction of animal to detector) or ‘detection at a distance’.

The argument ’names’ was added in 3.0.1. The default names = FALSE causes a change in behaviour
from that version onwards.

References

Calhoun, J. B. and Casby, J. U. (1958) Calculation of home range and density of small mammals.
Public Health Monograph. No. 55. U.S. Government Printing Office.

Efford, M. G. (2004) Density estimation in live-trapping studies. Oikos 106, 598–610.

Efford, M. G. (2023) ipsecr: An R package for awkward spatial capture–recapture data. Methods
in Ecology and Evolution In press.

Jett, D. A. and Nichols, J. D. (1987) A field comparison of nested grid and trapping web density
estimators. Journal of Mammalogy 68, 888–892.

Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D. R. (1978) Statistical inference from
capture data on closed animal populations. Wildlife Monographs 62, 1–135.

Slade, N. A. and Swihart, R. K. (1983) Home range indices for the hispid cotton rat (Sigmodon
hispidus) in Northeastern Kansas. Journal of Mammalogy 64, 580–590.

See Also

autoini

hornedlizard 103

Examples

dbar(captdata)
RPSV(captdata)
RPSV(captdata, CC = TRUE)

centr <- centroids(captdata)
plot(traps(captdata), border = 20)
text(centr[,1], centr[,2], attr(centr, 'Ndetections'))
text(centr[,1]+2, centr[,2]+3, rownames(captdata), cex = 0.6,

adj = 0)

hornedlizard Flat-tailed Horned Lizard Dataset

Description

Data from multiple searches for flat-tailed horned lizards (Phrynosoma mcalli) on a plot in Arizona,
USA.

Usage

hornedlizardCH

Details

The flat-tailed horned lizard (Phrynosoma mcalli) is a desert lizard found in parts of southwestern
Arizona, southeastern California and northern Mexico. There is considerable concern about its
conservation status. The species is cryptically coloured and has the habit of burying under the sand
when approached, making it difficult or impossible to obtain a complete count (Grant and Doherty
2007).

K. V. Young conducted a capture–recapture survey of flat-tailed horned lizards 25 km south of
Yuma, Arizona, in the Sonoran Desert. The habitat was loose sand dominated by creosote bush
and occasional bur-sage and Galletta grass. A 9-ha plot was surveyed 14 times over 17 days (14
June to 1 July 2005). On each occasion the entire 300 m x 300 m plot was searched for lizards.
Locations within the plot were recorded by handheld GPS. Lizards were captured by hand and
marked individually on their underside with a permanent marker. Marks are lost when the lizard
sheds, but this happens infrequently and probably caused few or no identification errors during the
2.5-week study.

A total of 68 individuals were captured 134 times. Exactly half of the individuals were recaptured
at least once.

Royle and Young (2008) analysed the present dataset to demonstrate a method for density estimation
using data augmentation and MCMC simulation. They noted that the plot size was much larger than
has been suggested as being practical in operational monitoring efforts for this species, that the plot
was chosen specifically because a high density of individuals was present, and that high densities

104 hornedlizard

typically correspond to less movement in this species. The state space in their analysis was a square
comprising the searched area and a 100-m buffer (J. A. Royle pers. comm.).

The detector type for these data is ‘polygonX’ and there is a single detector (the square plot). The
data comprise a capture history matrix (the body of hornedlizardCH) and the x-y coordinates of
each positive detection (stored as an attribute that may be displayed with the ‘xy’ function); the
‘traps’ attribute of hornedlizardCH contains the vertices of the plot. See secr-datainput.pdf for
guidance on data input.

Non-zero entries in a polygonX capture-history matrix indicate the number of the polygon contain-
ing the detection. In this case there was just one polygon, so entries are 0 or 1. No animal can
appear more than once per occasion with the polygonX detector type, so there is no need to specify
‘binomN = 1’ in secr.fit.

Object Description
hornedlizardCH single-session capthist object

Source

Royle and Young (2008) and J. A. Royle (pers. comm.), with additional information from K. V.
Young (pers. comm.).

References

Efford, M. G. (2011) Estimation of population density by spatially explicit capture–recapture anal-
ysis of data from area searches. Ecology 92, 2202–2207.

Grant, T. J. and Doherty, P. F. (2007) Monitoring of the flat-tailed horned lizard with methods
incorporating detection probability. Journal of Wildlife Management 71, 1050–1056

Marques, T. A., Thomas, L. and Royle, J. A. (2011) A hierarchical model for spatial capture–
recapture data: Comment. Ecology 92, 526–528.

Royle, J. A. and Young, K. V. (2008) A hierarchical model for spatial capture–recapture data. Ecol-
ogy 89, 2281–2289.

See Also

capthist, detector, reduce.capthist

Examples

plot(hornedlizardCH, tracks = TRUE, varycol = FALSE,
lab1 = TRUE, laboff = 6, border = 10, title =
"Flat-tailed Horned Lizards (Royle & Young 2008)")

table(table(animalID(hornedlizardCH)))
traps(hornedlizardCH)

show first few x-y coordinates
head(xy(hornedlizardCH))

housemouse 105

Not run:

Compare default (Poisson) and binomial models for number
caught
FTHL.fit <- secr.fit(hornedlizardCH)
FTHLbn.fit <- secr.fit(hornedlizardCH, details =

list(distribution = "binomial"))
collate(FTHL.fit, FTHLbn.fit)[,,,"D"]

Collapse occasions (does not run faster)
hornedlizardCH.14 <- reduce(hornedlizardCH, newoccasions =

list(1:14), outputdetector = "polygon")
FTHL14.fit <- secr.fit(hornedlizardCH.14, binomN = 14)

End(Not run)

housemouse House mouse live trapping data

Description

Data of H. N. Coulombe from live trapping of feral house mice (Mus musculus) in a salt marsh,
California, USA.

Usage

housemouse

Details

H. N. Coulombe conducted a live-trapping study on an outbreak of feral house mice in a salt marsh
in mid-December 1962 at Ballana Creek, Los Angeles County, California. A square 10 x 10 grid
was used with 100 Sherman traps spaced 3 m apart. Trapping was done twice daily, morning and
evening, for 5 days.

The dataset was described by Otis et al. (1978) and distributed with their CAPTURE software (now
available from https://www.mbr-pwrc.usgs.gov/software.html). Otis et al. (1978 p. 62, 68)
cite Coulombe’s unpublished 1965 master’s thesis from the University of California, Los Angeles,
California.

The data are provided as a single-session capthist object. There are two individual covariates:
sex (factor levels ‘f’, ‘m’) and age class (factor levels ‘j’, ‘sa’, ‘a’). The sex of two animals is not
available (NA); it is necessary to drop these records for analyses using ‘sex’ unless missing values
are specifically allowed, as in hcov.

The datasets were originally in the CAPTURE ‘xy complete’ format which for each detection gives
the ‘column’ and ‘row’ numbers of the trap (e.g. ‘ 9 5’ for a capture in the trap at position (x=9,
y=5) on the grid). Trap identifiers have been recoded as strings with no spaces by inserting zeros
(e.g. ‘0905’ in this example).

https://www.mbr-pwrc.usgs.gov/software.html

106 Internal

Sherman traps are designed to capture one animal at a time, but the data include 30 double captures
and one occasion when there were 4 individuals in a trap at one time. The true detector type
therefore falls between ‘single’ and ‘multi’. Detector type is set to ‘multi’ in the distributed data
objects.

Otis et al. (1978) report various analyses including a closure test on the full data, and model selec-
tion and density estimation on data from the mornings only.

Source

File ‘examples’ distributed with program CAPTURE.

References

Otis, D. L., Burnham, K. P., White, G. C. and Anderson, D. R. (1978) Statistical inference from
capture data on closed animal populations. Wildlife Monographs 62, 1–135.

Examples

plot(housemouse, title = paste("Coulombe (1965), Mus musculus,",
"California salt marsh"), border = 5, rad = 0.5,
gridlines = FALSE)

morning <- subset(housemouse, occ = c(1,3,5,7,9))
summary(morning)

drop 2 unknown-sex mice
known.sex <- subset(housemouse, !is.na(covariates(housemouse)$sex))

reveal multiple captures
table(trap(housemouse), occasion(housemouse))

Not run:

assess need to distinguish morning and afternoon samples
housemouse.0 <- secr.fit (housemouse, buffer = 20)
housemouse.ampm <- secr.fit (housemouse, model = g0~tcov, buffer = 20,

timecov = c(0,1,0,1,0,1,0,1,0,1))
AIC(housemouse.0, housemouse.ampm)

End(Not run)

Internal Internal Functions

Description

Various functions called internally by secr and not exported.

Internal 107

Usage

boundarytoSF (poly)

Dfn2(designD, beta = NULL, ...)

Arguments

poly data to define one or more polygons

designD dataframe of density design data (output from D.designdata)

beta numeric vector of beta values (see Details for NULL)

... other arguments (not used)

Details

The function boundarytoSF converts various possible polygon input formats to a standard form
(sfc).

Possible inputs are:

Input From Note
2-column matrix or dataframe base R
SpatialPolygons sp
SpatialPolygonsDataFrame sp
SpatVector terra
sf sf geometry type POLYGON or MULTIPOLYGON
sfc sf geometry type POLYGON or MULTIPOLYGON

Matrix input defines a single polygon.

Dfn2 is supplied automatically as ’details’ argument Dfn in secr.fit when the switch Dlambda is
set to TRUE for the multi-session trend reparameterization of density. Dfn2 uses beta = NULL to
return the required number of density coefficients (beta parameters) in the model.

Value

boundarytoSF – Spatial object of sf class sfc, containing a geometry set of type POLYGON or
MULTIPOLYGON. NULL input results in NULL output.

Dfn2 – Vector of density values on the link scale, suitable for the internal array (mask x groups x
sessions).

References

Hijmans, R. J. (2022) terra: Spatial Data Analysis. R package version 1.5-14. https://rspatial.org/terra/

Pebesma, E. (2018) Simple features for R: standardized support for spatial vector data. The R
Journal 10(1), 439–446. https://doi.org/10.32614/RJ-2018-009

108 intervals

Pebesma, E.J. and Bivand, R. S. (2005) Classes and methods for spatial data in R. R News 5(2),
9–13. https://cran.r-project.org/doc/Rnews/Rnews_2005-2.pdf.

See Also

pointsInPolygon, secr-spatialdata.pdf,

predictDlambda, secr-trend.pdf,

Examples

Not run:

poly <- cbind(x = c(0,6,6,0,0), y = c(0,0,6,6,0))
secr:::boundarytoSF(poly)

End(Not run)

intervals Work with Open Population data

Description

Functions for data manipulation

Usage

intervals(object, ...)
intervals(object) <- value
sessionlabels(object, ...)
sessionlabels(object) <- value

Arguments

object capthist object

value vector of intervals or primary session labels

... other arguments (not used)

https://www.otago.ac.nz/density/pdfs/secr-spatialdata.pdf
https://www.otago.ac.nz/density/pdfs/secr-trend.pdf

join 109

Details

intervals extracts the ‘interval’ attribute if it exists.

The attribute ‘intervals’ is set automatically by the secr function join.

sessionlabels provides session names for the primary sessions encoded in a “single-session”
capthist object (e.g., the result of join) that has an intervals attribute. The names are used by some
summary functions in the package openCR (M. Efford unpubl.) (m.array, JS.counts).

The function session has a different purpose: labelling sessions in a multi-session capthist object.
However, session names of multi-session input are used automatically by join to construct the
sessionlabels attribute of the resulting single-session object.

Value

For intervals, a numeric vector of time intervals, one less than the number of occasions (sec-
ondary sessions).

For sessionlabels, a character vector of primary session names.

Note

There is a naming conflict with the intervals function in nlme.

Examples

singlesessionCH <- join(ovenCH)
intervals(singlesessionCH)
sessionlabels(singlesessionCH)

join Combine or Split Sessions of capthist Object

Description

Make a single-session capthist object from a list of single-session objects, or a multi-session capthist
object.

Usage

join(object, remove.dupl.sites = TRUE, tol = 0.001, sites.by.name = FALSE,
drop.sites = FALSE, intervals = NULL, sessionlabels = NULL,
timevaryingcov = NULL)

unjoin(object, intervals, ...)

110 join

Arguments

object list of single-session objects, or a multi-session capthist object [join], or a
single-session capthist object [unjoin]

remove.dupl.sites

logical; if TRUE then a single record is retained for each trap site used in multi-
ple input sessions

tol absolute distance in metres within which sites are considered identical
sites.by.name logical; if TRUE and remove.dupl.sites then duplicate sites are inferred from

row names rather than x-y coordinates
drop.sites logical; if TRUE then site information is discarded
intervals vector of times between sessions (join) or occasions (unjoin; zero indicates same

session)
sessionlabels vector of session names
timevaryingcov character vector of covariate names
... other arguments passed to subset.capthist

Details

join The input sessions are assumed to be of the same detector type and to have the same attributes
(e.g., covariates should be present for all or none).
The number of occasions (columns) in the output is equal to the sum of the number of occa-
sions in each input.
Duplicates may be defined either as sites within a given distance (tol) or sites with the same
name (sites.by.name = TRUE). Using site names is faster.
For non-spatial analyses it is efficient to drop the third dimension and discard the traps attribute
(drop.sites = TRUE).
A new dataframe of individual covariates is formed using the covariates for the first occurrence
of each animal.
If timevaryingcov is given then for each name a new covariate is generated for each ses-
sion and populated with values observed in that session, or NA if the animal was not de-
tected. A ‘timevaryingcov’ (list) attribute is created that associates each set of new session-
specific columns with the corresponding old name, so that it may be used in formulae (see
timevaryingcov).
Attributes xy and signal are handled appropriately, as is trap usage.

unjoin The input grouping of occasions (columns) into sessions is specified via intervals. This
is a vector of length one less than the number of occasions (columns) in object. Elements
greater than zero indicate a new session.
The intervals argument may be omitted if object has a valid ‘intervals’ attribute, as in the
output from join.

Value

For join, a single-session capthist object. The vector attribute ‘intervals’ records the distinction
between occasions that are adjacent in the input (interval = 0) and those that are in consecutive
sessions (e.g., interval = 1); ‘intervals’ has length one less than the number of occasions.

For unjoin, a multi-session capthist object. Sessions are named with integers.

kfn 111

Note

Do not confuse unjoin with split.capthist which splits by row (animal) rather than by column
(occasion).

Occasions survive intact; to pool occasions use reduce.capthist.

join was modified in version 2.9.5 to check whether the components of ‘object’ all used the
same detectors (‘traps’) (putting aside differences in usage). If the traps are identical and re-
move.dupl.sites = TRUE then the resulting ‘capthist’ uses the common list of detectors, with a
usage attribute formed by concatenating the usage columns of the input. This is faster than the
previous filtering algorithm using ‘tol’; the older algorithm is still used if the traps differ.

Problems may be encountered with large datasets. These may be alleviated by setting sites.by.name
= TRUE (if matching sites have matching names, avoiding the need for coordinate matching) or
drop.sites = TRUE (if only non-spatial data are required for openCR).

See Also

MS.capthist, rbind.capthist

Examples

joined.ovenCH <- join (ovenCH)
summary(joined.ovenCH)
attr(joined.ovenCH, "intervals")

summary(unjoin(joined.ovenCH))

Not run:

suppose the 5-year ovenbird covariates include a column for weight
(here generated as random numbers)
for (i in 1:5) covariates(ovenCH[[i]])$wt <- runif(nrow(ovenCH[[i]]))
construct single-session version of data for openCR
identify 'wt' as varying across years
ovenCHj <- join(ovenCH, timevaryingcov = 'wt')
head(covariates(ovenCHj))
timevaryingcov(ovenCHj)
Use example: openCR.fit(ovenCHj, model = p~wt)

End(Not run)

kfn Overlap Index

112 kfn

Description

Computes the overlap index of Efford et al. (2016) from various inputs, including fitted models.

Usage

kfn(object)

Arguments

object fitted secr model, numeric vector, matrix, dataframe

Details

kfn simply computes k = σ
√
D/100, where σ is the sigma parameter of a fitted halfnormal detec-

tion function and D is the corresponding density estimate. The factor of 1/100 adjusts for the units
used in secr (sigma in metres; D in animals per hectare).

Input may be in any of these forms

1. vector with D and sigma in the first and second positions.

2. matrix with each row as in (1)

3. dataframe such as produced by predict.secr with rows ‘D’ and ‘sigma’, and column ‘esti-
mate’.

4. fitted secr model

5. a list of any of the above

Value

Numeric vector with elements ‘D’, ‘sigma’ and ‘k’, or a matrix with these columns.

Note

The index should not be taken too literally as a measure of overlap: it represents the overlap ex-
pected if activity centres are randomly distributed and if home ranges have bivariate normal utili-
sation. Thus it does not measure overlap due to social behaviour etc. except as that affects home
range size.

The index may be estimated directly using the sigmak parameterization (i.e., when sigmak appears
in the model for secr.fit). This provides SE and confidence limits for sigmak (= k). However, the
directly estimated value of sigmak lacks the unit correction and is therefore 100 × the value from
kfn.

References

Efford, M. G., Dawson, D. K., Jhala, Y. V. and Qureshi, Q. (2016) Density-dependent home-range
size revealed by spatially explicit capture–recapture. Ecography 39, 676–688.

list.secr.fit 113

See Also

predict.secr, secr.fit, details

Examples

kfn(secrdemo.0)

compare
fitk <- secr.fit(captdata, model = sigmak~1, buffer = 100, trace = FALSE)
predict(fitk)

list.secr.fit Fit Multiple SECR Models

Description

This function is a wrapper for secr.fit that allows multiple models to be fitted.

Usage

list.secr.fit (..., constant = list(), prefix = "fit", names = NULL)

Arguments

... varying arguments of secr.fit

constant list of named arguments held constant

prefix character prefix for automatic names

names character names of output

Details

The . . . argument may be one or several vectors of the same length that refers to a different named
argument of secr.fit. secr.fit is called with the constant arguments plus the first value in each
vector, then the second value, etc. The logic follows mapply.

Each of the . . . arguments may also be a named argument with a single value, although the com-
pound values should be wrapped in list(), passed by name (in quotes), or placed in the ’constant’ list
to avoid misinterpretation. For example, the capthist argument of secr.fit should be be wrapped
in list() or " " if it is placed outside ’constant’.

’prefix’ is used only if ’names’ is not supplied.

Value

An secrlist of model fits (see secr.fit).

114 LLsurface

Note

This function replaces the previous function par.secr.fit: since the introduction of multi-threading
in secr 4.0 it is no longer efficient to use parallel worker processes.

See Also

secr.fit, AIC.secr, predict.secr

Examples

Not run:

fit two detection models
fits <- list.secr.fit (model = c(g0~1, g0~b), constant = list(captdata, trace = FALSE))
AIC(fits)

alternatively,
fits <- list.secr.fit ('captdata', model = c(g0~1, g0~b), trace = FALSE)
AIC(fits)

replacing par.derived and par.region.N:

lapply(fits, derived)
lapply(fits, region.N)

End(Not run)

LLsurface Plot Likelihood Surface

Description

LLsurface is a generic function to calculate log likelihood over a grid of values of two coefficients
(beta parameters) from a fitted model and optionally make an approximate contour plot of the log
likelihood surface.

A method is provided for secr objects.

Usage

LLsurface(object, ...)

S3 method for class 'secr'
LLsurface(object, betapar = c("g0", "sigma"), xval = NULL,

yval = NULL, centre = NULL, realscale = TRUE, plot = TRUE,
plotfitted = TRUE, ncores = NULL, ...)

LLsurface 115

Arguments

object fitted model, secr object output from secr.fit

betapar character vector giving the names of two beta parameters

xval vector of numeric values for x-dimension of grid

yval vector of numeric values for y-dimension of grid

centre vector of central values for all beta parameters

realscale logical. If TRUE input and output of x and y is on the untransformed (inverse-
link) scale.

plot logical. If TRUE a contour plot is produced

plotfitted logical. If TRUE the MLE from object is shown on the plot (+)

ncores integer number of threads for parallel processing

... other arguments passed to contour

Details

centre is set by default to the fitted values of the beta parameters in object. This has the effect of
holding parameters other than those in betapar at their fitted values.

If xval or yval is not provided then 11 values are set at equal spacing between 0.8 and 1.2 times
the values in centre (on the ‘real’ scale if realscale = TRUE and on the ‘beta’ scale otherwise).

Contour plots may be customized by passing graphical parameters through the . . . argument.

Setting ncores = NULL uses the existing value from the environment variable RCPP_PARALLEL_NUM_THREADS
(see setNumThreads).

Value

A matrix of the log likelihood evaluated at each grid point (rows x, columns y), invisibly if plot =
TRUE. Failed evaluations return NA.

Note

LLsurface works for named ‘beta’ parameters rather than ‘real’ parameters. The default realscale
= TRUE only works for beta parameters that share the name of the real parameter to which they relate
i.e. the beta parameter for the base level of the real parameter. This is because link functions are
defined for real parameters not beta parameters.

The contours are approximate because they rely on interpolation. See Examples for a more reliable
way to compare the likelihood at the MLE with nearby points on the surface.

Examples

Not run:

LLsurface(secrdemo.CL, xval = seq(0.16,0.40,0.02),
yval = 25:35, nlevels = 20)

116 logit

now verify MLE
click on MLE and apparent `peak'
if (interactive()) {

xy <- locator(2)
LLsurface(secrdemo.CL, xval = xy$x, yval = xy$y, plot = FALSE)

}

End(Not run)

logit Logit Transformation

Description

Transform real values to the logit scale, and the inverse.

Usage

logit(x)
invlogit(y)

Arguments

x vector of numeric values in (0,1) (possibly a probability)

y vector of numeric values

Details

The logit transformation is defined as logit(x) = log(x
1−x) for x ∈ (0, 1).

Value

Numeric value on requested scale.

Note

logit is equivalent to qlogis, and invlogit is equivalent to plogis (both R functions in the stats
package). logit and invlogit are used in secr because they are slightly more robust to bad input,
and their names are more memorable!

Examples

logit(0.5)
invlogit(logit(0.2))

logmultinom 117

logmultinom Multinomial Coefficient of SECR Likelihood

Description

Compute the constant multinomial component of the SECR log likelihood

Usage

logmultinom(capthist, grp = NULL)

Arguments

capthist capthist object

grp factor defining group membership, or a list (see Details)

Details

For a particular dataset and grouping, the multinomial coefficient is a constant; it does not depend on
the parameters and may be ignored when maximizing the likelihood to obtain parameter estimates.
Nevertheless, the log likelihood reported by secr.fit includes this component unless the detector
type is ‘signal’, ‘polygon’, ‘polygonX’, ‘transect’ or ‘transectX’ (from 2.0.0).

If grp is NULL then all animals are assumed to belong to one group. Otherwise, the length of grp
should equal the number of rows of capthist.

grp may also be any vector that can be coerced to a factor. If capthist is a multi-session capthist
object then grp should be a list with one factor per session.

If capture histories are not assigned to groups the value is the logarithm of(
n

n1, ..., nC

)
=

n!

n1!n2!...nC !

where n is the total number of capture histories and n1 ... nC are the frequencies with which each
of the C unique capture histories were observed.

If capture histories are assigned to G groups the value is the logarithm of

G∏
g=1

ng!

ng1!ng2!...ngCg
!

where ng is the number of capture histories of group g and ng1 ... ngCg
are the frequencies with

which each of the Cg unique capture histories were observed for group g.

For multi-session data, the value is the sum of the single-session values. Both session structure and
group structure therefore affect the value computed. Users will seldom need this function.

Value

The numeric value of the log likelihood component.

118 LR.test

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture–recapture studies. Biometrics 64, 377–385.

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit
capture–recapture: likelihood-based methods. In: D. L. Thompson, E. G. Cooch and M. J. Conroy
(eds) Modeling Demographic Processes in Marked Populations. Springer. Pp. 255–269.

See Also

stoatDNA

Examples

no groups
logmultinom(stoatCH)

LR.test Likelihood Ratio Test

Description

Compute likelihood ratio test to compare two fitted models, one nested within the other.

Usage

LR.test(model1, model2)

Arguments

model1 fitted model

model2 fitted model

Details

The fitted models must be of a class for which there is a logLik method (e.g., ‘secr’ or ‘lm’). Check
with methods("logLik").

The models must be nested (no check is performed - this is up to the user), but either model1 or
model2 may be the more general model.

The models must also be compatible by the criteria of AICcompatible.

The test statistic is twice the difference of the maximized likelihoods. It is compared to a chi-square
distribution with df equal to the number of extra parameters in the more complex model.

make.capthist 119

Value

Object of class ‘htest’, a list with components

statistic value the test statistic

parameter degrees of freedom of the approximate chi-squared distribution of the test statis-
tic

p.value probability of test statistic assuming chi-square distribution

method character string indicating the type of test performed

data.name character string with names of models compared

See Also

AICcompatible, AIC.secr, score.test

Examples

two pre-fitted models
AIC (secrdemo.0, secrdemo.b)
LR.test (secrdemo.0, secrdemo.b)

make.capthist Construct capthist Object

Description

Form a capthist object from a data frame of capture records and a traps object.

Usage

make.capthist(captures, traps, fmt = c("trapID", "XY"), noccasions = NULL,
covnames = NULL, bysession = TRUE, sortrows = TRUE,
cutval = NULL, tol = 0.01, snapXY = FALSE, noncapt = "NONE", signalcovariates)

Arguments

captures dataframe of capture records in one of two possible formats (see Details)

traps object of class traps describing an array of passive detectors

fmt character string for capture format.

noccasions number of occasions on which detectors were operated

covnames character vector of names for individual covariate fields

bysession logical, if true then ID are made unique by session

sortrows logical, if true then rows are sorted in ascending order of animalID

120 make.capthist

cutval numeric, threshold of signal strength for ‘signal’ detector type

tol numeric, snap tolerance in metres

snapXY logical; if TRUE then fmt = ’XY’ uses nearest trap within tol for non-polygon
detectors

noncapt character value; animal ID used for ‘no captures’
signalcovariates

character vector of field names from ‘captures’

Details

make.capthist is the most flexible way to prepare data for secr.fit. See read.capthist for
a more streamlined way to read data from text files for common detector types. Each row of the
input data frame captures represents a detection on one occasion. The capture data frame may be
formed from a text file with read.table.

Input formats are based on the Density software (Efford 2012; see also secr-datainput.pdf). If fmt
= "XY" the required fields are (session, ID, occasion, x, y) in that order. If fmt = "trapID" the
required fields are (session, ID, occasion, trap), where trap is the numeric index of the relevant
detector in traps. session and ID may be character-, vector- or factor-valued; other required
fields are numeric. Fields are matched by position (column number), not by name. Columns after
the required fields are interpreted as individual covariates that may be continuous (e.g., size) or
categorical (e.g., age, sex).

If captures has data from multiple sessions then traps may be either a list of traps objects, one
per session, or a single traps object that is assumed to apply throughout. Similarly, noccasions
may be a vector specifying the number of occasions in each session.

Covariates are assumed constant for each individual; the first non-missing value is used. The length
of covnames should equal the number of covariate fields in captures.

bysession takes effect when the same individual is detected in two or more sessions: TRUE results
in one capture history per session, FALSE has the effect of generating a single capture history (this
is not appropriate for the models currently provided in secr).

Deaths are coded as negative values in the occasion field of captures. Occasions should be num-
bered 1, 2, ..., noccasions. By default, the number of occasions is the maximum value of ‘occasion’
in captures.

Signal strengths may be provided in the fifth (fmt = trapID) or sixth (fmt = XY) columns. Detections
with signal strength missing (NA) or below ‘cutval’ are discarded.

A session may result in no detections. In this case a null line is included in captures using the
animal ID field given by noncapt, the maximum occasion number, and any trapID (e.g. "sess1
NONE 5 1" for a 5-occasion session) (or equivalently "sess1 NONE 5 10 10" for fmt = XY).

Nonspatial data (Session, AnimalID, Occasion and possibly individual covariates) may be entered
by omitting the ‘traps’ argument or setting it to NULL.

Value

An object of class capthist (a matrix or array of detection data with attributes for detector positions
etc.). For ‘single’ and ‘multi’ detectors this is a matrix with one row per animal and one column per
occasion (dim(capthist)=c(nc,noccasions)); each element is either zero (no detection) or a detector

make.capthist 121

number (the row number in traps not the row name). For ‘proximity’ detectors capthist is an
array of values {-1, 0, 1} and dim(capthist)=c(nc,noccasions,ntraps). The number of animals nc is
determined from the input, as is noccasions if it is not specified. traps, covariates and other
data are retained as attributes of capthist.

Deaths during the experiment are represented as negative values in capthist.

For ‘signal’ and ‘signalnoise’ detectors, the columns of captures identified in signalcovariates
are saved along with signal strength measurements in the attribute ‘signalframe’.

If the input has data from multiple sessions then the output is an object of class c("capthist", "list")
comprising a list of single-session capthist objects.

Note

make.capthist requires that the data for captures and traps already exist as R objects. To read
data from external (text) files, first use read.table and read.traps, or try read.capthist for a
one-step solution.

Prior to secr 4.4.0, occasional valid records for "multi" and "single" detectors were rejected as
duplicates.

From secr 4.5.0, ‘snapXY’ works for transects as well as point detectors.

References

Efford, M. G. (2012) DENSITY 5.0: software for spatially explicit capture–recapture. Department
of Mathematics and Statistics, University of Otago, Dunedin, New Zealand. https://www.otago.
ac.nz/density/.

See Also

capthist, traps, read.capthist, secr.fit, sim.capthist

Examples

peek at demonstration data
head(captXY)
head(trapXY)

demotraps <- read.traps(data = trapXY)
demoCHxy <- make.capthist (captXY, demotraps, fmt = "XY")

demoCHxy ## print method for capthist
plot(demoCHxy) ## plot method for capthist
summary(demoCHxy) ## summary method for capthist

To enter `count' data without manually repeating rows
need a frequency vector f, length(f) == nrow(captXY)
n <- nrow(captXY)
f <- sample (1:5, size = n, prob = rep(0.2,5), replace = TRUE)
repeat rows as required...

https://www.otago.ac.nz/density/
https://www.otago.ac.nz/density/

122 make.lacework

captXY <- captXY[rep(1:n, f),]
counttraps <- read.traps(data = trapXY, detector = "count")
countCH <- make.capthist (captXY, counttraps, fmt = "XY")

make.lacework Construct Lacework Detector Design

Description

A lacework design comprises a square grid with detectors placed at regular distances along the
grid lines (Efford unpubl.). This requires fewer detectors than uniform coverage at close spacing
and is simpler than clustered designs, while providing good spatial coverage and protection from
alignment bias (Efford 2019).

Usage

make.lacework(region, spacing = c(100, 20), times = NULL, origin = NULL,
rotate = 0, radius = NULL, detector = "multi", keep.design = TRUE)

Arguments

region dataframe or SpatialPolygonsDataFrame with coordinates of perimeter
spacing numeric 2-vector with major (grid) and minor spacings, or minor spacing only
times numeric ratio major:minor spacing if spacing length 1
origin numeric vector giving x- and y-cooordinates of fixed grid origin (origin is oth-

erwise random)
rotate numeric; number of degrees by which to rotate design clockwise about centroid

of region bounding box
radius numeric; detectors are dropped if they are further than this from a crossing
detector character detector type – see make.grid

keep.design logical; if TRUE then input argument values are retained

Details

It is tidy for the major spacing (spacing[1]) to be a multiple of the minor spacing (spacing[2]);
precisely one detector is then placed at each grid intersection. This outcome may also be achieved
by providing only the minor spacing in the spacing argument and specifying an integer value for
times.

In general it is better not to specify origin. Specifying both origin and rotate may result in
incomplete coverage, as the desired grid is relative to the bounding box of the rotated region.

Set radius < spacing[1]/2 to break lacework into multiple cross-shaped arrays centred on the inter-
sections (crossing points) and truncated at radius metres (assuming you follow advice and express
all linear measurements in metres).

The number of detectors should not exceed 5000.

make.mask 123

Value

An secr traps object. The attribute ‘crossings’ is a 2-column matrix with the coordinates of the
intersection points. If keep.design is TRUE then the input argument values are retained in attribute
‘design’ (a list with first component function = 'make.lacework').

References

Efford, M. G. (2019) Non-circular home ranges and the estimation of population density. Ecology
100, e02580. https://esajournals.onlinelibrary.wiley.com/doi/10.1002/ecy.2580

See Also

make.systematic

Examples

trps <- make.lacework(possumarea, c(1000,100), rotate = 45, detector = 'proximity')
plot(trps, gridspace = 1000)
lines(possumarea)
points(attr(trps, 'crossings'), pch = 16)

make.mask Build Habitat Mask

Description

Construct a habitat mask object for spatially explicit capture-recapture. A mask object is a set of
points with optional attributes.

Usage

make.mask(traps, buffer = 100, spacing = NULL, nx = 64, ny = 64, type =
c("traprect", "trapbuffer", "pdot", "polygon", "clusterrect",

"clusterbuffer", "rectangular", "polybuffer"), poly = NULL, poly.habitat = TRUE,
cell.overlap = c("centre","any","all"), keep.poly = TRUE, check.poly = TRUE,
pdotmin = 0.001, random.origin = FALSE,
...)

Arguments

traps object of class traps

buffer width of buffer in metres

spacing spacing between grid points (metres)

124 make.mask

nx number of grid points in ‘x’ direction

ny number of grid points in ‘y’ direction (type = ‘rectangular’)

type character string for method

poly bounding polygon to which mask should be clipped (see Details)

poly.habitat logical for whether poly represents habitat or its inverse (non-habitat)

cell.overlap character string for cell vertices used to determine overlap with ‘poly’

keep.poly logical; if TRUE any bounding polygon is saved as the attribute ‘polygon’

check.poly logical; if TRUE a warning is given for traps that lie outside a bounding polygon

pdotmin minimum detection probability for inclusion in mask when type = "pdot" (op-
tional)

random.origin logical; if TRUE the mask coordinates are jittered

... additional arguments passed to pdot when type = "pdot"

Details

The ‘traprect’ method constructs a grid of points in the rectangle formed by adding a buffer strip to
the minimum and maximum x-y coordinates of the detectors in traps. Both ‘trapbuffer’ and ‘pdot’
start with a ‘traprect’ mask and drop some points.

The ‘trapbuffer’ method restricts the grid to points within distance buffer of any detector.

The ‘pdot’ method restricts the grid to points for which the net detection probability p.(X) (see
pdot) is at least pdotmin. Additional parameters are used by pdot (detectpar, noccasions). Set
these with the . . . argument; otherwise make.mask will silently use the arbitrary defaults. pdot is
currently limited to a halfnormal detection function.

The ‘clusterrect’ method constructs a grid of rectangular submasks centred on ‘clusters’ of detec-
tors generated with trap.builder (possibly indirectly by make.systematic). The ‘clusterbuffer’
method resembles ‘trapbuffer’, but is usually faster when traps are arranged in clusters because it
starts with a ‘clusterrect’ mask.

The ‘rectangular’ method constructs a simple rectangular mask with the given nx, ny and spacing.

The ‘polybuffer’ method constructs a mask by buffering around the polygon specified in the ‘poly’
argument. If that inherits from ‘SpatialPolygons’ or ‘sfc’ then the buffering is performed with
sf::st_buffer. Otherwise, buffering is approximate, based on the distance to points on an initial
discretized mask enclosed by ‘poly’ (points at half the current ‘spacing’).

If poly is specified, points outside poly are dropped (unless type = "polybuffer"). The default is to
require only the centre to lie within poly; use cell.overlap = "all" to require all cell corners to
lie within poly, or cell.overlap = "any" to accept cells with any corner in poly. The ‘polygon’
method places points on a rectangular grid clipped to the polygon (buffer is not used). Thus
‘traprect’ is equivalent to ‘polygon’ when poly is supplied. poly may be either

• a matrix or dataframe of two columns interpreted as x and y coordinates, or

• an object from package ‘sf’ with polygon geometries, or

• a SpatialPolygons or SpatialPolygonsDataFrame object as defined in the package ‘sp’, possi-
bly imported by reading a shapefile.

make.mask 125

If spacing is not specified then it is determined by dividing the range of the x coordinates (including
any buffer) by nx.

random.origin shifts the origin of the mask by a uniform random displacement within a spacing x
spacing grid cell, while ensuring that the mask also satisfies the buffer requirement. random.origin
is available only for ‘traprect’, ‘trapbuffer’, ‘polygon’, and ‘rectangular’ types, and spacing must
be specified.

Value

An object of class mask. When keep.poly = TRUE, poly and poly.habitat are saved as attributes
of the mask.

Note

A warning is displayed if type = "pdot" and the buffer is too small to include all points with p. >
pdotmin.

A habitat mask is needed to fit an SECR model and for some related computations. The default
mask settings in secr.fit may be good enough, but it is preferable to use make.mask to construct
a mask in advance and to pass that mask as an argument to secr.fit.

The function buffer.contour displays the extent of one or more ‘trapbuffer’ zones - i.e. the effect
of buffering the detector array with varying strip widths.

See Also

mask, read.mask, subset.mask, pdot, buffer.contour, deleteMaskPoints, as.mask

Examples

temptrap <- make.grid(nx = 10, ny = 10, spacing = 30)

default method: traprect
tempmask <- make.mask(temptrap, spacing = 5)
plot(tempmask)
summary (tempmask)

make irregular detector array by subsampling
form mask by `trapbuffer' method
temptrap <- subset (temptrap, sample(nrow(temptrap), size = 30))
tempmask <- make.mask (temptrap, spacing = 5, type = "trapbuffer")
plot (tempmask)
plot (temptrap, add = TRUE)

Not run:

form mask by "pdot" method
temptrap <- make.grid(nx = 6, ny = 6)
tempmask <- make.mask (temptrap, buffer = 150, type = "pdot",

pdotmin = 0.0001, detectpar = list(g0 = 0.1, sigma = 30),
noccasions = 4)

126 make.systematic

plot (tempmask)
plot (temptrap, add = TRUE)

Using an ESRI polygon shapefile for clipping (shapefile
polygons may include multiple islands and holes).

library(sf)
shpfilename <- system.file("extdata/possumarea.shp", package = "secr")
possumarea <- st_read(shpfilename)

possummask2 <- make.mask(traps(possumCH), spacing = 20,
buffer = 250, type = "trapbuffer", poly = possumarea)

par(mar = c(1,6,6,6), xpd = TRUE)
plot (possummask2, ppoly = TRUE)
plot(traps(possumCH), add = TRUE)
par(mar = c(5,4,4,2) + 0.1, xpd = FALSE)

if the polygon delineates non-habitat ...
seaPossumMask <- make.mask(traps(possumCH), buffer = 1000,

type = "traprect", poly = possumarea, poly.habitat = FALSE)
plot(seaPossumMask)
plot(traps(possumCH), add = TRUE)
this mask is not useful!

End(Not run)

make.systematic Construct Systematic Detector Design

Description

A rectangular grid of clusters within a polygonal region.

Usage

make.systematic(n, cluster, region, spacing = NULL, origin = NULL,
originoffset = c(0,0), chequerboard = c('all','black','white'),
order = c('x', 'y', 'xb', 'yb'), rotate = 0, centrexy = NULL,
keep.design = TRUE, ...)

make.systematic 127

Arguments

n integer approximate number of clusters (see Details)

cluster traps object defining a single cluster

region dataframe or SpatialPolygonsDataFrame with coordinates of perimeter

spacing scalar distance between cluster centres

origin vector giving x- and y-cooordinates of fixed grid origin (origin is otherwise ran-
dom)

originoffset numeric; 2-vector (x,y offsets); see Details

chequerboard logical; if not ‘all’ then alternate clusters are omitted

order character; sort order for clusters (see Details)

rotate numeric; number of degrees by which to rotate entire design clockwise about
centroid of region bounding box

centrexy numeric; 2-vector for centre of rotation, if any

keep.design logical; if TRUE then input argument values are retained

... arguments passed to trap.builder

Details

region may be any shape.

region may be one of the spatial classes described in boundarytoSF. Otherwise, region should
be a dataframe with columns ‘x’ and ‘y’.

spacing may be a vector with separate values for spacing in x- and y- directions. If spacing is
provided then n is ignored.

If n is a scalar, the spacing of clusters is determined from the area of the bounding box of region
divided by the requested number of clusters (this does not necessarily result in exactly n clusters).
If n is a vector of two integers these are taken to be the number of columns and the number of rows.

After preparing a frame of cluster centres, make.systematic calls trap.builder with method =
‘all’; . . . allows the arguments ‘rotation’, ‘edgemethod’, ‘plt’, and ‘detector’ to be passed. Setting
the trap.builder arguments frame, method, and samplefactor has no effect.

Note the distinction between argument rotate and the trap.builder argument rotation that is
applied separately to each cluster.

If origin is not specified then a random uniform origin is chosen within a box (width = spac-
ing) placed with its bottom left corner at the bottom left of the bounding box of region, shifted
by originoffset. Before version 3.1.8 the behaviour of make.systematic was equivalent to
originoffset = c(wx,wy) where wx,wy are the cluster half widths.

chequerboard = "black" retains black ‘squares’ and chequerboard = "white" retains white ‘squares’,
where the lower left cluster in the candidate rectangle of cluster origins is black, as on a chess board.
The effect is the same as increasing spacing by sqrt(2) and rotating through 45 degrees.

order determines the ordering of clusters in the resulting traps object. The options are a subset of
those for ID argument of make.grid:

Option Sort order

128 make.systematic

x column-dominant
y row-dominant
xb column-dominant boustrophedonical (alternate columns reversed)
yb row-dominant boustrophedonical (alternate rows reversed)

rotate rotates the array about the given centre (default is centroid of the bounding box of region).

Value

A single-session ‘traps’ object.

From 3.2.0 these additional attributes are set –

origin coordinates of grid origin
centres coordinates of true cluster centres (cf cluster.centres)
originbox vertices of rectangular spatial sampling frame for random origin

From 4.2.0 if keep.design is TRUE then the input argument values are retained in attribute ‘design’
(a list with first component function = 'make.systematic').

Note

Do not confuse with the simpler function make.grid, which places single detectors in a rectangular
array.

See Also

trap.builder, make.lacework, cluster.centres

Examples

mini <- make.grid(nx = 2, ny = 2, spacing = 100)
region <- cbind(x=c(0,2000,2000,0), y=c(0,0,2000,2000))
temp <- make.systematic(25, mini, region, plt = TRUE)
temp <- make.systematic(c(6, 6), mini, region, plt = TRUE,

rotation = -1)

Example using shapefile "possumarea.shp" in
"extdata" folder. By default, each cluster is
a single multi-catch detector

Not run:

library(sf)
shpfilename <- system.file("extdata/possumarea.shp", package = "secr")
possumarea <- st_read(shpfilename)

possumgrid <- make.systematic(spacing = 100, region =

make.traps 129

possumarea, plt = TRUE)

or with 2 x 2 clusters
possumgrid2 <- make.systematic(spacing = 300,

cluster = make.grid(nx = 2, ny = 2, spacing = 100),
region = possumarea, plt = TRUE, edgemethod =
"allinside")

label clusters
text(cluster.centres(possumgrid2), levels(clusterID

(possumgrid2)), cex=0.7)

If you have GPSBabel installed and on the Path
then coordinates can be projected and uploaded
to a GPS with `writeGPS', which also requires the
package `proj4'. Defaults are for a Garmin GPS
connected by USB.

if (interactive()) {
writeGPS(possumgrid, proj = "+proj=nzmg")

}

End(Not run)

make.traps Build Detector Array

Description

Construct a rectangular array of detectors (trapping grid) or a circle of detectors or a polygonal
search area.

Usage

make.grid(nx = 6, ny = 6, spacex = 20, spacey = spacex, spacing = NULL,
detector = "multi", originxy = c(0,0), hollow = FALSE, ID = "alphay",
leadingzero = TRUE, markocc = NULL)

make.circle (n = 20, radius = 100, spacing = NULL,
detector = "multi", originxy = c(0,0), IDclockwise = TRUE,
leadingzero = TRUE, markocc = NULL)

make.poly (polylist = NULL, x = c(-50,-50,50,50),
y = c(-50,50,50,-50), exclusive = FALSE, verify = TRUE)

make.transect (transectlist = NULL, x = c(-50,-50,50,50),
y = c(-50,50,50,-50), exclusive = FALSE)

130 make.traps

make.telemetry (xy = c(0,0))

Arguments

nx number of columns of detectors

ny number of rows of detectors

spacex distance between detectors in ‘x’ direction (nominally in metres)

spacey distance between detectors in ‘y’ direction (nominally in metres)

spacing distance between detectors (x and y directions)

detector character value for detector type - "single", "multi" etc.

originxy vector origin for x-y coordinates

hollow logical for hollow grid

ID character string to control row names

leadingzero logical; if TRUE numeric rownames are padded with leading zeros

markocc integer vector of marking or sighting codes; see markocc

n number of detectors

radius radius of circle (nominally in metres)

IDclockwise logical for numbering of detectors

polylist list of dataframes with coordinates for polygons

transectlist list of dataframes with coordinates for transects

x x coordinates of vertices

y y coordinates of vertices

exclusive logical; if TRUE animal can be detected only once per occasion

verify logical if TRUE then the resulting traps object is checked with verify

xy vector with coordinates of arbitrary point (e.g., centroid of fixes)

Details

make.grid generates coordinates for nx.ny traps at separations spacex and spacey. If spacing is
specified it replaces both spacex and spacey. The bottom-left (southwest) corner is at originxy.
For a hollow grid, only detectors on the perimeter are retained. By default, identifiers are con-
structed from a letter code for grid rows and an integer value for grid columns ("A1", "A2",...).
‘Hollow’ grids are always numbered clockwise in sequence from the bottom-left corner. Other
values of ID have the following effects:

ID Effect
numx column-dominant numeric sequence
numy row-dominant numeric sequence
numxb column-dominant boustrophedonical numeric sequence (try it!)
numyb row-dominant boustrophedonical numeric sequence
alphax column-dominant alphanumeric
alphay row-dominant alphanumeric
xy combine column (x) and row(y) numbers

make.traps 131

‘xy’ adds leading zeros as needed to give a string of constant length with no blanks.

make.circle generates coordinates for n traps in a circle centred on originxy. If spacing is spec-
ified then it overrides the radius setting; the radius is adjusted to provide the requested straightline
distance between adjacent detectors. Traps are numbered from the trap due east of the origin, either
clockwise or anticlockwise as set by IDclockwise.

Polygon vertices may be specified with x and y in the case of a single polygon, or as polylist
for one or more polygons. Each component of polylist is a dataframe with columns ‘x’ and ‘y’.
polylist takes precedence. make.poly automatically closes the polygon by repeating the first
vertex if the first and last vertices differ.

Transects are defined by a sequence of vertices as for polygons, except that they are not closed.

make.telemetry builds a simple traps object for the ’telemetry’ detector type. The attribute ’teleme-
trytype’ is set to "independent".

Specialised functions for arrays using a triangular grid are described separately (make.tri, clip.hex).

Value

An object of class traps comprising a data frame of x- and y-coordinates, the detector type ("sin-
gle", "multi", or "proximity" etc.), and possibly other attributes.

Note

Several methods are provided for manipulating detector arrays - see traps.

References

Efford, M. G. (2012) DENSITY 5.0: software for spatially explicit capture–recapture. Department
of Mathematics and Statistics, University of Otago, Dunedin, New Zealand. https://www.otago.
ac.nz/density/.

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit
capture-recapture: likelihood-based methods. In: D. L. Thomson, E. G. Cooch and M. J. Conroy
(eds) Modeling Demographic Processes in Marked Populations. Springer, New York. Pp. 255–269.

See Also

read.traps,detector, trap.builder,make.systematic, print.traps, plot.traps, traps, make.tri,
addTelemetry

Examples

demo.traps <- make.grid()
plot(demo.traps)

compare numbering schemes
par (mfrow = c(2,4), mar = c(1,1,1,1), xpd = TRUE)
for (id in c("numx", "numy", "alphax", "alphay", "numxb",

"numyb"))
{

temptrap <- make.grid(nx = 7, ny = 5, ID = id)

https://www.otago.ac.nz/density/
https://www.otago.ac.nz/density/

132 make.tri

plot (temptrap, border = 10, label = TRUE, offset = 7,
gridl = FALSE)

}

temptrap <- make.grid(nx = 7, ny = 5, hollow = TRUE)
plot (temptrap, border = 10, label = TRUE, gridl = FALSE)

plot(make.circle(n = 20, spacing = 30), label = TRUE, offset = 9)
summary(make.circle(n = 20, spacing = 30))

jitter locations randomly within grid square
and plot over `mask'
temptrap <- make.grid(nx = 7, ny = 7, spacing = 30)
tempmask <- make.mask(temptrap, buffer = 15, nx = 7, ny = 7)
temptrap[,] <- temptrap[,] + 30 * (runif(7*7*2) - 0.5)
plot(tempmask, dots = FALSE, mesh = 'white')
plot(temptrap, add = TRUE)

make.tri Build Detector Array on Triangular or Hexagonal Grid

Description

Construct an array of detectors on a triangular grid and optionally select a hexagonal subset of
detectors.

Usage

make.tri (nx = 10, ny = 12, spacing = 20, detector = "multi",
originxy = c(0,0))

clip.hex (traps, side = 20, centre = c(50, 60*cos(pi/6)),
fuzz = 1e-3, ID = "num", ...)

Arguments

nx number of columns of detectors

ny number of rows of detectors

spacing distance between detectors (x and y directions)

detector character value for detector type - "single", "multi" etc.

originxy vector origin for x-y coordinates

traps traps object

side length of hexagon side

make.tri 133

centre x-y coordinates of hexagon centre

fuzz floating point fuzz value

ID character string to control row names

... other parameters passed to subset.traps (not used)

Details

make.tri generates coordinates for nx.ny traps at separations spacing. The bottom-left (south-
west) corner is at originxy. Identifiers are numeric. See make.grid for further explanation.

clip.hex clips a grid of detectors, retaining only those within a bounding hexagon. Detectors are
re-labelled according to ID as follows:

ID Effect
NULL no change
num numeric sequence
alpha letter for‘shell’; number within shell

Value

An object of class traps comprising a data frame of x- and y-coordinates, the detector type ("sin-
gle", "multi", or "proximity" etc.), and possibly other attributes.

Note

Several methods are provided for manipulating detector arrays - see traps.

See Also

make.grid, detector

Examples

tri.grid <- make.tri(spacing = 10)
plot(tri.grid, border = 5)

hex <- clip.hex(tri.grid, side = 30, ID = "alpha")
plot (hex, add = TRUE, detpar = list(pch = 16, cex = 1.4),

label = TRUE, offset = 2.5)

134 makeStart

makeStart Initial Parameter Values

Description

makeStart() wraps the code previously internal to secr.fit(). It will not usually be called di-
rectly.

Usage

makeStart(start = NULL, parindx, capthist, mask, detectfn, link,
details = NULL, fixed = NULL, CL = FALSE, anypoly = FALSE,
anytrans = FALSE, alltelem = FALSE, sighting = FALSE)

Arguments

start optional starting values as described for secr.fit

parindx list with one component per real parameter giving corresponding indices of co-
efficients (beta parameters)

capthist capthist object including capture data and detector (trap) layout

mask mask object or (for a multi-session analysis) a list of mask objects, one for each
session

detectfn integer code or character string for shape of detection function 0 = halfnormal,
1 = hazard rate etc. – see detectfn

link list of link function names ("log", "logit", "identity") for each real parameter

details list of additional arguments (see secr.fit)

fixed list with optional components corresponding to real parameters giving the scalar
value to which the parameter is to be fixed

CL logical, if true then model does not include density

anypoly logical, TRUE if any polygon detectors

anytrans logical, TRUE if any transect detectors

alltelem logical, TRUE if any telemetry detectors

sighting logical, TRUE if any sighting data

Details

If ‘start’ is a previously fitted model then only ‘start’ and ‘parindx’ are required.

Value

Numeric vector with one value for each coefficient (beta parameter) in model.

mask 135

See Also

secr.fit

Examples

makeStart(secrdemo.0, list(D = 1, g0 = 2:3, sigma = 4))

mask Mask Object

Description

Encapsulate a habitat mask for spatially explicit capture–recapture. See also secr-habitatmasks.pdf.

Details

A habitat mask serves four main purposes in spatially explicit capture–recapture. Firstly, it defines
an outer limit to the area of integration; habitat beyond the mask may be occupied, but animals there
should have negligible chance of being detected (see pdot and below). Secondly, it distinguishes
sites in the vicinity of the detector array that are ‘habitat’ (i.e. have the potential to be occupied)
from ‘non-habitat’. Thirdly, it discretizes continuous habitat as a list of points. Each point is notion-
ally associated with a cell (pixel) of uniform density. Discretization allows the SECR likelihood to
be evaluated by summing over grid cells. Fourthly, the x-y coordinates of the mask and any habitat
covariates may be used to build spatial models of density. For example, a continuous or categorical
habitat covariate ‘cover’ measured at each point on the mask might be used in a formula for density
such as D ∼cover.

In relation to the first purpose, the definition of ‘negligible’ is fluid. Any probability less than 0.001
seems OK in the sense of not causing noticeable bias in density estimates, but this depends on the
shape of the detection function (fat-tailed functions such as ‘hazard rate’ are problematic). New
tools for evaluating masks appeared in secr 1.5 (mask.check, esa.plot), and suggest.buffer
automates selection of a buffer width.

Mask points are stored in a data frame with columns ‘x’ and ‘y’. The number of rows equals the
number of points.

Possible mask attributes

Attribute Description
type ‘traprect’, ‘trapbuffer’, ‘pdot’, ‘polygon’, ‘clusterrect’, ‘clusterbuffer’ (see make.mask) or ‘user’
polygon vertices of polygon defining habitat boundary, for type = ‘polygon’
pdotmin threshold of p.(X) for type = ‘pdot’
covariates dataframe of site-specific covariates
meanSD data frame with centroid (mean and SD) of x and y coordinates
area area (ha) of the grid cell associated with each point
spacing nominal spacing (metres) between adjacent points
boundingbox data frame of 4 rows, the vertices of the bounding box of all grid cells in the mask

https://www.otago.ac.nz/density/pdfs/secr-habitatmasks.pdf

136 mask.check

Attributes other than covariates are generated automatically by make.mask. Type ‘user’ refers to
masks input from a text file with read.mask.

A virtual S4 class ‘mask’ is defined to allow the definition of a method for the generic function
raster from the raster package.

Note

A habitat mask is needed by secr.fit, but one will be generated automatically if none is provided.
You should be aware of this and check that the default settings (e.g. buffer) are appropriate.

See Also

make.mask, read.mask, mask.check, esa.plot, suggest.buffer, secr.fit

mask.check Mask Diagnostics

Description

mask.check evaluates the effect of varying buffer width and mask spacing on either the likelihood
or density estimates from secr.fit().

Usage

mask.check(object, buffers = NULL, spacings = NULL, poly = NULL,
LLonly = TRUE, realpar = NULL, session = 1, file = NULL,
drop = "", tracelevel = 0, ...)

Arguments

object object of class ‘capthist’ or ‘secr’

buffers vector of buffer widths

spacings vector of mask spacings

poly matrix of two columns, the x- and y-coordinates of a bounding polygon (op-
tional)

LLonly logical; if TRUE then only the log likelihood is computed

realpar list of parameter values

session vector of session indices (used if object spans multiple sessions)

file name of output file (optional)

drop character vector: names of fitted secr object to omit

tracelevel integer for level of detail in reporting (0,1,2)

... other arguments passed to secr.fit

mask.check 137

Details

Masks of varying buffer width and spacing are constructed with the ‘trapbuffer’ method in make.mask,
using the detector locations (‘traps’) from either a capthist object or a previous execution of secr.fit.
Default values are provided for buffers and spacings if object is of class ‘secr’ (respectively c(1,
1.5, 2) and c(1, 0.75, 0.5) times the values in the existing mask). The default for buffers will not
work if a detector is on the mask boundary, as the inferred buffer is then 0.

Variation in the mask may be assessed for its effect on –

• the log-likelihood evaluated for given values of the parameters (LLonly = TRUE)

• estimates from maximizing the likelihood with each mask (LLonly = FALSE)

realpar should be a list with one named component for each real parameter (see Examples). It
is relevant only if LLonly = TRUE. realpar may be omitted if object is of class ‘secr’; parameter
values are then extracted from object.

session should be an integer or character vector suitable for indexing sessions in object, or in
object$capthist if object is a fitted model. Each session is considered separately; a model
formula that refers to session or uses session covariates will cause an error.

If file is specified then detailed results (including each model fit when LLonly = FALSE) are saved
to an external .RData file. Loading this file creates or overwrites object(s) in the workspace:
mask.check.output if LLonly = TRUE, otherwise mask.check.output and mask.check.fit. For
multiple sessions these are replaced by lists with one component per session (mask.check.outputs
and mask.check.fits). The drop argument is passed to trim and applied to each fitted model; use
it to save space, at the risk of limiting further computation on the fitted models.

tracelevel>0 causes more verbose reporting of progress during execution.

The . . . argument may be used to override existing settings in object - for example, a conditional
likelihood fit (CL = T) may be selected even if the original model was fitted by maximizing the full
likelihood.

Value

Array of log-likelihoods (LLonly = TRUE) or estimates (LLonly = FALSE) for each combination
of buffers and spacings. The array has 3 dimensions if LLonly = FALSE and both buffers
and spacings have multiple levels; otherwise it collapses to a matrix. Rows generally represent
buffers, but rows represent spacings if a single buffer is specified.

Warning

mask.check() may fail if object is a fitted ‘secr’ model and a data object named in the original
call of secr.fit() (i.e. object$call) is no longer in the working environment (secr.fit argu-
ments capthist, mask, verify & trace are exempt). Fix by any of (1) applying mask.check directly
to the ‘capthist’ object, specifying other arguments (buffers, spacings, realpar) as needed, (2)
re-fitting the model and running mask.check in the same environment, (3) specifying the offend-
ing argument(s) in . . . , or (4) re-creating the required data objects(s) in the working environment,
possibly from saved inputs in object (e.g., mytimecov <- myfit$timecov).

138 mask.check

Note

When LLonly = TRUE the functionality of mask.check resembles that of the ‘Tools | ML SECR log
likelihood’ menu option in Density 5. The help page in Density 5 for ML SECR 2-D integration
(see index) may be helpful.

Warning messages from secr.fit are suppressed. ‘capthist’ data provided via the object argu-
ment are checked with verify.capthist if tracelevel > 0.

The likelihood-only method is fast, but not definitive. It is reasonable to aim for stability in the third
decimal place of the log likelihood. Slight additional variation in the likelihood may cause little
change in the estimates; the only way to be sure is to check these by setting LLonly = FALSE.

The performance of a mask depends on the detection function; be sure to set the detectfn argument
appropriately. The hazard rate function has a fat tail that can be problematic.

When provided with an ‘secr’ object, mask.check constructs a default vector of buffer widths
as multiples of the buffer used in object even though that value is not saved explicitly. For
this trick, detector locations in traps(object$capthist) are compared to the bounding box of
object$mask; the base level of buffer width is the maximum possible within the bounding box.

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture–recapture studies. Biometrics 64, 377–385.

Efford, M. G. (2012) DENSITY 5.0: software for spatially explicit capture–recapture. Department
of Mathematics and Statistics, University of Otago, Dunedin, New Zealand. https://www.otago.
ac.nz/density/.

See Also

esa.plot, make.mask, secr.fit

Examples

Not run:

from a capthist object, specifying almost everything
mask.check (possumCH, spacings = c(20, 30), buffers =c(200, 300),

realpar = list(g0 = 0.2, sigma = 50), CL = TRUE)

from a fitted model, using defaults
mask.check (stoat.model.HN)
LL did not change with varying buffer (rows) or spacing (cols):
78.125 58.59375 39.0625
1000 -144.0015 -144.0015 -144.0015
1500 -144.0017 -144.0017 -144.0017
2000 -144.0017 -144.0017 -144.0017

fit new models for each combination of buffer & spacing,
and save fitted models to a file
mask.check (stoat.model.HN, buffers = 1500, spacings =

https://www.otago.ac.nz/density/
https://www.otago.ac.nz/density/

modelAverage 139

c(40,60,80), LLonly = FALSE, file = "test", CL = TRUE)

look in more detail at the preceding fits
restores objects `mask.check.output' and `mask.check.fit'
load("test.RData")
lapply(mask.check.fit, predict)
lapply(mask.check.fit, derived)

multi-session data
mask.check(ovenbird.model.1, session = c("2005","2009"))

clipping mask
txtfilename <- system.file("extdata/possumarea.txt", package = "secr")
possumarea <- read.table(txtfilename, header = TRUE)
mask.check (possum.model.0, spacings = c(20, 30), buffers =

c(200, 300), poly = possumarea, LLonly = FALSE,
file = "temp", CL = TRUE)

review fitted models
load ("temp.RData")
par(mfrow = c(2,2), mar = c(1,4,4,4))
for (i in 1:4) {

plot(traps(mask.check.fit[[i]]$capthist), border = 300,
gridlines = FALSE)

plot(mask.check.fit[[i]]$mask, add = TRUE)
lines(possumarea)
text (2698618, 6078427, names(mask.check.fit)[i])
box()

}
par(mfrow = c(1,1), mar = c(5,4,4,2) + 0.1) ## defaults

End(Not run)

modelAverage Averaging of SECR Models Using Akaike’s Information Criterion

Description

AIC- or AICc-weighted average of estimated ‘real’ or ‘beta’ parameters from multiple fitted secr
models, and the tabulation of estimates.

Usage

S3 method for class 'secr'
modelAverage(object, ..., realnames = NULL, betanames = NULL, newdata = NULL,

alpha = 0.05, dmax = 10, covar = FALSE, average = c("link", "real"),
criterion = c("AICc","AIC"), CImethod = c("Wald", "MATA"), chat = NULL)

140 modelAverage

S3 method for class 'secrlist'
modelAverage(object, ..., realnames = NULL, betanames = NULL, newdata = NULL,

alpha = 0.05, dmax = 10, covar = FALSE, average = c("link", "real"),
criterion = c("AICc","AIC"), CImethod = c("Wald", "MATA"), chat = NULL)

Arguments

object secr or secrlist object

... other secr objects

realnames character vector of real parameter names

betanames character vector of beta parameter names

newdata optional dataframe of values at which to evaluate models

alpha alpha level for confidence intervals

dmax numeric, the maximum AIC or AICc difference for inclusion in confidence set

covar logical, if TRUE then return variance-covariance matrix

average character string for scale on which to average real parameters

criterion character, information criterion to use for model weights

CImethod character, type of confidence interval (see Details)

chat numeric optional variance inflation factor for quasi-AIC weights

Details

Models to be compared must have been fitted to the same data and use the same likelihood method
(full vs conditional). If realnames = NULL and betanames = NULL then all real parameters will
be averaged; in this case all models must use the same real parameters. To average beta parameters,
specify betanames (this is ignored if a value is provided for realnames). See predict.secr for an
explanation of the optional argument newdata; newdata is ignored when averaging beta parameters.

Model-averaged estimates for parameter θ are given by

θ̂ =
∑
k

wkθ̂k

where the subscript k refers to a specific model and the wk are AIC or AICc weights (see AIC.secr
for details). Averaging of real parameters may be done on the link scale before back-transformation
(average="link") or after back-transformation (average="real").

Models for which dAIC > dmax (or dAICc > dmax) are given a weight of zero and effectively are
excluded from averaging.

Also,
var(θ̂) =

∑
k

wk(var(θ̂k|βk) + β2
k)

where β̂k = θ̂k − θ̂ and the variances are asymptotic estimates from fitting each model k. This
follows Burnham and Anderson (2004) rather than Buckland et al. (1997).

modelAverage 141

Two methods are offered for confidence intervals. The default ‘Wald’ uses the above estimate of
variance. The alternative ‘MATA’ (model-averaged tail area) avoids estimating a weighted vari-
ance and is thought to provide better coverage at little cost in increased interval length (Turek and
Fletcher 2012). Turek and Fletcher (2012) also found averaging with AIC weights (here criterion
= 'AIC') preferable to using AICc weights, even for small samples. CImethod does not affect the
reported standard errors.

If ’chat’ is provided then quasi-AIC or quasi-AICc weights are used, depending on the value of
’criterion’.

Value

For modelAverage, an array of model-averaged estimates, their standard errors, and a 100(1−α)%
confidence interval. The interval for real parameters is backtransformed from the link scale. If
there is only one row in newdata or beta parameters are averaged or averaging is requested for only
one parameter then the array is collapsed to a matrix. If covar = TRUE then a list is returned with
separate components for the estimates and the variance-covariance matrices.

Note

modelAverage replaces the deprecated function model.average whose name conflicted with a
method in RMark.

References

Buckland S. T., Burnham K. P. and Augustin, N. H. (1997) Model selection: an integral part of
inference. Biometrics 53, 603–618.

Burnham, K. P. and Anderson, D. R. (2002) Model Selection and Multimodel Inference: A Practical
Information-Theoretic Approach. Second edition. New York: Springer-Verlag.

Burnham, K. P. and Anderson, D. R. (2004) Multimodel inference - understanding AIC and BIC in
model selection. Sociological Methods & Research 33, 261–304.

Turek, D. and Fletcher, D. (2012) Model-averaged Wald confidence intervals. Computational statis-
tics and data analysis 56, 2809–2815.

See Also

modelAverage, AIC.secr, secr.fit, collate

Examples

Compare two models fitted previously
secrdemo.0 is a null model
secrdemo.b has a learned trap response

modelAverage(secrdemo.0, secrdemo.b)
modelAverage(secrdemo.0, secrdemo.b, betanames = c("D","g0","sigma"))

In this case we find the difference was actually trivial...
(subscripting of output is equivalent to setting fields = 1)

142 ms

ms Multi-session Objects

Description

Logical function to distinguish objects that span multiple sessions

Usage

Default S3 method:
ms(object, ...)
S3 method for class 'mask'

ms(object, ...)
S3 method for class 'secr'

ms(object, ...)

Arguments

object any object

... other arguments (not used)

Details

The test applied varies with the type of object. The default method uses inherits(object,
"list").

Value

logical, TRUE if object contains data for multiple sessions

See Also

capthist, mask, secr.fit

Examples

ms(ovenCH)
ms(ovenbird.model.1)
ms(ovenCH[[1]])

newdata 143

newdata Create Default Design Data

Description

Internal function used to generate a dataframe containing design data for the base levels of all
predictors in an secr object.

Usage

Default S3 method:
makeNewData(object, all.levels = FALSE, ...)
S3 method for class 'secr'
makeNewData(object, all.levels = FALSE, ...)

Arguments

object fitted secr model object

all.levels logical; if TRUE then all levels of factors are included

... other arguments (not used)

Details

makeNewData is used by predict in lieu of user-specified ‘newdata’. There is seldom any need to
call the function makeNewData directly.

Value

A dataframe with one row for each session and group, and columns for the predictors used by
object$model.

See Also

predict.secr, secr.fit

Examples

from previously fitted model
makeNewData(secrdemo.b)

144 nontarget

nontarget Non-target Data

Description

Non-target detections and interference events may be recorded in a binary detector x occasion ma-
trix attached as an attribute to a single-session capthist object, or to each component of a multi-
session capthist object.

Models fitted by secr make no use of these data. They may be used in ipsecr.

From secr 4.5.6, a summary of nontarget data is reported by the summary method for capthist
objects, and the verify method reports clashes between detections and nontarget data.

Extraction and replacement funcions are provided from secr 4.5.7 on.

Usage

nontarget(object, ...)
nontarget(object) <- value

Arguments

object capthist object

... other argments (not used)

value numeric binary matrix (rows = detectors, columns = occasions)

Details

The order of rows should match the order of detectors in traps(object). Matrix entries should
be zero for trap x occasion combinations that were not used (see usage) or for which there is a
corresponding detection.

value is coerced to a matrix before assignment.

Value

For nontarget(), a matrix or list of matrices.

See Also

plot.capthist, summary.capthist

occasionKey 145

Examples

set.seed(123)
ch <- captdata

traps that caught something
caught <- t(apply(ch, 2:3, sum))

construct artificial nontarget data
(positive for half the traps that caught nothing)
nontarget(ch) <- (1-caught) * (runif(500)>0.5)

head(caught)
head(nontarget(ch))

the summary method recognises the 'nontarget' attribute
summary(ch)$nontarget

occasionKey Key to Petal Plot

Description

Displays a graphic key to the occasions corresponding to petals in a petal plot.

Usage

occasionKey(capthist, noccasions, rad = 3, x, y, px = 0.9, py = 0.9,
title = 'Occasion', ...)

Arguments

capthist single-session capthist object
noccasions number of petals (if capthist not provided)
rad distance of petal centre from key centre
x numeric x coordinate for centre of key
y numeric y coordinate for centre of key
px x position as fraction of user coordinates
py y position as fraction of user coordinates
title character
... other arguments passed to text

Details

Either capthist or noccasions is required. It is assumed that a plot exists.

Graphic arguments in . . . are applied to both the title and the occasion numbers.

146 ovenbird

Value

The key will be added to an existing plot. No value is returned.

See Also

plot.capthist

Examples

plot(captdata, border = 50)
occasionKey(captdata, rad = 8, cex = 0.8)

ovenbird Ovenbird Mist-netting Dataset

Description

Data from a multi-year mist-netting study of ovenbirds (Seiurus aurocapilla) at a site in Maryland,
USA.

Usage

ovenCH
ovenCHp
ovenbird.model.1
ovenbird.model.D
ovenmask

Details

From 2005 to 2009 D. K. Dawson and M. G. Efford conducted a capture–recapture survey of breed-
ing birds in deciduous forest at the Patuxent Research Refuge near Laurel, Maryland, USA. The
forest was described by Stamm, Davis & Robbins (1960), and has changed little since. Analyses of
data from previous mist-netting at the site by Chan Robbins were described in Efford, Dawson &
Robbins (2004) and Borchers & Efford (2008).

Forty-four mist nets (12 m long, 30-mm mesh) spaced 30 m apart on the perimeter of a 600-m x
100-m rectangle were operated for approximately 9 hours on each of 9 or 10 non-consecutive days
during late May and June in each year. Netting was passive (i.e. song playback was not used to
lure birds into the nets). Birds received individually numbered bands, and both newly banded and
previously banded birds were released at the net where captured. Sex was determined in the hand
from the presence of a brood patch (females) or cloacal protuberance (males). A small amount of
extra netting was done by other researchers after the main session in some years.

ovenbird 147

This dataset comprises all records of adult (after-hatch-year) ovenbirds caught during the main
session in each of the five years 2005–2009. One ovenbird was killed by a predator in the net in
2009, as indicated by a negative net number in the dataset. Sex was determined in the hand from
the presence of a brood patch (females) or cloacal protuberance (males). Birds are listed by their
band number (4-digit prefix, ‘.’, and 5-digit number).

The data are provided as a multi-session capthist object ‘ovenCHp’. Sex is coded as a categorical
individual covariate ("M" or "F").

Recaptures at the same site within a day are not included in this dataset, so ovenCHp has detector
type ‘proximity’. Previous versions of secr provided only a trimmed version of these data, retaining
only one capture per bird per day (ovenCH with detector type ‘multi’). That may be obtained from
ovenCHp as shown in the examples.

Although several individuals were captured in more than one year, no use is made of this informa-
tion in the analyses presently offered in secr.

An analysis of the data for males in the first four years showed that they tended to avoid nets
after their first capture within a season (Dawson & Efford 2009). While the species was present
consistently, the number of detections in any one year was too small to give reliable estimates of
density; pooling of detection parameters across years helped to improve precision.

Included with the data are a mask and two models fitted to ovenCH as in Examples.

Object Description
ovenCH multi-session capthist object (as multi-catch)
ovenCHp multi-session capthist object (as binary proximity)
ovenbird.model.1 fitted secr model – null
ovenbird.model.D fitted secr model – trend in density across years
ovenmask mask object

Source

D. K. Dawson (<ddawson@usgs.gov>) and M. G. Efford unpublished data.

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture-recapture studies. Biometrics 64, 377–385.

Dawson, D. K. and Efford, M. G. (2009) Bird population density estimated from acoustic signals.
Journal of Applied Ecology 46, 1201–1209.

Efford, M. G., Dawson, D. K. and Robbins C. S. (2004) DENSITY: software for analysing capture-
recapture data from passive detector arrays. Animal Biodiversity and Conservation 27, 217–228.

Stamm, D. D., Davis, D. E. and Robbins, C. S. (1960) A method of studying wild bird populations
by mist-netting and banding. Bird-Banding 31, 115–130.

See Also

capthist

148 ovensong

Examples

commands used to create ovenCH from the input files
"netsites0509.txt" and "ovencapt.txt"
for information only - these files not distributed

netsites0509 <- read.traps(file = "netsites0509.txt",
skip = 1, detector = "proximity")
temp <- read.table("ovencapt.txt", colClasses=c("character",
"character", "numeric", "numeric", "character"))
ovenCHp <- make.capthist(temp, netsites0509, covnames = "Sex")
ovenCHp <- reduce(ovenCHp, dropunused = FALSE) # drop repeat detections

par(mfrow = c(1,5), mar = c(1,1,4,1))
plot(ovenCHp, tracks = TRUE, varycol = TRUE)
par(mfrow = c(1,1), mar = c(5,4,4,2) + 0.1) ## defaults

counts(ovenCHp, "n")

Not run:

trimmed version of data - for consistency with earlier versions

ovenCH <- reduce(ovenCHp, outputdetector = "multi", dropunused = FALSE)

array constant over years, so build mask only once
ovenmask <- make.mask(traps(ovenCH)[["2005"]], type = "pdot",

buffer = 400, spacing = 15, detectpar = list(g0 = 0.03,
sigma = 90), nocc = 10)

fit constant-density model
ovenbird.model.1 <- secr.fit(ovenCH, mask = ovenmask)

fit temporal trend in density (Session capitalized)
ovenbird.model.D <- secr.fit(ovenCH, mask = ovenmask,

model = list(D ~ Session))

compare pre-fitted models
AIC(ovenbird.model.1, ovenbird.model.D)

End(Not run)

ovensong Ovenbird Acoustic Dataset

Description

Data from an acoustic survey of ovenbirds (Seiurus aurocapilla) at a site in Maryland, USA.

ovensong 149

Usage

signalCH
ovensong.model.1
ovensong.model.2

Details

In June 2007 D. K. Dawson and M. G. Efford used a moving 4-microphone array to survey breeding
birds in deciduous forest at the Patuxent Research Refuge near Laurel, Maryland, USA. The data
for ovenbirds were used to demonstrate a new method for analysing acoustic data (Dawson and
Efford 2009). See ovenbird for mist-netting data from the same site over 2005–2009, and for other
background.

Over five days, four microphones were placed in a square (21-m side) centred at each of 75 points
in a rectangular grid (spacing 50 m); on each day points 100 m apart were sampled sequentially.
Recordings of 5 minutes duration were made in .wav format on a 4-channel digital sound recorder.

The data are estimates of average power on each channel (microphone) for the first song of each
ovenbird distinguishable in a particular 5-minute recording. Power was estimated with the sound
analysis software Raven Pro 1.4 (Charif et al. 2008), using a window of 0.7 s duration and frequen-
cies between 4200 and 5200 Hz, placed manually at the approximate centre of each ovenbird song.
Sometimes this frequency range was obscured by insect noise so an alternative 1000-Hz range was
measured and the values were adjusted by regression.

The data are provided as a single-session, single-occasion capthist object signalCH. The ‘signal’
attribute contains the power measurement in decibels for each detected sound on each channel where
the power threshold is exceeded. As the threshold signal (attribute cutval = 35) is less than any
signal value in this dataset, all detection histories are complete (1,1,1,1) across microphones. For
analysis Dawson and Efford applied a higher threshold that treated weaker signals as ‘not detected’
(see Examples).

The row names of signalCH (e.g. "3755AX") are formed from a 4-digit number indicating the
sampling location (one of 75 points on a 50-m grid) and a letter A–D to distinguish individual
ovenbirds within a 5-minute recording; ‘X’ indicates power values adjusted by regression.

The default model for sound attenuation is a log-linear decline with distance from the source (linear
decline on dB scale). Including a spherical spreading term in the sound attenuation model causes the
likelihood surface to become multimodal in this case. Newton-Raphson, the default maximization
method in secr.fit, is particularly inclined to settle on a local maximum; in the example below
we use a set of starting values that have been found by trial and error to yield the global maximum.

Two fitted models are included (see Examples for details).

Object Description
signalCH capthist object
ovensong.model.1 fitted secr model – spherical spreading
ovensong.model.2 fitted secr model – no spherical spreading

150 ovensong

Source

D. K. Dawson (<ddawson@usgs.gov>) and M. G. Efford unpublished data.

References

Charif, R. A., Waack, A. M. and Strickman, L. M. (2008) Raven Pro 1.3 User’s Manual. Cornell
Laboratory of Ornithology, Ithaca, New York.

Dawson, D. K. and Efford, M. G. (2009) Bird population density estimated from acoustic signals.
Journal of Applied Ecology 46, 1201–1209.

Efford, M. G., Dawson, D. K. and Borchers, D. L. (2009) Population density estimated from loca-
tions of individuals on a passive detector array. Ecology 90, 2676–2682.

See Also

capthist, ovenbird, Detection functions

Examples

summary(signalCH)
traps(signalCH)
signal(signalCH)

apply signal threshold
signalCH.525 <- subset(signalCH, cutval = 52.5)

Not run:

models with and without spherical spreading
omask <- make.mask(traps(signalCH), buffer = 200)
ostart <- c(log(20), 80, log(0.1), log(2))
ovensong.model.1 <- secr.fit(signalCH.525, mask = omask,

start = ostart, detectfn = 11)
ovensong.model.2 <- secr.fit(signalCH.525, mask = omask,

start = ostart, detectfn = 10)

End(Not run)

compare fit of models
AIC(ovensong.model.1, ovensong.model.2)

density estimates, dividing by 75 to allow for replication
collate(ovensong.model.1, ovensong.model.2)[1,,,"D"]/75

plot attenuation curves cf Dawson & Efford (2009) Fig 5
pars1 <- predict(ovensong.model.1)[c("beta0", "beta1"), "estimate"]
pars2 <- predict(ovensong.model.2)[c("beta0", "beta1"), "estimate"]
attenuationplot(pars1, xval=0:150, spherical = TRUE, ylim = c(40,110))
attenuationplot(pars2, xval=0:150, spherical = FALSE, add = TRUE,

col = "red")

OVpossum 151

spherical spreading only
pars1[2] <- 0
attenuationplot(pars1, xval=0:150, spherical = TRUE, add = TRUE, lty=2)

OVpossum Orongorongo Valley Brushtail Possums

Description

A dataset from long-term capture-recapture trapping of brushtail possums Trichosurus vulpecula in
New Zealand.

Usage

OVpossumCH

Format

A multi-session capthist object of 6 sessions. Sessions are labeled 49–54, corresponding to February
1996, June 1996, September 1996, February 1997, June 1997 and September 1997.

Details

Brushtail possums are 2-4 kg largely arboreal marsupials that have become pests of forests and
farmland in New Zealand since their introduction from Australia in the nineteenth century. Their
population dynamics in mixed native forest have been studied by capture-recapture in the Oron-
gorongo Valley near Wellington since 1966 (e.g. Crawley 1973, Efford 1998, Efford and Cowan
2004).

From 1996 to 2006, a grid of 167 traps set on the ground at 30-m spacing was operated in an area
of about 14 ha for 5 consecutive days three times each year (Efford and Cowan 2004). Each trap
could catch only one animal, with rare exceptions when a young ‘backrider’ entered the trap with
its mother. All animals were tagged and tattooed for individual identification and released at the
site of capture.

A broad shingle riverbed forms a natural boundary on two sides of the study grid. Much of the
grid lies on a gently sloping old alluvial fan and recent terraces, but to the southeast the valley
side rises steeply and, except where cut by streams, supports beech forest (Nothofagus truncata and
Nothofagus solandri solandri) rather than the mixed broadleaf forest of the valley floor.

This dataset relates to six five-day trapping sessions in 1996 and 1997, a time of high and declining
density. Possums are long-lived (up to about 15 years) and as adults restrict their movements to a
home range of 1-10 ha. Breeding is seasonal, resulting in an influx of newly independent juveniles
in the first trapping of each calendar year.

The dataset includes individual covariates not provided by Efford (2012): ‘sex’ (F or M) and ‘Age-
class’ (1 for first year, 2 for older).

A coarse habitat map is provided for the immediate vicinity of the trapping grid as the shapefile
‘OVforest.shp’ in the package ‘extdata’ folder. This distinguishes two forest classes (‘beech’ and

152 OVpossum

‘non-beech’), and leaves out the shingle riverbed. The distinction between ‘beech’ and ‘non-beech’
is mapped only to a distance of about 120 m from the outermost traps. A text file ’leftbank.txt’ in the
same folder contains the x- and y- coordinates of the adjoining bank of the Orongorongo River. All
coordinates relate to the old New Zealand Map Grid (NZMG), since replaced by the New Zealand
Transverse Mercator grid (NZTM2000).

The example code shows how to import the shapefile as a sp SpatialPolygonsDataFrame object and
use it to construct a mask for secr.fit.

Source

Efford (2012) and unpublished data.

References

Crawley, M. C. (1973) A live-trapping study of Australian brush-tailed possums, Trichosurus vulpec-
ula (Kerr), in the Orongorongo Valley, Wellington, New Zealand. Australian Journal of Zoology
21, 75–90.

Efford, M. G. (1998) Demographic consequences of sex-biased dispersal in a population of brushtail
possums. Journal of Animal Ecology 67, 503–517.

Efford, M. G. (2012) DENSITY 5.0: software for spatially explicit capture-recapture. Department
of Mathematics and Statistics, University of Otago, Dunedin, New Zealand. https://www.otago.
ac.nz/density/

Efford, M. G. and Cowan, P. E. (2004) Long-term population trend of Trichosurus vulpecula in the
Orongorongo Valley, New Zealand. In: The Biology of Australian Possums and Gliders. Edited by
R. L. Goldingay and S. M. Jackson. Surrey Beatty & Sons, Chipping Norton. Pp. 471–483.

Ward, G. D. (1978) Habitat use and home range of radio-tagged opossums Trichosurus vulpecula
(Kerr) in New Zealand lowland forest. In: The ecology of arboreal folivores. Edited by G. G.
Montgomery. Smithsonian Institute Press. Washington, D.C. Pp. 267–287.

Examples

Not run:

library(sf)

summary(OVpossumCH, terse = TRUE)
ovtrap <- traps(OVpossumCH[[1]])

retrieve and plot the forest map
OVforest <- st_read(system.file("extdata/OVforest.shp", package = "secr"))
OVforest <- as(OVforest, "Spatial")
forestcol <- terrain.colors(6)[c(4,2,2)]
sp::plot(OVforest, col = forestcol)
plot(ovtrap, add = TRUE)

construct a mask
we omit forest across the river by selecting only
forest polygons 1 and 2

https://www.otago.ac.nz/density/
https://www.otago.ac.nz/density/

Parallel 153

ovmask <- make.mask(ovtrap, buffer = 120, type = 'trapbuffer',
poly = OVforest[1:2,], spacing = 7.5, keep.poly = FALSE)

ovmask <- addCovariates(ovmask, OVforest[1:2,])

display mask
par(mar = c(0,0,0,8))
plot(ovmask, covariate = 'forest', dots = FALSE, col = forestcol)
plot(ovtrap, add = TRUE)

add the left bank of the Orongorongo River
lines(read.table(system.file("extdata/leftbank.txt", package = "secr")))

End(Not run)

Parallel Multi-core Processing

Description

From version 4.0 secr uses multi-threading in C++ (package RcppParallel, Allaire et al. 2021) to
speed likelihood evaluation and hence model fitting in secr.fit. Detection histories are distributed
over threads. Setting ncores = NULL in functions with multi-threading uses the existing value from
the environment variable RCPP_PARALLEL_NUM_THREADS (see setNumThreads).

These functions use multi-threading and call setNumThreads internally:

autoini
confint.secr
derived.secr
derivedSystematic
esa
fxi.secr and related functions
pdot
region.N
score.test
secr.fit

These functions use multi-threading without calling setNumThreads:

LLsurface.secr
mask.check
expected.n
secr.test
sim.secr

154 Parallel

Other functions may use multithreading indirectly through a call to one of these functions. Exam-
ples are suggest.buffer (autoini), esa.plot (pdot), and bias.D (pdot).

NOTE: The mechanism for setting the number of threads changed between versions 4.1.0 and 4.2.0.
The default number of cores is now capped at 2 to meet CRAN requirements. Setting ncores = NULL
previously specified one less than the maximum number of cores.

Earlier versions of secr made more limited use of multiple cores (CPUs) through the package par-
allel. The functions par.secr.fit, par.derived, and par.region.N are now deprecated because
they were too slow. list.secr.fit replaces par.secr.fit

‘Unit’ refers to the unit of work sent to each worker process. As a guide, a ‘large’ benefit means
>60% reduction in process time with 4 CPUs.

parallel offers several different mechanisms, bringing together the functionality of multicore and
snow. The mechanism used by secr is the simplest available, and is expected to work across all
operating systems. Technically, it relies on Rscript and communication between the master and
worker processes is via sockets. As stated in the parallel documentation "Users of Windows and
Mac OS X may expect pop-up dialog boxes from the firewall asking if an R process should accept
incoming connections". You may possibly get warnings from R about closing unused connections.
These can safely be ignored.

Use parallel::detectCores() to get an idea of how many cores are available on your machine;
this may (in Windows) include virtual cores over and above the number of physical cores. See
RShowDoc("parallel", package = "parallel") in core R for explanation.

In secr.fit the output component ‘proctime’ misrepresents the elapsed processing time when
multiple cores are used.

Warning

It appears that multicore operations in secr using parallel may fail if the packages snow and snow-
fall are also loaded. The error message is obscure:

“Error in UseMethod("sendData") : no applicable method for ’sendData’ applied to an object of
class "SOCK0node"”

References

Allaire, J. J., Francois, R., Ushey, K., Vandenbrouck, G., Geelnard, M. and Intel (2021) Rcpp-
Parallel: Parallel Programming Tools for ’Rcpp’. R package version 5.1.2. https://CRAN.R-
project.org/package=RcppParallel.

Examples

Not run:

sessionInfo()
R version 4.3.0 (2023-04-21 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 11 x64 (build 22621)
on Dell-XPS 8950 Intel i7-12700K
...
see stackoverflow suggestion for microbenchmark list argument

Parallel 155

https://stackoverflow.com/questions/32950881/how-to-use-list-argument-in-microbenchmark

library(microbenchmark)
options(digits = 4)

benefit from multi-threading in secr.fit

jobs <- lapply(seq(2,8,2), function(nc)
bquote(suppressWarnings(secr.fit(captdata, trace = FALSE, ncores = .(nc)))))

microbenchmark(list = jobs, times = 10, unit = "seconds")
[edited output]
Unit: seconds
expr min lq mean median uq max neval
ncores = 2 1.75880 2.27978 2.6680 2.7450 3.0960 3.4334 10
ncores = 4 1.13549 1.16280 1.6120 1.4431 2.0041 2.4018 10
ncores = 6 0.88003 0.98215 1.2333 1.1387 1.5175 1.6966 10
ncores = 8 0.78338 0.90033 1.5001 1.0406 1.2319 4.0669 10

sometimes (surprising) lack of benefit with ncores>2

msk <- make.mask(traps(ovenCH[[1]]), buffer = 300, nx = 25)
jobs <- lapply(c(1,2,4,8), function(nc)

bquote(secr.fit(ovenCH, trace = FALSE, ncores = .(nc), mask = msk)))
microbenchmark(list = jobs, times = 10, unit = "seconds")
[edited output]
Unit: seconds
expr min lq mean median uq max neval
ncores = 1 12.5010 13.4951 15.674 15.304 16.373 21.723 10
ncores = 2 10.0363 11.8634 14.407 13.726 16.782 22.966 10
ncores = 4 8.6335 10.3422 13.085 12.449 15.729 17.914 10
ncores = 8 8.5286 9.9008 10.751 10.736 10.796 14.885 10

and for simulation...

jobs <- lapply(seq(2,8,2), function(nc)
bquote(sim.secr(secrdemo.0, nsim = 20, tracelevel = 0, ncores = .(nc))))

microbenchmark(list = jobs, times = 10, unit = "seconds")
[edited output]
Unit: seconds
expr min lq mean median uq max neval
ncores = 2 48.610 49.932 59.032 52.485 54.730 119.905 10
ncores = 4 29.480 29.996 30.524 30.471 31.418 31.612 10
ncores = 6 22.583 23.594 24.148 24.354 24.644 25.388 10
ncores = 8 19.924 20.651 25.581 21.002 21.696 51.920 10

and log-likelihood surface

jobs <- lapply(seq(2,8,2), function(nc)
bquote(suppressMessages(LLsurface(secrdemo.0, ncores = .(nc)))))

microbenchmark(list = jobs, times = 10, unit = "seconds")
[edited output]
Unit: seconds
expr min lq mean median uq max neval

156 pdot

ncores = 2 20.941 21.098 21.290 21.349 21.471 21.619 10
ncores = 4 14.982 15.125 15.303 15.263 15.449 15.689 10
ncores = 6 13.994 14.299 14.529 14.342 14.458 16.515 10
ncores = 8 13.597 13.805 13.955 13.921 14.128 14.353 10

End(Not run)

pdot Net Detection Probability

Description

Compute spatially explicit net probability of detection for individual(s) at given coordinates (pdot).

Usage

pdot(X, traps, detectfn = 0, detectpar = list(g0 = 0.2,
sigma = 25, z = 1), noccasions = NULL, binomN = NULL,
userdist = NULL, ncores = NULL)

CVpdot(..., conditional = FALSE)

Arguments

X vector or 2-column matrix of coordinates

traps traps object

detectfn integer code for detection function q.v.

detectpar a named list giving a value for each parameter of detection function

noccasions number of sampling intervals (occasions)

binomN integer code for discrete distribution (see secr.fit)

userdist user-defined distance function or matrix (see userdist)

ncores integer number of threads

... arguments passed to pdot

conditional logical; if TRUE then computed mean and CV are conditional on detection

Details

If traps has a usage attribute then noccasions is set accordingly; otherwise it must be provided.

The probability computed is p.(X) = 1−
∏
k

{1−ps(X, k)}S where the product is over the detectors

in traps, excluding any not used on a particular occasion. The per-occasion detection function ps
is halfnormal (0) by default, and is assumed not to vary over the S occasions.

pdot 157

For detection functions (10) and (11) the signal threshold ‘cutval’ should be included in detectpar,
e.g., detectpar = list(beta0 = 103, beta1 = -0.11, sdS = 2, cutval = 52.5).

The calculation is not valid for single-catch traps because p.(X) is reduced by competition between
animals.

userdist cannot be set if ‘traps’ is any of polygon, polygonX, transect or transectX. if userdist is
a function requiring covariates or values of parameters ‘D’ or ‘noneuc’ then X must have a covariates
attribute with the required columns.

Setting ncores = NULL uses the existing value from the environment variable RCPP_PARALLEL_NUM_THREADS
(see setNumThreads).

CVpdot returns the expected mean and CV of pdot across the points listed in X, assuming uniform
population density. X is usually a habitat mask. See Notes for details.

Value

For pdot, a vector of probabilities, one for each row in X.

For CVpdot, a named vector with elements ‘meanpdot’ and ‘CVpdot’.

Note

CVpdot computes the mean µ and variance V of the location-specific overall detection probability
p.(X) as follows.

µ =

∫
p.(X)f(X)dX,

V =

∫
p.(X)2f(X)dX− µ2.

For uniform density and conditional = FALSE, f(X) is merely a scaling factor independent of X.

If conditional = TRUE then f(X) = p.(X)/
∫
p.(X)dX.

The coefficient of variation is CV =
√
V /µ.

See Also

secr, make.mask, Detection functions, pdot.contour, CV

Examples

Not run:

temptrap <- make.grid()
per-session detection probability for an individual centred
at a corner trap. By default, noccasions = 5.
pdot (c(0,0), temptrap, detectpar = list(g0 = 0.2, sigma = 25),
noccasions = 5)

msk <- make.mask(temptrap, buffer = 100)
CVpdot(msk, temptrap, detectpar = list(g0 = 0.2, sigma = 25),

158 PG

noccasions = 5)

End(Not run)

PG Telemetry Fixes in Polygons

Description

For a telemetry dataset, either as a standalone capthist object with detector type ‘telemetryonly’
or the xylist attribute of a combined capthist object resulting from addTelemetry, determine the
proportion of fixes of each individual that lie within a set of polygons. Typically used to obtain the
proportion of fixes on a trapping grid, hence ‘proportion on grid’.

Usage

PG(CH, poly = NULL, includeNULL = FALSE, plt = FALSE, ...)

Arguments

CH capthist object including telemetry locations

poly polygon object (see boundarytoSF)

includeNULL logical; if TRUE then missing values are returned for animals without telemetry
data

plt logical; if TRUE then poly and telemetry locations are plotted

... other arguments passed to buffer.contour

Details

By default poly is obtained by applying buffer.contour with arguments . . . to the traps attribute
of CH. Note that either a positive buffer argument or convex = TRUE is needed for the polygon to
have area > 0.

If plt = TRUE, buffer.contour is used to plot poly and the points are overplotted (open circles
outside, filled circles inside). To control the framing of the plot, create an initial plot (e.g., with
plot.traps, setting the border argument) and use add = TRUE (see Examples).

Value

Numeric vector of proportions. If includeNULL = TRUE length equal to number of animals (rows)
in CH; otherwise length is the number of animals for which there is telemetry data (because xylist
may cover only a subset of animals in CH).

PG 159

References

Grant, T. J. and Doherty, P. F. (2007) Monitoring of the flat-tailed horned lizard with methods
incorporating detection probability. Journal of Wildlife Management 71, 1050–1056

See Also

addTelemetry, buffer.contour, pointsInPolygon

Examples

Not run:
olddir <- setwd('d:/density communication/combining telemetry and secr/possums')
CvilleCH <- read.capthist('CVILLE summer captures 4occ.txt',

'CVILLE detectors summer 4occ.txt',
detector = 'single')

CvilleGPS <- read.telemetry('CVILLE GPS Combined 4occ.txt')
CvilleGPSnew <- read.telemetry('CVILLE summer GPS New occasions.txt')
setwd(olddir)

CvilleBoth <- addTelemetry(CvilleCH, CvilleGPSnew)
plot(CvilleBoth, border = 400)
PG(CvilleBoth, buffer = 100, convex = TRUE, plt = TRUE, add = TRUE,

col = 'red')

###
this code computes an area-adjusted density estimate
cf Grant and Doherty 2007
PGD <- function (CH, estimator = 'h2', ...) {

pg <- PG(CH, ...)
PGbar <- mean(pg)
N <- closedN(CH, estimator)
A <- polyarea(buffer.contour(traps(CH), ...)[[1]])
Dhat <- N$Nhat / A * PGbar
varDhat <- (N$Nhat^2 * var(pg) + PGbar^2 * N$seNhat^2) / A^2
c(Dhat = Dhat, seDhat = sqrt(varDhat))

}
plot(traps(CvilleBoth), border = 400)
PGD(CvilleBoth, buffer = 0, convex = TRUE, plt = TRUE, add = TRUE)
PGD(CvilleBoth, est='null', buffer = 0, convex = TRUE, plt = FALSE)

###
this code generates a PG summary for telemetry records randomly
translated and rotated, keeping the centres within a habitat mask

randomPG <- function(CH, poly = NULL, mask, reorient = TRUE, nrepl = 1,
seed = 12345, ...) {

moveone <- function(xy, newcentre) {
xy <- sweep(xy,2,apply(xy,2,mean))
if (reorient) ## random rotation about centre

xy <- rotate(xy, runif(1)*360)
sweep(xy,2,unlist(newcentre), "+")

160 plot.capthist

}
onerepl <- function(r) { ## r is dummy for replicate

centres <- sim.popn(D = D, core = mask, model2D = "IHP",
Ndist = "fixed")

xyl <- mapply(moveone, xyl, split(centres, rownames(centres)))
attr(CH, 'xylist') <- xyl ## substitute random placement
PG(CH = CH , poly = poly, plt = FALSE, ...)

}
set.seed(seed)
if (!requireNamespace('sf')) stop ("requires package sf")
if (is.null(poly)) {

poly <- buffer.contour (traps(CH), ...)
poly <- lapply(poly, as.matrix)
poly <- sf::st_sfc(sf::st_polygon(poly))

}
xyl <- telemetryxy(CH)
D <- length(xyl) / maskarea(mask)
sapply(1:nrepl, onerepl)

}

mask <- make.mask (traps(CvilleBoth), buffer = 400, type = "trapbuffer")
pg <- randomPG (CvilleBoth, mask = mask, buffer = 100, convex = TRUE,

nrepl = 20)
apply(pg, 1, mean)
###

End(Not run)

plot.capthist Plot Detection Histories

Description

Display a plot of detection (capture) histories or telemetry data over a map of the detectors.

Usage

S3 method for class 'capthist'
plot(x, rad = 5, hidetraps = FALSE, tracks = FALSE,

title = TRUE, subtitle = TRUE, add = FALSE, varycol = TRUE,
icolours = NULL, randcol = FALSE, lab1cap = FALSE, laboffset = 4, ncap = FALSE,
splitocc = NULL, col2 = "green", type = c("petal", "n.per.detector", "n.per.cluster",

"sightings", "centres", "telemetry", "nontarget"),
cappar = list(cex = 1.3, pch = 16, col = "blue"),
trkpar = list(col = "blue", lwd = 1),
labpar = list(cex = 0.7, col = "black"), ...)

plotMCP(x, add = FALSE, col = "black", fill = NA, lab1cap = FALSE, laboffset = 4,

plot.capthist 161

ncap = FALSE, ...)

Arguments

x an object of class capthist

rad radial displacement of dot indicating each capture event from the detector loca-
tion (used to separate overlapping points)

hidetraps logical indicating whether trap locations should be displayed

tracks logical indicating whether consecutive locations of individual animals should be
joined by a line

title logical or character string for title

subtitle logical or character string for subtitle

add logical for whether to add to existing plot

varycol logical for whether to distinguish individuals by colour

icolours vector of individual colours (when varycol = TRUE), or colour scale (non-petal
plots)

randcol logical to use random colours (varycol = TRUE)

lab1cap logical for whether to label the first capture of each animal

laboffset distance by which to offset labels from points

ncap logical to display the number of detections per trap per occasion

splitocc optional occasion from which second colour is to be used

col2 second colour (used with splitocc)

type character string ("petal", "n.per.detector" or "n.per.cluster")

cappar list of named graphical parameters for detections (passed to par)

trkpar list of named graphical parameters for tracks (passed to par)

labpar list of named graphical parameters for labels (passed to par)

... arguments to be passed to plot.traps

col vector of line colour numbers or names (plotMCP only)

fill vector of fill colour numbers or names (plotMCP only)

Details

By default, a ‘petal’ plot is generated in the style of Density (Efford 2012) using eqscplot from
the MASS library.

If type = "n.per.detector" or type = "n.per.cluster" the result is a colour-coded plot of the
number of individuals at each unit, pooled over occasions.

If type = "sightings" the sightings of unmarked animals are displayed on a petal-like plot (re-
quires mark-resight data) (see also sightingPlot).

If type = "centres" then a single point is plotted for each animal, jittered on each axis by a random
amount (limits +/- rad/2).

162 plot.capthist

If type = "telemetry" and the ‘telemetryxy’ attribute is not NULL then the telemetry locations
are plotted.

If type = "nontarget" and the ‘nontarget’ attribute is not NULL then the nontarget captures or
interference events are plotted.

If title = FALSE no title is displayed; if title = TRUE, the session identifer is used for the title.

If subtitle = FALSE no subtitle is displayed; if subtitle = TRUE, the subtitle gives the numbers
of occasions, detections and individuals.

If x is a multi-session capthist object then a separate plot is produced for each session. Use
par(mfrow = c(nr, nc)) to allow a grid of plots to be displayed simultaneously (nr rows x nc
columns).

These arguments are used only for petal plots: rad, tracks, varycol, randcol, lab1cap, laboffset,
ncap, splitocc, col2, trkpar, and labpar. Call occasionKey to add a key to the petals.

If icolours = NULL and varycol = TRUE then a vector of colours is generated automatically as
topo.colors((nrow(x)+1) * 1.5). If there are too few values in icolours for the number of individ-
uals then colours will be re-used.

plotMCP plots minimum convex polygons of individual location data over a base plot of detector
locations. Usually the data are telemetry locations in the xylist attribute of the capthist object; if
this is not present and x is a polygon search capthist then the individual xy data are plotted.

Value

For type = "petal", the number of detections in x. For type = "sightings", the number of sight-
ings of unmarked animals in x. For type = "n.per.detector" or type = "n.per.cluster", a
dataframe with data for a legend (see Examples).

plotMCP invisibly returns a list in which each component is a 2-column (x,y) dataframe of boundary
coordinates for one individual.

References

Efford, M. G. (2012) DENSITY 5.0: software for spatially explicit capture–recapture. Department
of Mathematics and Statistics, University of Otago, Dunedin, New Zealand. https://www.otago.
ac.nz/density/.

See Also

capthist, occasionKey, sightingPlot

Examples

demotrap <- make.grid()
tempcapt <- sim.capthist(demotrap,

popn = list(D = 5, buffer = 50),
detectpar = list(g0 = 0.15, sigma = 30))

plot(tempcapt, border = 10, rad = 3, tracks = TRUE,
lab1cap = TRUE, laboffset = 2.5)

type = n.per.cluster

https://www.otago.ac.nz/density/
https://www.otago.ac.nz/density/

plot.mask 163

generate some captures
testregion <- data.frame(x = c(0,2000,2000,0),

y = c(0,0,2000,2000))
popn <- sim.popn (D = 10, core = testregion, buffer = 0,

model2D = "hills", details = list(hills = c(-2,3)))
t1 <- make.grid(nx = 1, ny = 1)
t1.100 <- make.systematic (cluster = t1, spacing = 100,

region = testregion)
capt <- sim.capthist(t1.100, popn = popn, noccasions = 1)

now plot captures ...
temp <- plot(capt, title = "Individuals per cluster",

type = "n.per.cluster", hidetraps = FALSE,
gridlines = FALSE, cappar = list(cex = 1.5))

if (interactive()) {
add legend; click on map to place top left corner
legend (locator(1), pch = 21, pt.bg = temp$colour,

pt.cex = 1.3, legend = temp$legend, cex = 0.8)
}

Not run:

try varying individual colours - requires RColorBrewer
library(RColorBrewer)
plot(infraCH[[2]], icolours = brewer.pal(12, "Set3"), tracks = TRUE,

bg = "black", cappar = list(cex = 2), border = 10, rad = 2,
gridlines = FALSE)

generate telemetry data
te <- make.telemetry()
tr <- make.grid(detector = "proximity")
totalpop <- sim.popn(tr, D = 20, buffer = 100)
tepop <- subset(totalpop, runif(nrow(totalpop)) < 0.05)
teCH <- sim.capthist(te, popn = tepop, renumber=FALSE, detectfn = "HHN",

detectpar = list(lambda0 = 3, sigma = 25))
plot(teCH, type = 'telemetry', tracks = TRUE)

simple "centres" example
polygon data require 'hazard' detection function 14:19
CH <- sim.capthist(make.poly(), nocc = 20, detectfn = 'HHN',

detectpar = list(lambda0 = 1, sigma = 10))
plot(CH, cappar = list(col = 'orange'), varycol = FALSE, border = 10)
plot(CH, type = 'centres', add = TRUE, rad = 0)

End(Not run)

plot.mask Plot Habitat Mask, Density or Resource Surface

164 plot.mask

Description

Plot a habitat mask either as points or as an image plot. Colours maybe used to show the value of
one mask covariate.

Usage

S3 method for class 'mask'
plot(x, border = 20, add = FALSE, covariate = NULL, axes = FALSE,

dots = TRUE, col = "grey", breaks = 10, meshcol = NA, ppoly = TRUE,
polycol = "red", legend = TRUE, ...)

S3 method for class 'Dsurface'
plot(x, covariate, group = NULL, plottype =

"shaded", scale = 1, ...)

S3 method for class 'Rsurface'
plot(x, covariate = "Resource", plottype =

"shaded", scale = 1, ...)

spotHeight (object, prefix = NULL, dec = 2, point = FALSE, text = TRUE,
sep = ", ", session = 1, scale = 1, ...)

Arguments

x, object mask or Dsurface object

border width of blank display border (metres)

add logical for adding mask points to an existing plot

covariate name (as character string in quotes) or column number of a covariate to use for
colouring

axes logical for plotting axes

dots logical for plotting mask points as dots, rather than as square pixels

col colour(s) to use for plotting

breaks an integer or a numeric vector – see cut

meshcol colour for pixel borders (NA for none)

ppoly logical for whether the bounding polygon should be plotted (if ‘poly’ specified)

polycol colour for outline of polygon (ppoly = TRUE)

legend logical; if TRUE a legend is plotted

... other arguments passed to eqscplot (in the case of plot.mask), plot.mask (in
the case of plot.Dsurface and plot.Rsurface), and points or text (in the
case of spotHeight)

group group for which plot required, if more than 1

plottype character string c("dots", "shaded", "contour", "persp")

scale numeric multiplier for density or other numeric covariate (see Dsurface)

plot.mask 165

prefix character vector for name(s) of covariate(s) to retrieve

dec number of decimal places for rounding density

point logical for whether to plot point

text logical for whether to place density label on plot

sep character separator for elements if length(prefix)>1

session session number or identifier

Details

The argument dots of plot.mask selects between two distinct types of plot (dots and shaded
(coloured) pixels).

plot.Dsurface and plot.Rsurface offer contour and perspective plots in addition to the options
in plot.mask. It may take some experimentation to get what you want - see contour and persp.

For plot.Dsurface the default value of ‘covariate’ is ‘D’ unless the Dsurface has a ‘parameter’ at-
tribute of ‘noneuc’,

If using a covariate or Dsurface or Rsurface to colour dots or pixels, the col argument should be a
colour vector of length equal to the number of levels (the default palette from 2.9.0 is terrain.colors,
and this palette will also be used whenever there are too few levels in the palette provided; see Notes
for more on palettes). Border lines around pixels are drawn in ‘meshcol’. Set this to NA to eliminate
pixel borders.

If a covariate is specified in a call to plot.Dsurface then that covariate will be plotted instead of
density. This is a handy way to contour a covariate (contouring is not available in plot.mask).

If ‘breaks’ is an integer then the range of the covariate is divided into this number of equal inter-
vals. Alternatively, ‘breaks’ may be a vector of break points (length one more than the number of
intervals). This gives more control and often ‘prettier’

spotHeight may be used to interrogate a plot produced with plot.Dsurface or plot.Rsurface,
or by plot.mask if the mask has covariates. prefix defaults to ‘density.’ for Dsurface objects
and to ‘’ (all covariates) for mask objects. The predicted density or covariate at the nearest point
is returned when the user clicks on the plot. Multiple values may be displayed (e.g., prefix =
c("lcl","ucl") if Dsurface includes confidence limits). Click outside the mask or hit the Esc key
to end. spotHeight deals with one session at a time.

Legend plotting is enabled only when a covariate is specified. It uses legend when dots = TRUE
and strip.legend otherwise.

Value

If covariate is specified and plottype = "shaded" then plot.mask invisibly returns a character
vector of the intervals defined by ‘breaks’ (useful for plotting a legend).

If plottype = "persp" then plot.mask invisibly returns a the perspective matrix that may be used
to add to the plot with trans3d.

spotHeight invisibly returns a dataframe of the extracted values and their coordinates.

166 plot.mask

Note

plot.mask() acquired the argument ‘legend’ in version 2.9.0, and other changes (e.g., breaks =
10) may alter the output.

Contouring requires a rectangular grid; if a Dsurface is not rectangular then plot.Dsurface with
plottype = "contour" triggers a call to rectangularMask.

The colour palettes topo.colors, heat.colors and terrain.colors may be viewed with the
demo.pal function in the Examples code of their help page palettes.

The package RColorBrewer is a good source of palettes. Try display.brewer.all() and e.g.,
col = brewer.pal(7, "YlGn").

See Also

colours, mask, Dsurface, rectangularMask, contour persp strip.legend

Examples

simple

temptrap <- make.grid()
tempmask <- make.mask(temptrap)
plot (tempmask)

Not run:

restrict to points over an arbitrary detection threshold,
add covariate, plot image and overlay traps

tempmask <- subset(tempmask, pdot(tempmask, temptrap,
noccasions = 5)>0.001)

covariates (tempmask) <- data.frame(circle =
exp(-(tempmask$x^2 + tempmask$y^2)/10000))

plot (tempmask, covariate = "circle", dots = FALSE, axes = TRUE,
add = TRUE, breaks = 8, col = terrain.colors(8), mesh = NA)

plot (temptrap, add = TRUE)

add a legend
par(cex = 0.9)
covrange <- range(covariates(tempmask)$circle)
step <- diff(covrange)/8
colourlev <- terrain.colors(9)
zlev <- format(round(seq(covrange[1],covrange[2],step),2))
legend (x = "topright", fill = colourlev, legend = zlev,

y.intersp = 0.8, title = "Covariate")

title("Colour mask points with p.(X) > 0.001")
mtext(side=3,line=-1, "g0 = 0.2, sigma = 20, nocc = 5")

Waitarere possum density surface extrapolated across region

plot.popn 167

regionmask <- make.mask(traps(possumCH), buffer = 1000, spacing = 10,
poly = possumremovalarea)

dts <- distancetotrap(regionmask, possumarea)
covariates(regionmask) <- data.frame(d.to.shore = dts)
shorePossums <- predictDsurface(possum.model.Ds, regionmask)

plot as coloured pixels with white lines
colourlev <- terrain.colors(7)
plot(shorePossums, breaks = seq(0,3.5,0.5), plottype = "shaded",

poly = FALSE, col = colourlev, mesh = NA)
plot(traps(possumCH), add = TRUE, detpar = list(col = "black"))
polygon(possumremovalarea)

check some point densities
spotHeight(shorePossums, dec = 1, col = "black")

add a legend
zlev <- format(seq(0,3,0.5), digits = 1)
legend (x = "topright", fill = colourlev, legend =

paste(zlev,"--"), y.intersp = 1, title = "Density / ha")

End(Not run)

plot.popn Plot Population Object

Description

Display animal locations from a popn object.

Usage

S3 method for class 'popn'
plot(x, add = FALSE, frame = TRUE,

circles = NULL, collapse = FALSE, seqcol = NULL, ...)

Arguments

x object of class popn

add logical to add points to an existing plot

frame logical to add frame or polygon within which points were simulated

circles vector giving the radii if circles are to be plotted

collapse logical; if TRUE then multiple sessions are overlaid

seqcol color used for first detection when collapse = TRUE (optional)

... arguments passed to eqscplot and points or symbols

168 plot.secr

Details

If circles is provided then a circle of the given radius is plotted for each animal using the symbols
function. The arguments fg and bg may be used to control the colour of the perimeter and the fill
of each circle (see Examples).

For a multi-session popn with turnover, collapse = TRUE allows successive locations to be joined
with (type = 'o' or type = 'l').

seqcol may be a single color, a vector of colours (one per session), or a vector of two colours, one
for the first and one for all later sessions in which each animal was detected.

If . . . includes ’col’ then ’collapse’ must be specified to avoid confusion, even for single-session
data (see Examples).

See Also

popn, sim.popn

Examples

temppopn <- sim.popn(D = 5, expand.grid(
x = c(0,100), y = c(0,100)))

specify collapse to avoid partial match of col
plot(temppopn, pch = 16, collapse = FALSE, col = "blue")

plot(temppopn, circles = 20, bg = "tan", fg = "white")
plot(temppopn, pch = 16, cex = 0.5, add = TRUE)

plot.secr Plot Detection Functions

Description

Plot detection functions using estimates of parameters in an secr object, or as provided by the user.

Usage

S3 method for class 'secr'
plot(x, newdata = NULL, add = FALSE,

sigmatick = FALSE, rgr = FALSE, limits = FALSE, alpha = 0.05,
xval = 0:200, ylim = NULL, xlab = NULL, ylab = NULL, ...)

S3 method for class 'secrlist'
plot(x, newdata = NULL, add = FALSE,

sigmatick = FALSE, rgr = FALSE, limits = FALSE, alpha = 0.05,
xval = 0:200, ylim = NULL, xlab = NULL, ylab = NULL, ...,
overlay = TRUE)

plot.secr 169

detectfnplot (detectfn, pars, details = NULL, add = FALSE,
sigmatick = FALSE, rgr = FALSE, hazard = FALSE, xval = 0:200, ylim = NULL,
xlab = NULL, ylab = NULL, ...)

attenuationplot (pars, add = FALSE, spherical = TRUE,
xval = 0:200, ylim = NULL, xlab = NULL, ylab = NULL, ...)

Arguments

x an secr object

newdata dataframe of data to form estimates

add logical to add curve(s) to an existing plot

sigmatick logical; if TRUE the scale parameter sigma is shown by a vertical line

rgr logical; if TRUE a scaled curve r.g(r) is plotted instead of g(r)

hazard logical; if TRUE the hazard of detection is plotted instead of probability

limits logical; if TRUE pointwise confidence limits are drawn

alpha alpha level for confidence intervals

xval vector of distances at for which detection to be plotted

ylim vector length 2 giving limits of y axis

xlab label for x axis

ylab label for y axis

... arguments to pass to lines

overlay logical; if TRUE then automatically add = TRUE for plots after the first

detectfn integer code or character string for shape of detection function 0 = halfnormal
etc. – see detectfn

pars list, vector or matrix of parameter values

details list of ancillary parameters

spherical logical for whether to include spherical spreading term

Details

newdata is usually NULL, in which case one curve is plotted for each session and group. Otherwise,
predict.secr is used to form estimates and plot a curve for each row in newdata.

If axis labels are not provided they default to ‘Distance (m)’ and ‘Detection probability’ or ‘Detec-
tion lambda’.

detectfnplot is an alternative in which the user nominates the type of function and provides
parameter values. pars maybe a list as from detectpar; it is first coerced to a numeric vector with
unlist. Parameter values must be in the expected order (e.g. g0, sigma, z). If pars is a matrix then
a separate curve is plotted with the parameter values in each row.

For detectfnplot the signal threshold parameters ‘cutval’ and ‘spherical’ should be provided in
details (see examples).

170 plot.traps

Approximate confidence limits for g(r) are calculated using a numerical first-order delta-method
approximation to the standard error at each xval. The distribution of g(r) is assumed to be normal
on the logit scale for non-hazard functions (detectfn 0:13). For hazard detection functions (detectfn
14:18) the hazard is assumed (from version 3.1.1) to be distributed normally on the log scale. Limits
are back-transformed to the probability scale g(r).

attenuationplot plots the expected decline in signal strength with distance, given parameters β0
and β1 for a log-linear model of sound attenuation.

Value

plot.secr invisibly returns a dataframe of the plotted values (or a list of dataframes in the case
that newdata has more than one row).

See Also

Detection functions, plot, secr

Examples

plot (secrdemo.b, xval = 0:100, ylim = c(0, 0.4))
Add recapture probability
plot (secrdemo.b, newdata = data.frame(b = 1), add = TRUE,

col = "red")

signal strength detection: 70dB at source, attenuation
0.3dB/m, sdS 5dB; detection threshold 40 dB.
detectfnplot (detectfn = 10, c(70, -0.3, 5), details =

list(cutval = 40))

add a function with louder source and spherical spreading...
detectfnplot (detectfn = 11, c(110, -0.3, 5), details =

list(cutval = 40), add = TRUE, col = "red")

matching sound attenuation curves; `spherical-only' dashed line
attenuationplot (c(70, -0.3), spherical = FALSE, ylim=c(-10,110))
attenuationplot (c(110, 0), spherical = TRUE, add=TRUE, lty=2)
attenuationplot (c(110, -0.3), spherical = TRUE, add = TRUE,

col = "red")

plot.traps Plot traps Object

Description

Map the locations of detectors (traps).

plot.traps 171

Usage

S3 method for class 'traps'
plot(x, border = 100, label = FALSE, offset = c(6,6), add = FALSE,
hidetr = FALSE, detpar = list(), txtpar = list(), bg = "white",
gridlines = !add, gridspace = 100, gridcol = "grey",
markused = FALSE, markvarying = FALSE, markvertices = FALSE,
labelclusters = FALSE, frame = NULL, ...)

Arguments

x a traps object
border width of blank margin around the outermost detectors
label logical indicating whether a text label should appear by each detector
offset vector displacement of label from point on x and y axes
add logical to add detectors to an existing plot
hidetr logical to suppress plotting of detectors
detpar list of named graphical parameters for detectors (passed to par)
txtpar list of named graphical parameters for labels (passed to par)
bg background colour
gridlines logical for plotting grid lines
gridspace spacing of gridlines
gridcol colour of gridlines
markused logical to distinguish detectors used on at least one occasion
markvarying logical to distinguish detectors whose usage varies among occasions
markvertices logical or 0,1,2 for plotting transect or polygon points
labelclusters logical to label clusters
frame data defining a boundary polygon (see boundarytoSF

... arguments to pass to eqscplot

Details

offset may also be a scalar value for equal displacement on the x and y axes. The hidetr option
is most likely to be used when plot.traps is called by plot.capthist. See par and colours for more
information on setting graphical parameters. The initial values of graphical parameters are restored
on exit.

Axes are not labeled. Use axis and mtext if necessary.

markvertices determines whether the vertices of each transect or polygon will be emphasised by
overplotting a point symbol (detpar$pch). Value may be logical (TRUE, FALSE) or integer (0 = no
points, 1 = terminal vertices only, 2 = all vertices).

From 4.4.0, polygon detectors are shaded with detpar$col and outlined (border) with detpar$fg. Use
detpar$col = NA for no shading (transparent polygons).

labelclusters requires x to have attributes ‘clusterID’ and ‘clustertrap’.

A boundary polygon is plotted in black if frame is not NULL.

172 plotMaskEdge

Value

None

See Also

plot, traps, clusterID

Examples

temptrap <- make.grid()
plot (temptrap, detpar = list(pch = 16, col = "blue"),

label = TRUE, offset = 7)

plotMaskEdge Outline Around Mask Cells

Description

Plots the outer edge of a mask.

Usage

plotMaskEdge(mask, plt = TRUE, add = FALSE, ...)

Arguments

mask secr habitat mask object

plt logical; if TRUE the edge is plotted

add logical; if TRUE the line is added to an existing plot

... other line plotting arguments passed to segments

Details

May be slow.

Value

A numeric matrix of 4 columns is returned invisibly. The columns may be used as arguments x0,
y0, x1, y1 in a call to segments().

Note

A bug in secr <3.2.2 caused some internal lines to appear when the mask spacing was not an integer.

pmixProfileLL 173

See Also

gridCells

Examples

Not run:
plot(possummask)
plotMaskEdge (possummask, add = TRUE)

End(Not run)

pmixProfileLL Mixture Model Check

Description

Compute the profile likelihood of a finite mixture model for a user-specified range of values for the
mixing parameter. This provides a check on multimodality.

Usage

pmixProfileLL(CH, model = list(g0 ~ h2, sigma ~ h2), CL = TRUE, pmvals = seq(0.01,
0.99, 0.01), pmi = 5, ...)

Arguments

CH capthist object

model model as in secr.fit

CL logical as in in secr.fit

pmvals numeric vector of values for mixing parameter ‘pmix’

pmi integer index of ‘pmix’ in vector of coefficients (beta parameters) for the speci-
fied model

... other arguments passed to secr.fit

Details

See secr-finitemixtures.pdf.

Choosing the wrong value for pmi results in the error message "invalid fixed beta - require NP-
vector". The easiest way to find the value of pmi is to inspect the output from a previously fitted
mixture model - either count the coefficients or check fit$parindx$pmix (for a model named ‘fit’).
It is assumed that ‘pmix’ is the last real parameter in the model, and that pmix is constant.

https://www.otago.ac.nz/density/pdfs/secr-finitemixtures.pdf

174 pointsInPolygon

Value

Numeric vector of profile likelihoods.

Note

This is slow to execute and the results are hard to interpret. Use only if you are confident.

Examples

Not run:

pmvals <- seq(0.02,0.99,0.02)
mask <- make.mask(traps(ovenCH[[1]]), nx = 32, buffer = 100)

only g0 ~ h2, so reduce pmi from 5 to 4
outPL <- pmixProfileLL(ovenCH[[1]], model = list(g0~h2),

mask = mask, pmvals, CL = TRUE, trace = FALSE, pmi = 4)

plot(pmvals, outPL, xlim = c(0,1),
xlab = 'Fixed pmix', ylab = 'Profile log-likelihood')

End(Not run)

pointsInPolygon Points Inside Polygon

Description

Determines which of a set of points lie inside a closed polygon or at least one of a set of polygons

Usage

pointsInPolygon(xy, poly, logical = TRUE)

Arguments

xy 2-column matrix or dataframe of x-y coordinates for points to assess

poly 2-column matrix or dataframe containing perimeter points of polygon, or a Spa-
tialPolygonsDataFrame object from package sp, or a ‘mask’ object (see Warn-
ing)

logical logical to control the output when ‘poly’ is a mask (see Details)

polyarea 175

Details

If poly is a SpatialPolygonsDataFrame object then the method over is used from sp. This allows
multiple polygons and polygons with holes.

If poly is an secr ‘mask’ object then xy is discretized and matched to the cells in poly. If logical
= FALSE then the returned value is a vector of integer indices to the row in ‘poly’ corresponding to
each row of ‘xy’; otherwise the result is a vector of logical values.

Otherwise, the algorithm is adapted from some code posted on the S-news list by Peter Perkins
(23/7/1996). The polygon should be closed (last point same as first).

Value

Vector of logical or integer values, one for each row in xy

Warning

If poly is a mask object then its cells must be aligned to the x- and y- axes

See Also

over

Examples

100 random points in unit square
xy <- matrix(runif(200), ncol = 2)
triangle centred on (0.5, 0.5)
poly <- data.frame(x = c(0.2,0.5,0.8,0.2), y = c(0.2,0.8,0.2,0.2))
plot(xy, pch = 1 + pointsInPolygon(xy, poly))
lines(poly)

polyarea Area of Polygon(s)

Description

Area of a single closed polygon (simple x-y coordinate input) or of multiple polygons, possibly
with holes.

Usage

polyarea(xy, ha = TRUE)

176 popn

Arguments

xy dataframe or list with components ‘x’ and ‘y’, or a SpatialPolygons or Spa-
tialPolygonsDataFrame object from package sp, or an sf object with polygon
data

ha logical if TRUE output is converted from square metres to hectares

Details

For sf, sfc, SpatialPolygons or SpatialPolygonsDataFrame objects, the package sf is used.

Value

A scalar.

See Also

buffer.contour

Examples

polyarea(make.grid(hollow = TRUE))

popn Population Object

Description

Encapsulate the locations of a set of individual animals.

Details

An object of class popn records the locations of a set of individuals, together with ancillary data
such as their sex. Often used for a realisation of a spatial point process (e.g. homogeneous Poisson)
with known density (intensity). Locations are stored in a data frame with columns ‘x’ and ‘y’.

A popn object has attributes

covariates data frame with numeric, factor or character variables to be used as individual covariates
model2D 2-D distribution ("poisson", "cluster", "IHP", "linear" etc.)
Ndist distribution of number of individuals ("poisson", "fixed")
boundingbox data frame of 4 rows, the vertices of the rectangular area

The number of rows in covariates must match the length of x and y. See sim.popn for more
information on Ndist and model2D.

possum 177

Note

The popn class is used only occasionally: it is not central to spatially explicit capture recapture.

See Also

sim.popn, plot.popn, transformations

possum Brushtail Possum Trapping Dataset

Description

Data from a trapping study of brushtail possums at Waitarere, North Island, New Zealand.

Usage

possumCH
possumarea
possumremovalarea
possummask
possum.model.0
possum.model.Ds

Details

Brushtail possums (Trichosurus vulpecula) are an unwanted invasive species in New Zealand. Al-
though most abundant in forests, where they occasionally exceed densities of 15 / ha, possums live
wherever there are palatable food plants and shelter.

Efford et al. (2005) reported a live-trapping study of possums in Pinus radiata plantation on coastal
sand dunes. The 300-ha site at Waitarere in the North Island of New Zealand was a peninsula,
bounded on one side by the sea and on two other sides by the Manawatu river. Cage traps were
set in groups of 36 at 20-m spacing around the perimeter of five squares, each 180 m on a side.
The squares (‘hollow grids’) were centred at random points within the 300-ha area. Animals were
tagged and released daily for 5 days in April 2002. Subsequently, leg-hold trapping was conducted
on a trapping web centred on each square (data not reported here), and strenuous efforts were made
to remove all possums by cyanide poisoning and further leghold trapping across the entire area.
This yielded a density estimate of 2.26 possums / ha.

Traps could catch at most one animal per day. The live-trapped animals comprised 46 adult females,
33 adult males, 10 immature females and 11 immature males; sex and/or age were not recorded for 4
individuals (M. Coleman unpubl. data). These counts do not sum to the number of capture histories
- see Note. One female possum was twice captured at two sites on one day, having entered a second
trap after being released; one record in each pair was selected arbitrarily and discarded.

The data are provided as a single-session capthist object ‘possumCH’. ‘possummask’ is a match-
ing mask object - see Examples. Two fitted models are provided for illustration.

178 possum

The dataframe possumarea contains boundary coordinates of a habitat polygon that is used to clip
possummask at the shore (from secr 1.5). possumarea comprises a single polygon representing
the extent of terrestrial vegetation to the west, north and east, and an arbitrary straight southern
boundary. The boundary is also included as a shapefile and as a text file (‘possumarea.shp’ etc. and
‘possumarea.txt’ in the package ‘extdata’ folder). See Examples in make.mask.

The dataframe possumremovalarea contains boundary coordinates of another polygon, the nomi-
nal removal area of Efford et al. (2005 Fig. 1) (from secr 2.3).

Object Description
possumCH capthist object
possummask mask object
possumarea habitat perimeter
possumremovalarea nominal boundary of removal region
possum.model.0 fitted secr model – null
possum.model.Ds fitted secr model – distance to shore

Note

A significant problem with the data used by Efford et al. (2005) was noticed recently. Five capture
histories in possumCH are for animals that had lost a previous tag. A further three histories may also
have been animals that were tagged previously or mis-recorded. Analyses that treat each previously
tagged animal as a new individual are in error (this includes the published analyses, the pre-fitted
models described here, and those in the vignette secr-densitysurfaces.pdf). All eight questionable
histories are now indicated in possumCH with the logical covariate ‘prev.tagged’.

Methods have not yet been developed to adjust for tag loss in SECR models.

Source

Landcare Research, New Zealand.

References

Borchers, D.L. and Efford, M.G. (2008) Spatially explicit maximum likelihood methods for capture-
recapture studies. Biometrics 64, 377–385.

Efford, M. G., Dawson, D. K. and Robbins C. S. (2004) DENSITY: software for analysing capture-
recapture data from passive detector arrays. Animal Biodiversity and Conservation 27, 217–228.

Efford, M. G., Warburton, B., Coleman, M. C. and Barker, R. J. (2005) A field test of two methods
for density estimation. Wildlife Society Bulletin 33, 731–738.

See Also

capthist

Examples

plot(possummask)

predict.secr 179

plot(possumCH, tracks = TRUE, add = TRUE)
plot(traps(possumCH), add = TRUE)
lines(possumarea)
summary(possumCH)

compare & average pre-fitted models
AIC(possum.model.0, possum.model.Ds)
modelAverage(possum.model.0, possum.model.Ds)

Not run:

Roughly estimate tag-loss error by dropping dubious histories
i.e. restrict to "not previously tagged"
NPT <- !covariates(possumCH)$prev.tagged
possum.model.0.NPT <- secr.fit(subset(possumCH,NPT), mask =

possummask, trace = FALSE)
predict(possum.model.0)[1,2]/ predict(possum.model.0.NPT)[1,2]
...about 9%

End(Not run)

predict.secr SECR Model Predictions

Description

Evaluate a spatially explicit capture–recapture model. That is, compute the ‘real’ parameters corre-
sponding to the ‘beta’ parameters of a fitted model for arbitrary levels of any variables in the linear
predictor.

Usage

S3 method for class 'secr'
predict(object, newdata = NULL, realnames = NULL, type = c("response", "link"),

se.fit = TRUE, alpha = 0.05, savenew = FALSE, ...)

S3 method for class 'secrlist'
predict(object, newdata = NULL, realnames = NULL, type = c("response", "link"),

se.fit = TRUE, alpha = 0.05, savenew = FALSE, ...)

S3 method for class 'secr'
detectpar(object, ..., byclass = FALSE)

180 predict.secr

Arguments

object secr object output from secr.fit, or list of secr objects (secrlist)

newdata optional dataframe of values at which to evaluate model

realnames character vector of real parameter names

type character; type of prediction required. The default ("response") provides esti-
mates of the ‘real’ parameters.

se.fit logical for whether output should include SE and confidence intervals

alpha alpha level for confidence intervals

savenew logical for whether newdata should be saved

... other arguments passed to makeNewData

byclass logical; if TRUE values are returned for each latent class in a mixture model, or
class in a hybrid mixture (hcov) model

Details

The variables in the various linear predictors are described in secr-models.pdf and listed for the
particular model in the vars component of object.

Optional newdata should be a dataframe with a column for each of the variables in the model (see
‘vars’ component of object). If newdata is missing then a dataframe is constructed automatically.

Default newdata are for a naive animal on the first occasion; numeric covariates are set to zero and
factor covariates to their base (first) level. From secr 3.1.4 the argument ‘all.levels’ may be passed
to makeNewData; if TRUE then the default newdata includes all factor levels.

realnames may be used to select a subset of parameters.

Standard errors for parameters on the response (real) scale are by the delta method (Lebreton et al.
1992), and confidence intervals are backtransformed from the link scale.

The value of newdata is optionally saved as an attribute.

detectpar is used to extract the detection parameter estimates from a simple model to pass to func-
tions such as esa.plot. detectpar calls predict.secr. Parameters will be evaluated by default
at base levels of the covariates, although this may be overcome by passing a one-line newdata to
predict via the . . . argument. Groups and mixtures are a headache for detectpar: it merely returns
the estimated detection parameters of the first group or mixture.

If the ‘a0’ parameterization has been used in secr.fit (i.e., object$details$param == 3) then
detectpar automatically backtransforms (a0, sigma) to (g0, sigma) or (lambda0, sigma) depending
on the value of object$detectfn.

Value

When se.fit = FALSE, a dataframe identical to newdata except for the addition of one column
for each ‘real’ parameter. Otherwise, a list with one component for each row in newdata. Each
component is a dataframe with one row for each ‘real’ parameter (density, g0, sigma, b) and columns
as below

link link function
estimate estimate of real parameter

https://www.otago.ac.nz/density/pdfs/secr-models.pdf

predict.secr 181

SE.estimate standard error of the estimate
lcl lower 100(1–alpha)% confidence limit
ucl upper 100(1–alpha)% confidence limit

When newdata has only one row, the structure of the list is ‘dissolved’ and the return value is one
data frame.

For detectpar, a list with the estimated values of detection parameters (e.g., g0 and sigma if
detectfn = "halfnormal"). In the case of multi-session data the result is a list of lists (one list per
session).

Note

predictDsurface should be used for predicting density at many points from a model with spatial
variation. This deals automatically with scaling of x- and y-coordinates, and is much is faster than
predict.secr. The resulting Dsurface object has its own plot method.

The argument ‘scaled’ was removed from both predict methods in version 2.10 as the scaleg0 and
scalesigma features had been superceded by other parameterisations.

Overdispersion results in confidence intervals that are too narrow. See adjustVarD for a partial
solution.

References

Lebreton, J.-D., Burnham, K. P., Clobert, J. and Anderson, D. R. (1992) Modeling survival and test-
ing biological hypotheses using marked animals: a unified approach with case studies. Ecological
Monographs 62, 67–118.

See Also

secr.fit, predictDsurface, adjustVarD, makeNewData

Examples

load previously fitted secr model with trap response
and extract estimates of `real' parameters for both
naive (b = 0) and previously captured (b = 1) animals

predict (secrdemo.b, newdata = data.frame(b = 0:1))

OR from secr 3.1.4
predict (secrdemo.b, all.levels = TRUE)

temp <- predict (secrdemo.b, all.levels = TRUE, save = TRUE)
attr(temp, "newdata")

detectpar(secrdemo.0)

182 predictDsurface

predictDsurface Predict Density Surface

Description

Predict density at each point on a raster mask from a fitted secr model.

Usage

predictDsurface(object, mask = NULL, se.D = FALSE, cl.D = FALSE, alpha =
0.05, parameter = c('D', 'noneuc'))

Arguments

object fitted secr object

mask secr mask object

se.D logical for whether to compute prediction SE

cl.D logical for whether to compute confidence limits

alpha alpha level for 100(1 – alpha)% confidence intervals

parameter character for real parameter to predict

Details

Predictions use the linear model for density on the link scale in the fitted secr model ‘object’, or the
fitted user-defined function, if that was specified in secr.fit.

If ‘mask’ is NULL then predictions are for the mask component of ‘object’.

SE and confidence limits are computed only if specifically requested. They are not available for
user-defined density functions.

Density is adjusted automatically for the number of clusters in ‘mashed’ models (see mash).

Value

Object of class ‘Dsurface’ inheriting from ‘mask’. Predicted densities are added to the covariate
dataframe (attribute ‘covariates’) as column(s) with prefix ‘D.’ If the model uses multiple groups,
multiple columns will be distinguished by the group name (e.g., "D.F" and "D.M"). If groups are
not defined the column is named "D.0".

For multi-session models the value is a multi-session mask.

The pointwise prediction SE is saved as a covariate column prefixed ‘SE.’ (or multiple columns if
multiple groups). Confidence limits are likewise saved with prefixes ‘lcl.’ and ‘ucl.’.

See Also

plot.Dsurface, secr.fit, predict.secr

predictDsurface 183

Examples

use canned possum model
shorePossums <- predictDsurface(possum.model.Ds)
par(mar = c(1,1,1,6))
plot(shorePossums, plottype = "shaded", polycol = "blue", border = 100)
plot(traps(possumCH), detpar = list(col = "black"), add = TRUE)
par(mar = c(5,4,4,2) + 0.1) ## reset to default
extract and summarise
summary(covariates(shorePossums))

Not run:

extrapolate to a new mask; add covariate needed by model; plot
regionmask <- make.mask(traps(possumCH), buffer = 1000, spacing = 10,

poly = possumremovalarea)
dts <- distancetotrap(regionmask, possumarea)
covariates(regionmask) <- data.frame(d.to.shore = dts)
regionPossums <- predictDsurface(possum.model.Ds, regionmask,

se.D = TRUE, cl.D = TRUE)
par(mfrow = c(1,2), mar = c(1,1,1,6))
plot(regionPossums, plottype = "shaded", mesh = NA, breaks = 20)
plot(regionPossums, plottype = "contour", add = TRUE)
plot(regionPossums, covariate = "SE", plottype = "shaded",

mesh = NA, breaks = 20)
plot(regionPossums, covariate = "SE", plottype = "contour",

add = TRUE)

confidence surfaces
plot(regionPossums, covariate = "lcl", breaks = seq(0,3,0.2),

plottype = "shaded")
plot(regionPossums, covariate = "lcl", plottype = "contour",

add = TRUE, levels = seq(0,2.7,0.2))
title("lower 95% surface")
plot(regionPossums, covariate = "ucl", breaks=seq(0,3,0.2),

plottype = "shaded")
plot(regionPossums, covariate = "ucl", plottype = "contour",

add = TRUE, levels = seq(0,2.7,0.2))
title("upper 95% surface")

annotate with CI
par(mfrow = c(1,1))
plot(regionPossums, plottype = "shaded", mesh = NA, breaks = 20)
plot(traps(possumCH), add = TRUE, detpar = list(col = "black"))

if (interactive()) {
spotHeight(regionPossums, dec = 1, pre = c("lcl","ucl"), cex = 0.8)

}

perspective plot
pm <- plot(regionPossums, plottype = "persp", box = FALSE, zlim =

c(0,3), phi=30, d = 5, col = "green", shade = 0.75, border = NA)

184 print.capthist

lines(trans3d (possumremovalarea$x, possumremovalarea$y,
rep(1,nrow(possumremovalarea)), pmat = pm))

par(mfrow = c(1,1), mar = c(5, 4, 4, 2) + 0.1) ## reset to default

compare estimates of region N
grid cell area is 0.01 ha
sum(covariates(regionPossums)[,"D.0"]) * 0.01
region.N(possum.model.Ds, regionmask)

End(Not run)

print.capthist Print Detections

Description

Print method for capthist objects.

Usage

S3 method for class 'capthist'
print(x, ..., condense = FALSE, sortrows = FALSE)

Arguments

x capthist object

... arguments to pass to print.default

condense logical, if true then use condensed format for 3-D data

sortrows logical, if true then sort output by animal

Details

The condense option may be used to format data from proximity detectors in a slightly more read-
able form. Each row then presents the detections of an individual in a particular trap, dropping rows
(traps) at which the particular animal was not detected.

Value

Invisibly returns a dataframe (condense = TRUE) or array in the format printed.

See Also

print, capthist

print.secr 185

Examples

simulated detections of simulated default population of 5/ha
print(sim.capthist(make.grid(nx=5,ny=3)))

print.secr Print or Summarise secr Object

Description

Print results from fitting a spatially explicit capture–recapture model or generate a list of summary
values.

Usage

S3 method for class 'secr'
print(x, newdata = NULL, alpha = 0.05, deriv = FALSE, call = TRUE, ...)

S3 method for class 'secr'
summary(object, newdata = NULL, alpha = 0.05, deriv = FALSE, ...)

Arguments

x secr object output from secr.fit

object secr object output from secr.fit

newdata optional dataframe of values at which to evaluate model

alpha alpha level

deriv logical for calculation of derived D and esa

call logical; if TRUE the call is printed

... other arguments optionally passed to derived.secr

Details

Results from print.secr are potentially complex and depend upon the analysis (see below). Op-
tional newdata should be a dataframe with a column for each of the variables in the model. If
newdata is missing then a dataframe is constructed automatically. Default newdata are for a naive
animal on the first occasion; numeric covariates are set to zero and factor covariates to their base
(first) level. Confidence intervals are 100 (1 – alpha) % intervals.

call the function call (optional)
version,time secr version, date and time fitting started, and elapsed time
Detector type ‘single’, ‘multi’, ‘proximity’ etc.
Detector number number of detectors
Average spacing
x-range
y-range
New detector type as fitted when details$newdetector specified

186 print.secr

N animals number of distinct animals detected
N detections number of detections
N occasions number of sampling occasions
Mask area
Model model formula for each ‘real’ parameter
Fixed (real) fixed real parameters
Detection fn detection function type (halfnormal or hazard-rate)
N parameters number of parameters estimated
Log likelihood log likelihood
AIC Akaike’s information criterion
AICc AIC with small sample adjustment (Burnham and Anderson 2002)
Beta parameters coef of the fitted model, SE and confidence intervals
vcov variance-covariance matrix of beta parameters
Real parameters fitted (real) parameters evaluated at base levels of covariates
Derived parameters derived estimates of density and mean effective sampling area (optional)

Derived parameters (see derived) are computed only if deriv = TRUE.

Value

The summary method constructs a list of outputs similar to those printed by the print method, but
somewhat more concise and re-usable:

versiontime secr version, and date and time fitting started
traps detector summary
capthist capthist summary
mask mask summary
modeldetails miscellaneous model characteristics (CL etc.)
AICtable single-line output of AIC.secr
coef table of fitted coefficients with CI
predicted predicted values (‘real’ parameter estimates)
derived output of derived.secr (optional)

References

Burnham, K. P. and Anderson, D. R. (2002) Model selection and multimodel inference: a practical
information-theoretic approach. Second edition. New York: Springer-Verlag.

See Also

AIC.secr, secr.fit

Examples

load & print previously fitted null (constant parameter) model
print(secrdemo.0)

print.traps 187

summary(secrdemo.0)

combine AIC tables from list of summaries
do.call(AIC, lapply(list(secrdemo.b, secrdemo.0), summary))

Not run:

print(secrdemo.CL, deriv = TRUE)

End(Not run)

print.traps Print Detectors

Description

Print method for traps objects.

Usage

S3 method for class 'traps'
print(x, ...)

Arguments

x traps object

... arguments to pass to print.default

See Also

print, traps

Examples

print(make.grid(nx = 5, ny = 3))

188 randomHabitat

randomHabitat Random Landscape

Description

The Modified Random Cluster algorithm of Saura and Martinez-Millan (2000) is used to generate
a mask object representing patches of contiguous ‘habitat’ cells (pixels) within a ‘non-habitat’ ma-
trix (‘non-habitat’ cells are optionally dropped). Spatial autocorrelation (fragmentation) of habitat
patches is controlled via the parameter ‘p’. ‘A’ is the expected proportion of ‘habitat’ cells.

randomDensity is a wrapper for randomHabitat that may be used as input to sim.popn.

Usage

randomHabitat(mask, p = 0.5, A = 0.5, directions = 4, minpatch = 1,
drop = TRUE, covname = "habitat", plt = FALSE, seed = NULL)

randomDensity(mask, parm)

Arguments

mask secr mask object to use as template

p parameter to control fragmentation

A parameter for expected proportion of habitat

directions integer code for adjacency (rook’s move 4 or queen’s move 8)

minpatch integer minimum size of patch

drop logical for whether to drop non-habitat cells

covname character name of covariate when drop = FALSE

plt logical for whether intermediate stages should be plotted

seed either NULL or an integer that will be used in a call to set.seed

parm list of arguments for randomHabitat, with added argument D

Details

Habitat is simulated within the region defined by the cells of mask. The region may be non-
rectangular.

The algorithm comprises stages A-D:

A. Randomly select proportion p of cells from the input mask

B. Cluster selected cells with any immediate neighbours as defined by directions

C. Assign clusters to ‘non-habitat’ (probability 1–A) and ‘habitat’ (probability A)

D. Cells not in any cluster from (B) receive the habitat class of the majority of the <=8 adjacent cells
assigned in (C), if there are any; otherwise they are assigned at random (with probabilities 1–A, A).

randomHabitat 189

Fragmentation declines, and cluster size increases, as p increases up to the ‘percolation threshold’
which is about 0.59 in the default case (Saura and Martinez-Millan 2000 p.664).

If minpatch > 1 then habitat patches of less than minpatch cells are converted to non-habitat, and
vice versa. This is likely to cause the proportion of habitat to deviate from A.

If drop = FALSE a binary-valued (0/1) covariate with the requested name is included in the output
mask, which has the same extent as the input. Otherwise, non-habitat cells are dropped and no
covariate is added.

The argument ‘parm’ for randomDensity is a list with average density D and an optional subset of
named values to override the defaults (p = 0.5, A = 0.5, directions = 4, minpatch = 1, plt = FALSE,
seed = NULL). ‘rescale’ is a further optional component of ‘parm’; if ‘rescale = TRUE’ then the
pixel-specific densities are adjusted upwards by the factor 1/A to maintain the same expected num-
ber of activity centres as if the nominal density applied throughout. Arguments ‘mask’ and ‘drop’
of randomHabitat are substituted automatically.

Value

For randomHabitat –

An object of class ‘mask’. By default (drop = TRUE) this has fewer rows (points) than the input
mask.

The attribute “type” is a character string formed from paste('MRC p=',p, ' A=',A, sep='').

The RNG seed is stored as attribute ‘seed’ (see secrRNG).

For randomDensity –

A vector of cell-specific densities.

Note

Single-linkage clustering and adjacency operations use functions ‘clump’ and ‘adjacency’ of the
package raster; ‘clump’ also requires package igraph0 (raster still uses this deprecated version).
Optional plotting of intermediate stages (plt = TRUE) uses the plot method for rasterLayers in
raster.

A non-rectangular input mask is padded out to a rectangular rasterLayer for operations in raster;
cells added as padding are ultimately dropped.

The procedure of Saura and Martinez-Millan (2000) has been followed as far as possible, but this
implementation may not match theirs in every detail.

This implementation allows only two habitat classes. The parameter A is the expected value of the
habitat proportion; the realised habitat proportion may differ quite strongly from A, especially for
large p (e.g., p > 0.5).

Anisotropy is not implemented; it would require skewed adjacency filters (i.e. other than rook- or
queen-move filters) that are not available in raster.

Gaussian random fields provide an alternative method for simulating random habitats (e.g., rLGCP
option in sim.popn).

190 randomHabitat

References

Hijmans, R. J. and van Etten, J. (2011) raster: Geographic analysis and modeling with raster data.
R package version 1.9-33. https://CRAN.R-project.org/package=raster.

Saura, S. and Martinez-Millan, J. (2000) Landscape patterns simulation with a modified random
clusters method. Landscape Ecology, 15, 661–678.

See Also

mask, make.mask, sim.popn

Examples

Not run:

tempmask <- make.mask(nx = 100, ny = 100, spacing = 20)
mrcmask <- randomHabitat(tempmask, p = 0.4, A = 0.4)
plot(mrcmask, dots = FALSE, col = "green")
pop <- sim.popn(10, mrcmask, model2D = "IHP")
plot(pop, add = TRUE)

OR
plot(sim.popn(D = randomDensity, core = tempmask, model2D = "IHP",

details = list(D = 10, p = 0.4, A = 0.4, plt = TRUE)),
add = TRUE, frame = FALSE)

plot intermediate steps A, C, D
opar <- par(mfrow = c(1,3))
mrcmask <- randomHabitat(tempmask, p = 0.4, A = 0.4, plt = TRUE)
par(opar)

keep non-habitat cells
mrcmask <- randomHabitat(tempmask, p = 0.4, A = 0.4, drop = FALSE)
plot(mrcmask, covariate = "habitat", dots = FALSE,

col = c("grey","green"), breaks = 2)

effect of purging small patches
opar <- par(mfrow=c(1,2))
mrcmask <- randomHabitat(tempmask, p = 0.4, A = 0.4, minpatch = 1)
plot(mrcmask, dots = FALSE, col ="green")
mrcmask <- randomHabitat(tempmask, p = 0.4, A = 0.4, minpatch = 5)
plot(mrcmask, dots = FALSE, col ="green")
par(opar)

End(Not run)

https://CRAN.R-project.org/package=raster

raster 191

raster Create a RasterLayer Object from Mask or Dsurface

Description

Methods to convert secr object to a RasterLayer object.

Usage

S4 method for signature 'mask'
raster(x, covariate, values = 1, crs = NA)

S4 method for signature 'Dsurface'
raster(x, covariate, values = 1, crs = NA)

S4 method for signature 'mask'
rast(x, covariate, values = 1, crs = "")

S4 method for signature 'Dsurface'
rast(x, covariate, values = 1, crs = "")

Arguments

x mask or Dsurface object

covariate character name of covariate to provide values for RasterLayer

values numeric values for RasterLayer

crs character or object of class CRS. Optional PROJ.4 type description of a Coordi-
nate Reference System (map projection).

Details

There are two ways to specify the values to be used. If covariate is provided then the values of
the corresponding covariate of the mask or Dsurface are used. Otherwise, values is duplicated to
the required number of rows.

The resulting RasterLayer may optionally include a PROJ.4 map projection defined via crs. The
specification may be very simple (as in the example below) or complex, including an explicit datum
and other arguments. Projections are used by sf, terra, raster, sp and other packages. See raster
for further explanation and links.

The S3 classes ‘mask’ and ‘Dsurface’ are defined in secr as virtual S4 classes. This enables these
extensions to the list of S4 methods defined in raster.

Although these methods work ‘standalone’, it is currently necessary to load the terra or raster
package to do much with the result (e.g., plot it).

192 rbind.capthist

Value

RasterLayer (raster)

Note

Prior to secr 2.9.5 these methods could fail unpredictably because an intermediate array was badly
dimensioned due to truncation of a floating point value.

See Also

raster

Examples

Not run:

shorePossums <- predictDsurface(possum.model.Ds)
tmp <- raster(shorePossums, covariate = "D.0")
library(raster)
plot(tmp, useRaster = FALSE)

alternative with same result
tmp <- raster(shorePossums, values = covariates(shorePossums)$D.0)

set the projection
here the crs PROJ.4 spec refers simply to the old NZ metric grid
tmp <- raster(shorePossums, "D.0", crs = "+proj=nzmg")
check the projection
proj4string(tmp)

End(Not run)

rbind.capthist Combine capthist Objects

Description

Form a single capthist object from two or more compatible capthist objects.

Usage

MS.capthist(...)

S3 method for class 'capthist'
rbind(..., renumber = TRUE, pool = NULL, verify = TRUE)

rbind.capthist 193

Arguments

... one or more capthist objects or lists of capthist objects

renumber logical, if TRUE assigns new composite individual ID

pool list of vectors of session indices or names

verify logical, if TRUE the output is checked with verify

Details

MS.capthist concatenates the sessions in the input objects as one multi-session capthist object.
Each session may use a different detector array (traps) and a different number of sampling occa-
sions. Session names are derived implicitly from the inputs, or may be given explicitly (see Exam-
ples); if any name is duplicated, all will be replaced with sequential integers. The . . . argument may
include lists of single-session capthist objects.

The rbind method for capthist objects is used to pool capture data from more than one session into
a single session. The number of rows in the output session is the sum of the number of rows in the
input sessions (i.e. each animal appears in only one session). Sessions to be pooled with rbind
must have the same number of capture occasions and use the same detectors (traps). At present
there is no function to pool capthist data from different detector arrays. For this it is recommended
that you merge the input files and rebuild the capthist object from scratch.

For rbind.capthist, the . . . argument may be

1. A series of single-session capthist objects, which are pooled to form one new single-session
object, or

2. One multi-session capthist object, when the components of ‘pool’ are used to define combina-
tions of old sessions; e.g. pool = list(A=1:3, B=4:5) produces an object with two sessions
(named ‘A’ and ‘B’) from 5 old ones. If pool = NULL (the default) then all the sessions are
pooled to form one single-session capthist object.

The names of arguments other than . . . should be given in full. If renumber = TRUE (the default),
the session name will be prepended to the animal ID before pooling: animals 1, 2 and 3 in Session
A will become A.1, A.2 and A.3, while those in Session B become B.1, B.2 and B.3. This ensures
that each animal has a unique ID. If renumber = FALSE, the animal IDs will not change.

Other attributes (xy, signal) are handled appropriately. If the signal threshold (attribute ‘cutval’)
differs among sessions, the maximum is used and detections of lower signal strength are discarded.

The use of rbind.capthist to concatenate sessions is now deprecated: use MS.capthist.

Although MS.capthist looks like an S3 method, it isn’t. The full function name must be used.
rbind.capthist became an S3 method in secr 3.1, so it is called as rbind alone.

Value

For MS.capthist, a multi-session object of class ‘capthist’ with number of sessions equal to the
number of sessions in the objects in

For rbind.capthist, either an object of class ‘capthist’ with one session formed by pooling the
sessions in the input objects, or a capthist object with more than one session, each formed by
pooling groups of sessions defined by the ‘pool’ argument. Covariate columns that appear in all
input sessions are retained in the output.

194 rbind.capthist

See Also

capthist, subset.capthist

Examples

extend a multi-session object
we fake the 2010 data by copying from 2005
note how we name the appended session
fakeCH <- ovenCH[["2005"]]
MS.capthist(ovenCH, "2010" = fakeCH)

simulate sessions for 2-part mixture
temptrap <- make.grid(nx = 8, ny = 8)
temp1 <- sim.capthist(temptrap,

detectpar = list(g0 = 0.1, sigma = 40))
temp2 <- sim.capthist(temptrap,

detectpar = list(g0 = 0.2, sigma = 20))

concatenate sessions
temp3 <- MS.capthist(large.range = temp1, small.range = temp2)
summary(temp3)
session-specific movement statistic
RPSV(temp3)

pool sessions
temp4 <- rbind(temp1, temp2)
summary(temp4)
RPSV(temp4)

compare mixture to sum of components
note `detectors visited' is not additive for 'multi' detector
nor is `detectors used'
(summary(temp1)$counts + summary(temp2)$counts) -

summary(temp4)$counts

Not run:

compare two different model fits
tempfit3 <- secr.fit(temp3, CL = TRUE, buffer = 150, model = list

(g0 ~ session, sigma ~ session), trace = FALSE)
predict(tempfit3)

if we can tell which animals had large ranges...
covariates(temp4) <- data.frame(range.size = rep(c("large",

"small"), c(nrow(temp1), nrow(temp2))))
tempfit4 <- secr.fit(temp4, CL = TRUE, buffer = 150, model = list

(g0 ~ range.size, sigma ~ range.size), trace = FALSE)
predict(tempfit4, newdata = data.frame(range.size = c("large",

"small")))

polygon data

rbind.popn 195

pol1 <- make.poly()
pol2 <- make.poly(x = c(50,50,150,150))
ch1 <- sim.capthist(pol1, popn = list(D = 30), detectfn = 'HHN',

detectpar = list(lambda0 = 0.3))
ch2 <- sim.capthist(pol2, popn = list(D = 30), detectfn = 'HHN',

detectpar = list(lambda0 = 0.3))
plot(ch1); plot(pol2, add = TRUE); plot(ch2, add = TRUE)

End(Not run)

rbind.popn Combine popn Objects

Description

Form a single popn object from two or more existing popn objects, or a list.

Usage

S3 method for class 'popn'
rbind(..., renumber = TRUE)

Arguments

... one or more popn objects

renumber logical for whether row names in the new object should be set to the row indices

Details

An attempt to combine objects will fail if they conflict in their covariates attributes.

From secr 3.1 this is an S3 method and list input is not allowed.

Value

An object of class popn with number of rows equal to the sum of the rows in the input objects.

See Also

popn

196 rbind.traps

Examples

generate and combine two subpopulations
trapobj <- make.grid()
p1 <- sim.popn(D = 3, core = trapobj)
p2 <- sim.popn(D = 2, core = trapobj)
covariates(p1) <- data.frame(size = rep("small", nrow(p1)))
covariates(p2) <- data.frame(size = rep("large", nrow(p2)))
pop <- rbind(p1,p2)

or
pop <- do.call(rbind, list(p1,p2))

rbind.traps Combine traps Objects

Description

Form a single traps object from two or more existing traps objects.

Usage

S3 method for class 'traps'
rbind(..., renumber = TRUE, addusage, checkdetector = TRUE, suffix = TRUE)

Arguments

... one or more traps objects

renumber logical for whether row names in the new object should be set to the row indices

addusage integer vector; if specified and the inputs lack usage attributes then a binary
usage attribute will be generated with the given number of occasions for each
input

checkdetector logical; if TRUE then variation in the detector attribute triggers a warning

suffix logical; if TRUE then suffix to the row names indicates source

Details

An attempt to combine objects will fail if they conflict in their covariates attributes. Differences
in the usage attribute are handled as follows. If usage is missing for all inputs and addusage =
TRUE is specified then usage codes are generated automatically (positive for the specified number of
occasions). If usage is specified for one input but not other(s), the missing values are constructed
assuming all detectors were operated for the maximum number of occasions in any input. If inputs
differ in the number of ‘usage’ columns (occasions), the smaller matrices are padded with ‘zero’
columns to the maximum number of columns in any input.

. . . may be a single multi-session traps object (from 2.10.0).

read.capthist 197

By default (and always prior to 3.1.1) row names include a suffix (e.g., ".1", or ".2") to indicate
the original object (first, second etc.). A suffix is added automatically to all names if any name is
duplicated, and a warning is generated.

Value

An object of class traps with number of rows equal to the sum of the rows in the input objects.

See Also

traps, subset.traps

Examples

nested hollow grids
hollow1 <- make.grid(nx = 8, ny = 8, hollow = TRUE)
hollow2 <- shift(make.grid(nx = 6, ny = 6, hollow = TRUE),

c(20, 20))
nested <- rbind (hollow1, hollow2)
plot(nested, gridlines = FALSE, label = TRUE)

read.capthist Import or export data

Description

Data in the DENSITY formats for capture data and trap layouts may be imported as a capthist
object for analysis in secr. Data in a capthist object may also be exported in these formats for use
in DENSITY (Efford 2012). read.capthist inputs data from text files and constructs a capthist
object in one step using the functions read.traps and make.capthist. Data may also be read
from Excel spreadsheets if the package readxl is installed (see secr-datainput.pdf).

Usage

read.capthist(captfile, trapfile, detector = "multi", fmt = c("trapID","XY"),
noccasions = NULL, covnames = NULL, trapcovnames = NULL,
cutval = NULL, verify = TRUE, noncapt = "NONE", tol = 0.01, snapXY = FALSE,
markocc = NULL, ...)

write.capthist(object, filestem = deparse(substitute(object)),
sess = "1", ndec = 2, covariates = FALSE, tonumeric = TRUE, ...)

198 read.capthist

Arguments

captfile name of capture data file

trapfile name of trap layout file or (for a multi-session captfile) a vector of file names,
one for each session

detector character value for detector type (‘single’, ‘multi’, ‘proximity’, etc.)

fmt character value for capture format (‘trapID’ or ‘XY’)

noccasions number of occasions on which detectors were operated

covnames character vector of names for individual covariate fields in ‘captfile’

trapcovnames character vector of names for detector covariate fields in ‘trapfile’

cutval numeric, threshold of signal strength for ‘signal’ detector type

verify logical if TRUE then the resulting capthist object is checked with verify

noncapt character value; animal ID used for ‘no captures’

tol numeric, snap tolerance in metres

snapXY logical; if TRUE then fmt = ’XY’ uses nearest trap within tol

markocc integer vector distinguishing marking occasions (1) from sighting occasions (0)

... other arguments passed to read.table, write.table and count.fields

object capthist object with the captures and trap locations to export

filestem character value used to form names of output files

sess character session identifier

ndec number of digits after decimal point for x,y coordinates

covariates logical or a character vector of covariates to export

tonumeric logical for whether factor and character covariates should be converted to nu-
meric values on output

Details

read.capthist

captfile should record one detection on each line. A detection comprises a session identifier,
animal identifier, occasion number (1, 2,...,S where S is the number of occasions), and a detector
identifier (fmt = "trapID") or X- and Y-coordinates (fmt = "XY"). Each line of trapfile has a
detector identifier and its X- and Y-coordinates. In either file type the identifiers (labels) may be
numeric or alphanumeric values. Values should be separated by blanks or tabs unless (i) the file
name ends in ‘.csv’ or (ii) sep = "," is passed in . . . , in which case commas are assumed. Blank
lines and any text after ‘#’ are ignored. For further details see secr-datainput.pdf, make.capthist
and ‘Data formats’ in the help for DENSITY.

The noccasions argument is needed only if there were no detections on the final occasion; it may
be a positive integer (constant across all sessions) or a vector of positive integers, one for each
session. covnames is needed only when captfile includes individual covariates. Likewise for
trapcovnames and detector covariates. Values of noccasions and covnames are passed directly to
make.capthist, and trapcovnames is passed to read.traps.

A session identifier is required even for single-session capture data. In the case of data from multiple
sessions, trapfile may be a vector of file names, one for each session.

read.capthist 199

Additional data may be coded as for DENSITY. Specifically, captfile may include extra columns
of individual covariates, and trapfile may code varying usage of each detector over occasions and
detector covariates.

markocc is needed only if sightings of unmarked animals are potentially recorded on some oc-
casions. If the data span multiple sessions with differing combinations of marking and sighting
occasions then markocc may be a list with one vector per session.

The function read.telemetry is a simplified version of read.capthist for telemetry data.

write.capthist

For a single-session analysis, DENSITY requires one text file of capture data and one text file with
detector coordinates (the ‘trap layout’ file). write.capthist constructs names for these files by
appending ‘capt.txt’ and ‘trap.txt’ to filestem which defaults to the name of the capthist object. If
filestem is empty then output goes to the console.

If object contains multiple sessions with differing traps then a separate trap layout file is exported
for each session and each file name includes the session name. All capture data are exported to one
file regardless of the number of sessions. The DENSITY format used is ‘TrapID’ except when x-y
coordinates are specific to a detection (i.e., polygon and transect detectors).

covariates controls the export of both detector and individual covariates. If it is TRUE or FALSE
then it is taken to apply to both. A vector of covariate names is used as a lookup for both detector
and capthist covariate fields: covariates are exported if their name matches; this may be used to
export any combination of (uniquely named) detector and capthist covariates.

Existing text files will be replaced without warning. In the case of a multi-session capthist file,
session names are taken from object rather than sess. Session names are truncated to 17 characters
with blanks and commas removed.

To export data in comma-delimited (‘.csv’) format, pass sep = "," in The resulting files have
extension ‘.csv’ rather than ‘.txt’ and may be opened with spreadsheet software.

Warning

write.capthist does not work for mark–resight data.

Note

The original DENSITY formats accommodate ‘single’, ‘multi’ and ‘proximity’ data. Data for the
newer detector types (‘count’, ‘signal’, ‘polygon’, ‘polygonX’, ‘transect’, ‘transectX’ and ‘teleme-
tryonly’) may be input using the DENSITY formats with minor variations. They may also be output
with write.capthist, but a warning is given that DENSITY does not understand these data types.
See detector and secr-datainput.pdf for more.

The . . . argument is useful for some special cases. For example, if your input uses ‘;’ instead of ‘#’
for comments (‘;’ is also valid in DENSITY) then set comment.char = ";" in read.capthist.

In a similar fashion, write comma- or tab-separated values by setting sep = "," or sep = "\t" re-
spectively.

The arguments of count.fields are a subset of those of read.table so . . . is limited to any of
{sep, quote, skip, blank.lines.skip, comment.char}.

If you fail to set fmt correctly in read.capthist then the error message from verify may be
uninformative.

200 read.mask

References

Efford, M. G. (2012) DENSITY 5.0: software for spatially explicit capture–recapture. Department
of Mathematics and Statistics, University of Otago, Dunedin, New Zealand https://www.otago.
ac.nz/density/.

See Also

read.telemetry, read.traps, make.capthist, write.captures, write.traps, read.table

Examples

export ovenbird capture histories
the files "ovenCHcapt.txt" and "ovenCHtrap.txt" are
placed in the current folder (check with getwd() or dir())

Not run:
write.capthist(ovenCH)

End(Not run)

read.mask Read Habitat Mask From File

Description

Read coordinates of points on a habitat mask from a text file.

Usage

read.mask(file = NULL, data = NULL, spacing = NULL, columns = NULL, ...)

Arguments

file character string with name of text file

data dataframe

spacing spacing of grid points in metres

columns character vector naming the columns to save as covariates

... other arguments to pass to read.table

https://www.otago.ac.nz/density/
https://www.otago.ac.nz/density/

read.telemetry 201

Details

For file input, the x and y coordinates are usually the first two values on each line, separated by
white space. If the file starts with a line of column headers and ‘header = TRUE’ is passed to
read.table in the . . . argument then ‘x’ and ‘y’ need not be the first two fields.

data is an alternative input route if the x and y coordinates already exist in R as columns in a
dataframe. Only one of data or file should be specified.

The grid cell size spacing should be provided if known. If it is not provided then an attempt is
made to infer it from the minimum spacing of points. This can be slow and may demand more
memory than is available. In rare cases (highly fragmented masks) it may also yield the wrong
answer.

From 2.3.0, additional columns in the input are saved as covariates. The default (columns = NULL)
is to save all columns.

Value

object of class mask with type ‘user’

Note

read.mask creates a single-session mask. If used in secr.fit with a multi-session capthist object
a single-session mask will be replicated to the number of sessions. This is appropriate if all sessions
relate to the same geographical region. If the ‘sessions’ relate to different regions you will need to
construct a multi-session mask as a list of single-session masks (e.g. mask <- list(mask1, mask2,
mask3)).

See Also

mask

Examples

Replace file name with a valid local name and remove `#'
read.mask (file = "c:\\myfolder\\mask.txt",
spacing = 3, header = TRUE)
"mask.txt" should have lines like this
x y
265 265
268 265
...

read.telemetry Import Telemetry Fixes

Description

A shortcut function for constructing a telemetry capthist object from a file of telemetry fixes.
Telemetry data are generally similar in format to polygon data (see also addTelemetry).

202 read.telemetry

Usage

read.telemetry(file = NULL, data = NULL, covnames = NULL, verify = TRUE, ...)

Arguments

file character name of text file

data data.frame containing coordinate data (alternative to file)

covnames character vector of names for individual covariates

verify logical for whether to check input

... other arguments passed to countfields, read.table etc.

Details

Input data may be in a text file (argument file) or a dataframe (argument data). Data should be in
the XY format for function ‘read.capthist‘ i.e. the first 5 columns should be Session, ID, Occasion,
X, Y. Further columns are treated as individual covariates.

No ‘traps’ input is required. A traps object is generated automatically.

Value

An secr capthist object including attribute ‘telemetryxy’ with the x-y coordinates, and a ‘traps’
object with detector type = ‘telemetry’

See Also

addTelemetry, read.capthist

Examples

Not run:

olddir <- setwd('D:/bears/alberta')
peek at raw data
head(readLines('gps2008.txt'))
gps2008CH <- read.telemetry("gps2008.txt")
setwd(olddir)

plot(gps2008CH, gridsp = 10000)
head(gps2008CH)
secr.fit(gps2008CH, start = log(4000), detectfn = 'HHN',

details = list(telemetryscale = 1e12))

End(Not run)

read.traps 203

read.traps Read Detector Data From File

Description

Construct an object of class traps with detector locations from a text file or data frame. Usage per
occasion and covariates may be included. Data may also be read from an Excel spreadsheet (see
secr-datainput.pdf).

Usage

read.traps(file = NULL, data = NULL, detector = "multi", covnames =
NULL, binary.usage = TRUE, markocc = NULL, trapID = NULL, ...)

Arguments

file character string with name of text file

data data frame of detector coordinates

detector character string for detector type

covnames character vector of names for detector covariate fields

binary.usage logical; if FALSE will read usage fields as continuous effort

markocc integer vector distinguishing marking occasions (1) from sighting occasions (0)

trapID character column containing detector names (see Details)

... other arguments to pass to read.table

Details

Reads a text file in which the first column is a character string (see Note) identifying a detector
and the next two columns are its x- and y-coordinates, separated by white space. The coordinates
optionally may be followed by a string of codes ‘0’ or ‘1’ indicating whether the detector was
operated on each occasion. Trap-specific covariates may be added at the end of the line preceded
by ‘/’. This format is compatible with the Density software (Efford 2012), except that all detectors
are assumed to be of the same type (usage codes greater than 1 are treated as 1), and more than one
covariate may be specified.

If file is missing then x-y coordinates will be taken instead from data, which should include
columns ‘x’ and ‘y’. Row names of data are read as detector identifiers unless trapID is specified.
This option does not allow for covariates or usage, but they maybe added later.

detector specifies the behaviour of the detector following Efford et al. (2009). ‘single’ refers to a
trap that is able to catch at most one animal at a time; ‘multi’ refers to a trap that may catch more
than one animal at a time. For both ‘single’ and ‘multi’ detectors a trapped animals can appear
at only one detector per occasion. Detectors of type ‘proximity’, such as camera traps and hair
snags for DNA sampling, allow animals to be recorded at several detectors on one occasion. See
detector for further detector types.

204 read.traps

For polygon and transect detector types, each line corresponds to a vertex and starts with a code
to identify the polygon or transect (hence the same code appears on 2 or more lines). For input
from a dataframe the code column should be named ‘polyID’. Also, usage and covariates are for
the polygon or transect as a whole and not for each vertex. Usage and covariates are appended to
the end of the line, just as for point detectors (traps etc.). The usage and covariates for each polygon
or transect are taken from its first vertex. Although the end-of-line strings of other vertices are not
used, they cannot be blank and should use the same spacing as the first vertex.

Value

An object of class traps comprising a data frame of x- and y-coordinates, the detector type (‘sin-
gle’, ‘multi’, ‘proximity’, ‘count’, ‘polygon’ etc.), and possibly other attributes.

Note

Detector names, which become row names in the traps object, should not contain underscores.

Prior to 4.3.1 the function did not read usage or covariates from xls or data input.

References

Efford, M. G. (2012) DENSITY 5.0: software for spatially explicit capture–recapture. Department
of Mathematics and Statistics, University of Otago, Dunedin, New Zealand. https://www.otago.
ac.nz/density/.

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit
capture-recapture: likelihood-based methods. In: D. L. Thomson, E. G. Cooch and M. J. Conroy
(eds) Modeling Demographic Processes in Marked Populations. Springer, New York. Pp. 255–269.

See Also

traps, make.grid, detector

Examples

Not run:
"trap.txt" should have lines like this
1 365 365
2 365 395
3 365 425
etc.
in following, replace file name with a valid local name
filename <- paste0(system.file("extdata", package = "secr"), '/trap.txt')
tr1 <- read.traps (filename, detector = "proximity")
summary(tr1)

Or if we have a dataframe of coordinates...
mytrapdf <- data.frame(x = c(365,365,365), y = c(365,395,425),

row.names = c('A','B','C'))
mytrapdf
x y

https://www.otago.ac.nz/density/
https://www.otago.ac.nz/density/

rectangularMask 205

A 365 365
B 365 395
C 365 425
...then we can convert it to a `traps' object with
tr2 <- read.traps(data = mytrapdf)
summary(tr2)

End(Not run)

rectangularMask Rectangular Mask

Description

Convert a mask or Dsurface with an irregular outline into a mask or Dsurface with a rectangular
outline and the same bounding box. This enables contour plotting.

Usage

rectangularMask(mask)

Arguments

mask object of class mask or Dsurface

Details

The covariates of new points are set to missing. The operation may be reversed (nearly) with
subset(rectmask, attr(rectmask, "OK")).

The results are unpredictable if the mask has been rotated.

Value

A rectangular mask or Dsurface with the same ‘area’, ‘boundingbox’, ‘meanSD’, ‘polygon’ and
‘polygon.habitat’ attributes as mask. A logical vector attribute ‘OK’ is added identifying the points
inherited from mask.

See Also

plot.Dsurface

Examples

rMask <- rectangularMask(possummask)
plot(rMask)
plot(possummask, add = TRUE, col = "blue")

206 reduce

reduce Combine Columns

Description

Combine columns in a matrix-like object to create a new data set using the first non-zero value.

Usage

reduce (object, ...)
Default S3 method:
reduce(object, columns, ...)

Arguments

object object that may be coerced to a matrix

columns list in which each component is a vector of subscripts for columns to be pooled

... other arguments (not used currently)

Details

The first element of columns defines the columns of object for the first new column, the second
for the second new column etc. This is a generic method. More useful methods exist for capthist
and traps objects.

Value

A matrix with number of columns equal to length(columns).

See Also

capthist, reduce.capthist, reduce.traps

Examples

matrix with random zeros
temp <- matrix(runif(20), nc = 4)
temp[sample(20,10)] <- 0
temp

reduce(temp, list(1:2, 3:4))

reduce.capthist 207

reduce.capthist Combine Occasions Or Detectors

Description

Use these methods to combine data from multiple occasions or multiple detectors in a capthist or
traps object, creating a new data set and possibly converting between detector types.

Usage

S3 method for class 'traps'
reduce(object, newtraps = NULL, newoccasions = NULL, span = NULL,

rename = FALSE, newxy = c('mean', 'first'), ...)

S3 method for class 'capthist'
reduce(object, newtraps = NULL, span = NULL, rename =

FALSE, newoccasions = NULL, by = 1, outputdetector = NULL,
select = c("last","first","random"), dropunused = TRUE, verify
= TRUE, sessions = NULL, ...)

Arguments

object traps or capthist object

newtraps list in which each component is a vector of subscripts for detectors to be pooled

newoccasions list in which each component is a vector of subscripts for occasions to be pooled

span numeric maximum span in metres of new detector

rename logical; if TRUE the new detectors will be numbered from 1, otherwise a name
will be constructed from the old detector names

newxy character; coordinates when detectors grouped with ‘newtraps’

by number of old occasions in each new occasion

outputdetector character value giving detector type for output (defaults to input)

select character value for method to resolve conflicts

dropunused logical, if TRUE any never-used detectors are dropped

verify logical, if TRUE the verify function is applied to the output

sessions vector of session indices or names (optional)

... other arguments passed by reduce.capthist to reduce.traps, or by reduce.traps to
hclust

208 reduce.capthist

Details

reduce.traps –

Grouping may be specified explicitly via newtraps, or implicitly by span.

If span is specified a clustering of detector sites will be performed with hclust and detectors will
be assigned to groups with cutree. The default algorithm in hclust is complete linkage, which
tends to yield compact, circular clusters; each will have diameter less than or equal to span.

newxy = 'first' selects the coordinates of the first detector in a group defined by ‘newtraps’, rather
then the average of all detectors in group.

reduce.capthist –

The first component of newoccasions defines the columns of object for new occasion 1, the
second for new occasion 2, etc. If newoccasions is NULL then all occasions are output. Subscripts
in a component of newoccasions that do not match an occasion in the input are ignored. When the
output detector is one of the trap types (‘single’, ‘multi’), reducing capture occasions can result in
locational ambiguity for individuals caught on more than one occasion, and for single-catch traps
there may also be conflicts between individuals at the same trap. The method for resolving conflicts
among ‘multi’ detectors is determined by select which should be one of ‘first’, ‘last’ or ‘random’.
With ‘single’ detectors select is ignored and the method is: first, randomly select* one trap per
animal per day; second, randomly select* one animal per trap per day; third, when collapsing
multiple days use the first capture, if any, in each trap.

Usage data in the traps attribute are also pooled if present; usage is summed over contributing
occasions and detectors. If there is no ’usage’ attribute in the input, and outputdetector is one
of ’count’, ’polygon’, ’transect’ and ’telemetry’, a homogeneous (all-1’s) ’usage’ attribute is first
generated for the input.

* i.e., in the case of a single capture, use that capture; in the case of multiple ‘competing’ captures
draw one at random.

If newoccasions is not provided then old occasions are grouped into new occasions as indicated by
the by argument. For example, if there are 15 old occasions and by = 5 then new occasions will be
formed from occasions 1:5, 6:10, and 11:15. A warning is given when the number of old occasions
is not a multiple of by as then the final new occasion will comprise fewer old occasions.

dropunused = TRUE has the possibly unintended effect of dropping whole occasions on which there
were no detections.

A special use of the by argument is to combine all occasions into one for each session in a multi-
session dataset. This is done by setting by = "all".

reduce.capthist may be used with non-spatial capthist objects (NULL ’traps’ attribute) by setting
verify = FALSE.

Value

reduce.traps –

An object of class traps with detectors combined according to newtraps or span. The new object
has an attribute ‘newtrap’, a vector of length equal to the original number of detectors. Each element
in newtrap is the index of the new detector to which the old detector was assigned (see Examples).

The object has no clusterID or clustertrap attribute.

reduce.capthist –

reduce.capthist 209

An object of class capthist with number of occasions (columns) equal to length(newoccasions);
detectors may simulataneously be aggregated as with reduce.traps. The detector type is inherited
from object unless a new type is specified with the argument outputdetector.

Warning

The argument named ‘columns’ was renamed to ‘newoccasions’ in version 2.5.0, and arguments
were added to reduce.capthist for the pooling of detectors. Old code should work as before if all
arguments are named and ‘columns’ is changed.

Note

The reduce method may be used to re-assign the detector type (and hence data format) of a capthist
object without combining occasions or detectors. Set the object and outputdetector arguments
and leave others at their default values.

Automated clustering can produce unexpected outcomes. In particular, there is no guarantee that
clusters will be equal in size. You should inspect the results of reduce.traps especially when using
span.

reduce.traps is not implemented for polygons or transects.

The function discretize converts polygon data to point-detector (multi, proximity or count) data.

See Also

capthist, subset.capthist, discretize, hclust, cutree

Examples

tempcapt <- sim.capthist (make.grid(nx = 6, ny = 6), nocc = 6)
class(tempcapt)

pooled.tempcapt <- reduce(tempcapt, newocc = list(1,2:3,4:6))
summary (pooled.tempcapt)

pooled.tempcapt2 <- reduce(tempcapt, by = 2)
summary (pooled.tempcapt2)

collapse multi-session dataset to single-session 'open population'
onesess <- join(reduce(ovenCH, by = "all"))
summary(onesess)

group detectors within 60 metres
plot (traps(captdata))
plot (reduce(captdata, span = 60), add = TRUE)

plot linking old and new
old <- traps(captdata)
new <- reduce(old, span = 60)
newtrap <- attr(new, "newtrap")
plot(old, border = 10)
plot(new, add = TRUE, detpar = list(pch = 16), label = TRUE)

210 region.N

segments (new$x[newtrap], new$y[newtrap], oldx, oldy)

Not run:

compare binary proximity with collapsed binomial count
expect TRUE for each year
for (y in 1:5) {

CHA <- abs(ovenCHp[[y]]) ## abs() to ignore one death
usage(traps(CHA)) <- matrix(1, 44, ncol(CHA))
CHB <- reduce(CHA, by = 'all', output = 'count')
summary(CHA, terse = TRUE)
summary(CHB, terse = TRUE)
fitA <- secr.fit(CHA, buffer = 300, trace = FALSE)
fitB <- secr.fit(CHB, buffer = 300, trace = FALSE, binomN = 1, biasLimit = NA)
A <- predict(fitA)[,-1]
B <- predict(fitB)[,-1]
cat(y, ' ', all(abs(A-B)/A < 1e-5), '\n')

}
multi-session fit
expect TRUE overall
CHa <- ovenCHp
for (y in 1:5) {

usage(traps(CHa[[y]])) <- matrix(1, 44, ncol(CHa[[y]]))
CHa[[y]][,,] <- abs(CHa[[y]][,,])

}
CHb <- reduce(CHa, by = 'all', output = 'count')
summary(CHa, terse = TRUE)
summary(CHb, terse = TRUE)
fita <- secr.fit(CHa, buffer = 300, trace = FALSE)
fitb <- secr.fit(CHb, buffer = 300, trace = FALSE, binomN = 1, biasLimit = NA)
A <- predict(fita)[[1]][,-1]
B <- predict(fitb)[[1]][,-1]
all(abs(A-B)/A < 1e-5)

End(Not run)

region.N Population Size

Description

Estimate the expected and realised populations in a region, using a fitted spatially explicit capture–
recapture model. Density is assumed to follow an inhomogeneous Poisson process in two dimen-
sions. Expected N is the volume under a fitted density surface; realised N is the number of in-
dividuals within the region for the current realisation of the process (cf Johnson et al. 2010; see
Note).

region.N 211

Usage

region.N(object, ...)

S3 method for class 'secr'
region.N(object, region = NULL, spacing = NULL, session = NULL,

group = NULL, se.N = TRUE, alpha = 0.05, loginterval = TRUE,
keep.region = FALSE, nlowerbound = TRUE, RN.method = "poisson",
pooled.RN = FALSE, ncores = NULL, ...)

S3 method for class 'secrlist'
region.N(object, region = NULL, spacing = NULL, session = NULL,

group = NULL, se.N = TRUE, alpha = 0.05, loginterval = TRUE,
keep.region = FALSE, nlowerbound = TRUE, RN.method = "poisson",
pooled.RN = FALSE, ncores = NULL, ...)

Arguments

object secr object output from secr.fit

region mask object defining the possibly non-contiguous region for which population
size is required, or vector polygon(s) (see Details)

spacing spacing between grid points (metres) if region mask is constructed on the fly

session character session

group group – for future use

se.N logical for whether to estimate SE(N̂) and confidence interval

alpha alpha level for confidence intervals

loginterval logical for whether to base interval on log(N)

keep.region logical for whether to save the raster region

nlowerbound logical for whether to use n as lower bound when computing log interval for
realised N

RN.method character string for method used to calculate realised N (RN) and its sampling
variance. ‘poisson’ or ‘MSPE’.

pooled.RN logical; if TRUE the estimate of realised N for a multi-session model is com-
puted as if for combined sampling with all detectors (see Details)

ncores integer number of threads to be used for parallel processing

... other arguments (not used)

Details

If the density surface of the fitted model is flat (i.e. object$model$D == ~1 or object$CL == TRUE)
then E(N) is simply the density multiplied by the area of region, and the standard error is also a
simple product. In the conditional likelihood case, the density and standard error are obtained by
first calling derived.

212 region.N

If, on the other hand, the density has been modelled then the density surface is predicted at each
point in region and E(N) is obtained by discrete summation. Pixel size may have a minor effect
on the result - check by varying spacing. Sampling variance is determined by the delta method,
using a numerical approximation to the gradient of E(N) with respect to each beta parameter.

The region may be defined as a mask object (if omitted, the mask component of object will be
used). Alternatively, region may be a SpatialPolygonsDataFrame object (see package sp), and
a raster mask will be constructed on the fly using the specified spacing. See make.mask for an
example importing a shapefile to a SpatialPolygonsDataFrame.

Note: The option of specifying a polygon rather than a mask for region does not work if the density
model in object uses spatial covariates: these must be passed in a mask.

Group-specific N has yet to be implemented.

Population size is adjusted automatically for the number of clusters in ‘mashed’ models (see mash).
However, the population size reported is that associated with a single cluster unless regionmask is
specified.

pooled.RN = TRUE handles the special case of a multi-session model in which the region of interest
spans several patches (i.e., sampling in each session is localised within region. This is not yet fully
implemented.

Setting ncores = NULL uses the existing value from the environment variable RCPP_PARALLEL_NUM_THREADS
(see setNumThreads).

Use par.region.N to apply region.N in parallel to several models.

Value

If se.N = FALSE, the numeric value of expected population size, otherwise, a dataframe with rows
‘E.N’ and ‘R.N’, and columns as below.

estimate estimate of N (expected or realised, depending on row)
SE.estimate standard error of estimated N
lcl lower 100(1–alpha)% confidence limit
ucl upper 100(1–alpha)% confidence limit
n total number of individuals detected

For multiple sessions, the value is a list with one component per session, each component as above.

If keep.region = TRUE then the mask object for the region is saved as the attribute ‘region’ (see
Examples).

The area in hectares of the region is saved as attribute ‘regionarea’.

Note

The estimates of expected and realised N are generally very similar, or identical, but realised N
usually has lower estimated variance, especially if the n detected animals comprise a large fraction.

RealisedN is given byR(N) = n+
∫
B

(1−p.(X))D(X)dX (the second term represents undetected
animals). This definition strictly holds only when region B is at least as large as the region of
integration used to fit the model; only with this condition can we be sure all n detected animals

region.N 213

have centres within B. The sampling variance of R(N), technically a mean square prediction error
(Johnson et al. 2010), is approximated by summing the expected Poisson variance of the true
number of undetected animals and a delta-method estimate of its sampling variance, obtained as for
E(N).

By default, a shortcut is used to compute the sampling variance of realised N . With this option
(RN.method = ‘poisson’) the sampling variance is the sampling variance of E(N) minus the esti-
mate of E(N) (representing Poisson process variance). This has been found to give reliable confi-
dence intervals in simulations (Efford and Fewster 2013).

If RN.method is neither ‘MSPE’ nor ‘poisson’ (ignoring case) then the estimate of expected N is
also used for realised N , and the ‘poisson’ shortcut variance is used.

Johnson et al. (2010) use the notation µ(B) for expected N and N(B) for realised N in region B.

In our case, the relative SE (CV) of µ(B) is the same as that for the estimated density D if D has
been estimated using the Poisson distribution option in secr.fit or derived(). If D has been
estimated with the binomial distribution option, its relative SE for simple models will be the same
as that of N(B), assuming that B is the full extent of the original mask.

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture–recapture studies. Biometrics 64, 377–385.

Efford, M. G. and Fewster, R. M. (2013) Estimating population size by spatially explicit capture–
recapture. Oikos 122, 918–928.

Johnson, D. S., Laake, J. L. and Ver Hoef, J. M. (2010) A model-based approach for making eco-
logical inference from distance sampling data. Biometrics 66, 310–318.

See Also

secr.fit, derived, make.mask, expected.n, closedN

Examples

Not run:

routine examples using arbitrary mask from model fit
region.N(secrdemo.0)
region.N(secrdemo.CL)
region.N(ovenbird.model.D)

region defined as vector polygon
retain and plot region mask
temp <- region.N(possum.model.0, possumarea, spacing = 40,

keep.region = TRUE)
temp
plot (attr(temp, "region"), type = "l")

End(Not run)

214 RMarkInput

RMarkInput Convert Data to RMark Input Format

Description

A single-session capthist object is formed by RMarkInput into a dataframe that may be passed
directly to RMark.

Usage

RMarkInput(object, grouped = FALSE, covariates = TRUE)

unRMarkInput(df, covariates = TRUE)

Arguments

object secr capthist object
grouped logical for whether to replace each group of identical capture histories with a

single line
covariates logical or character vector; see Details
df dataframe with fields ‘ch’ and ‘freq’

Details

To convert a multi-session object first collapse the sessions with join.
If covariates is TRUE then all columns of individual covariates in the input are appended as
columns in the output. If covariates is a character-valued vector then only the specified covariates
will be appended.
If both grouped and covariates are specified in RMarkInput, grouped will be ignored, with a
warning.

Value

For RMarkInput –
Dataframe with fields ch and freq. ‘ch’ is a character string of 0’s and 1’s. If grouped = FALSE the
rownames are retained and the value of ‘freq’ is 1 or -1. Negative values of ‘freq’ indicate removal.
The dataframe also includes individual covariates specified with covariates.
The attribute ‘intervals’ is copied from ‘object’, if present; otherwise it is set to a vector of zeros
(indicating a closed-population sample).
For unRMarkInput –
A single-session capthist object with no traps attribute and hence no detector type (i.e. non-spatial
capture histories). Covariates are copied as requested.
From secr 4.6.6, missing values (.) in input capture histories are converted to NA in the output,
with a warning. The resulting capthist is unusable until the NAs are removed.

RSE 215

Note

In versions before 2.4.0, a spurious occasion was added by RMarkInput when grouped = FALSE.
Thanks to Jeff Stetz for spotting this.

The default value for grouped changed to FALSE in secr 2.4.0.

References

Laake, J. and Rexstad E. (2008) Appendix C. RMark - an alternative approach to building linear
models in MARK. In: Cooch, E. and White, G. (eds) Program MARK: A Gentle Introduction. 6th
edition. Available at http://www.phidot.org/software/mark/docs/book/.

See Also

join

Examples

ovenCH is a 5-year mist-netting dataset
ovenRD <- RMarkInput (join(ovenCH))
head(ovenRD)

unRMarkInput(ovenRD)

RMarkInput(deermouse.ESG, covariates = FALSE, grouped = TRUE)
RMarkInput(deermouse.ESG, covariates = TRUE)

Not run:
fit robust-design model in RMark (MARK must be installed)
library(RMark)
MarkPath <- 'c:/MARK' ## adjust for your installation
ovenRD.data <- process.data(ovenRD, model = "Robust",

time.interval = attr(ovenRD, "intervals"))
ovenRD.model <- mark(data = ovenRD.data, model = "Robust",

model.parameters = list(p = list(formula = ~1, share = TRUE),
GammaDoublePrime = list(formula = ~1),
GammaPrime = list(formula = ~1),
f0 = list(formula = ~1)))

cleanup(ask = FALSE)

End(Not run)

RSE RSE from Fitted Model

http://www.phidot.org/software/mark/docs/book/

216 RSE

Description

Precision of parameter estimates from an SECR model, expressed as relative standard error.

Usage

RSE(fit, parm = NULL, newdata = NULL)

Arguments

fit secr or openCR fitted model

parm character; names of one or more real parameters (default all)

newdata dataframe of covariates for predict.secr

Details

The relative standard error (RSE) of parameter θ is RSE(θ̂) = ŜE(θ)/θ̂.

For a parameter estimated using a log link with single coefficient β, the RSE is also RSE(θ̂) =√
exp(var(β))− 1. This formula is used wherever applicable.

Value

Named vector of RSE, or matrix if newdata has more than one row.

Note

The less explicit abbreviation CV has been used for the same quantity (sometimes expressed as a
percentage). CV is used also for the relative standard deviation of a distribution.

References

Efford, M. G. and Boulanger, J. 2019. Fast evaluation of study designs for spatially explicit capture–
recapture. Methods in Ecology and Evolution 10, 1529–1535.

See Also

CV

Examples

RSE(secrdemo.0)

Rsurface 217

Rsurface Smoothed Resource Surface

Description

Creates a smoothed resource surface from a covariate of a mask. Smoothing entails summing the
value in each pixel weighted by a detection kernel centred on the focal pixel. The detection kernel
represents home-range utilization with spatial scale sigma. The resulting surface is equivalent to
the denominator used by Royle et al. (2013) to normalize site-specific detection.

Usage

Rsurface(mask, sigma, usecov = NULL, alpha2 = 1, detectfn = 'HHN', z = 1,
inverse = FALSE, scale = TRUE)

Arguments

mask secr habitat mask object (single-session)

sigma numeric spatial scale of home range model

alpha2 numeric coefficient of spatial covariate

usecov character name of resource covariate

detectfn integer or character code for detection function

z numeric shape parameter of home range model

inverse logical; if TRUE the reciprocal of smoothed resource is returned

scale logical; not used

Details

detectfn may be uniform (‘UN’) or one of the cumulative-hazard functions (‘HHN’, ‘HHR’,
‘HEX’, ‘HAN’, ‘HCG’) (or integer codes 4, 14:18; see detectfn).

The default ‘HHN’ corresponds to a halfnormal function on the hazard scale, or a bivariate circular
normal home range.

If usecov is not named then it takes the value 1.0 for all points on the mask and zero otherwise.

The Rsurface can be used implicitly to normalize detection probability when fitting a model with
detector-specific covariate equal to usecov (see details, but the process is intricate and not fully
documented).

Value

An object with class c(‘Rsurface’, ‘mask’, ‘data.frame’) and covariate ‘Resource’ (other covariates
are retained from the input mask). The attribute ‘scale’ is 1.0 if scale = FALSE; otherwise it is the
average of the resource over the masked area.

218 Rsurface

Note

Consider a focal pixel s and another point in the habitat mask x, with distance d = |x− s|. Weights
are given by a kernel f(d). Typically the kernel will be halfnormal f(d) = exp(−d2/(2σ2))
(detectfn = ‘HHN’) or exponential f(d) = exp(−d/σ) (detectfn = ‘HEX’) (see detectfn for other
possibilities).

If z(x) represents the covariate value at point x, the summed resource availability at s is given by

R(s) =
∑
x

f(d) exp(α2 z(x)).

This corresponds to the denominator of eqn 4 in Royle et al. (2013).

By default, the numerical values reported by Rsurface are not raw R values. If scale = TRUE,
values are standardized by dividing by the mean: R′(s) = R(s)/(

∑
sR(s)/n) where n is the

number of pixels. Values of R′(s) are centred on 1.0.

If inverse = TRUE, the numeric values are 1/R′(s) or 1/R(s) as determined by scale.

References

Royle, J. A., Chandler, R. B., Sun, C. C. and Fuller, A. K. (2013) Integrating resource selection
information with spatial capture–recapture. Methods in Ecology and Evolution 4, 520–530.

See Also

mask, plot.Rsurface, spotHeight, details

Examples

create binary covariate (0 outside habitat)
msk <- make.mask(traps(possumCH), buffer = 800)
covariates(msk) <- data.frame(z = as.numeric(pointsInPolygon

(msk,possumarea)))

derive and plot "resource availability"
Rs <- Rsurface(msk, sigma = 100, usecov = 'z')
plot(Rs, plottype = 'contour', col = topo.colors(10))
lines(possumarea)

if (interactive()) {
spotHeight(Rs, dec = 2)

}

score.test 219

score.test Score Test for SECR Models

Description

Compute score tests comparing a fitted model and a more general alternative model.

Usage

score.test(secr, ..., betaindex = NULL, trace = FALSE, ncores = NULL, .relStep = 0.001,
minAbsPar = 0.1)

score.table(object, ..., sort = TRUE, dmax = 10)

Arguments

secr fitted secr model

... one or more alternative models OR a fitted secr model

trace logical. If TRUE then output one-line summary at each evaluation of the likeli-
hood

ncores integer number of threads for parallel processing

.relStep see fdHess

minAbsPar see fdHess

betaindex vector of indices mapping fitted values to parameters in the alternative model

object score.test object or list of such objects

sort logical for whether output rows should be in descending order of AICc

dmax threshold of dAICc for inclusion in model set

Details

Score tests allow fast model selection (e.g. Catchpole & Morgan 1996). Only the simpler model
need be fitted. This implementation uses the observed information matrix, which may sometimes
mislead (Morgan et al. 2007). The gradient and second derivative of the likelihood function are
evaluated numerically at the point in the parameter space of the second model corresponding to the
fit of the first model. This operation uses the function fdHess of the nlme package; the likelihood
must be evaluated several times, but many fewer times than would be needed to fit the model. The
score statistic is an approximation to the likelihood ratio; this allows the difference in AIC to be
estimated.

Covariates are inferred from components of the reference model secr. If the new models require
additional covariates these may usually be added to the respective component of secr.

Mapping of parameters between the fitted and alternative models sometimes requires user inter-
vention via the betaindex argument. For example betaindex = c(1,2,4) is the correct mapping

220 score.test

when comparing the null model (D∼ 1, g0∼ 1, sigma∼ 1) to one with a behavioural effect on g0
(D∼ 1, g0∼ b, sigma∼ 1).

The arguments .relStep and minAbsPar control the numerical gradient calculation and are passed
directly to fdHess. More investigation is needed to determine optimal settings.

score.table summarises one or more score tests in the form of a model comparison table. The
. . . argument here allows the inclusion of additional score test objects (note the meaning differs from
score.test). Approximate AICc values are used to compute relative AIC model weights for all
models within dmax AICc units of the best model.

If ncores = NULL then the existing value from the environment variable RCPP_PARALLEL_NUM_THREADS
is used (see setNumThreads).

Value

An object of class ‘score.test’ that inherits from ‘htest’, a list with components

statistic the value the chi-squared test statistic (score statistic)

parameter degrees of freedom of the approximate chi-squared distribution of the test statis-
tic (difference in number of parameters H0, H1)

p.value probability of test statistic assuming chi-square distribution

method a character string indicating the type of test performed

data.name character string with null hypothesis, alternative hypothesis and arguments to
function call from fit of H0

H0 simpler model

np0 number of parameters in simpler model

H1 alternative model

H1.beta coefficients of alternative model

AIC Akaike’s information criterion, approximated from score statistic

AICc AIC with small-sample adjustment of Hurvich & Tsai 1989

If . . . defines several alternative models then a list of score.test objects is returned.

The output from score.table is a dataframe with one row per model, including the reference
model.

Note

This implementation is experimental. The AIC values, and values derived from them, are approx-
imations that may differ considerably from AIC values obtained by fitting and comparing the re-
spective models. Use of the observed information matrix may not be optimal.

References

Catchpole, E. A. and Morgan, B. J. T. (1996) Model selection of ring-recovery models using score
tests. Biometrics 52, 664–672.

Hurvich, C. M. and Tsai, C. L. (1989) Regression and time series model selection in small samples.
Biometrika 76, 297–307.

secr-defunct 221

McCrea, R. S. and Morgan, B. J. T. (2011) Multistate mark-recapture model selection using score
tests. Biometrics 67, 234–241.

Morgan, B. J. T., Palmer, K. J. and Ridout, M. S. (2007) Negative score test statistic. American
statistician 61, 285–288.

See Also

AIC, LR.test

Examples

Not run:
AIC (secrdemo.0, secrdemo.b)
st <- score.test (secrdemo.0, g0 ~ b)
st
score.table(st)

adding a time covariate to separate occasions (1,2) from (3,4,5)
secrdemo.0$timecov <- data.frame(t2 = factor(c(1,1,2,2,2)))
st2 <- score.test (secrdemo.0, g0 ~ t2)
score.table(st,st2)

End(Not run)

secr-defunct Defunct Functions in Package secr

Description

These functions are no longer available in secr.

Usage

Defunct in 4.6.2 (2023-09-30)

model.average()

Defunct in 4.5.10 (2023-03-10)

ip.secr()
pfn()

Defunct in 4.4.2 (2021-05-04)

make.newdata()

222 secr-deprecated

Defunct in 4.4.0 (2021-05-01)

secr.make.newdata()

Defunct in 4.0.0 (2019-10-27)

read.SPACECAP()
write.SPACECAP()

Details

Some of these have stubs which report that they are defunct, but most have been removed completely
(apart from being documented here).

model.average is replaced by a method for ‘secr’ and ‘secrlist’ objects of the generic modelAverage.
The internal code is essentially the same for model.average and modelAverage.secrlist. The
generic avoids a name conflict with RMark and is also used in openCR.

ip.secr and pfn have been superceded by ipsecr.fit and proxy.ms in package ipsecr.

Internal functions secr.make.newdata and make.newdata were replaced with makeNewData generic
from 4.4.2.

SPACECAP was removed from the CRAN archive on 2019-08-31.

See Also

secr-deprecated

secr-deprecated Deprecated Functions in Package secr

Description

These functions will be removed from future versions of secr.

Usage

par.secr.fit (arglist, ncores = 1, seed = NULL, trace = TRUE, logfile = "logfile.txt",
prefix = "fit.", LB = FALSE, save.intermediate = FALSE)

par.derived (secrlist, ncores = 1, ...)
par.region.N (secrlist, ncores = 1, ...)

secr.design.MS 223

Arguments

arglist list of argument lists for secr.fit or a character vector naming such lists

ncores integer number of cores to be used for parallel processing

seed integer pseudorandom number seed

trace logical; if TRUE intermediate output may be logged

logfile character name of file to log progress reports

prefix character prefix for names of output

LB logical; if TRUE then use load balancing
save.intermediate

logical; if TRUE then each fit is saved to an external file

... other arguments passed to derived or region.N

secrlist secrlist object

Details

Since the introduction of multi-threading in secr 4.0 it is no longer efficient to use parallel worker
processes.

list.secr.fit replaces par.secr.fit.

Functions par.derived and par.region.N can be replaced by a simple call of lapply (see Examples in
list.secr.fit).

See Also

secr-defunct,

secr.design.MS Construct Detection Model Design Matrices and Lookups

Description

Internal functions used by secr.fit.

Usage

secr.design.MS (capthist, models, timecov = NULL, sessioncov = NULL,
groups = NULL, hcov = NULL, dframe = NULL, naive = FALSE, CL = FALSE,

keep.dframe = FALSE, full.dframe = FALSE, ignoreusage = FALSE, contrasts = NULL, ...)

make.lookup (tempmat)

insertdim (x, dimx, dims)

224 secr.design.MS

Arguments

capthist capthist object

models list of formulae for parameters of detection

timecov optional dataframe of values of time (occasion-specific) covariate(s).

sessioncov optional dataframe of values of session-specific covariate(s).

groups optional vector of one or more variables with which to form groups. Each el-
ement should be the name of a factor variable in the covariates attribute of
capthist.

hcov character name of an individual (capthist) covariate for known class membership
in h2 models

dframe optional data frame of design data for detection parameters

naive logical if TRUE then modelled detection probability is for a naive animal (not
caught previously); if FALSE then detection probability is contingent on indi-
vidual’s history of detection

CL logical; TRUE for model to be fitted by maximizing the conditional likelihood

keep.dframe logical; if TRUE the dataframe of design data is included in the output

full.dframe logical; if FALSE then padding rows are purged from output dframe (ignored if
keep.dframe = FALSE)

ignoreusage logical; if TRUE any usage attribute of traps(capthist) is ignored

contrasts contrast specification as for model.matrix

... other arguments passed to the R function model.matrix

tempmat matrix for which row lookup required

x vector of character, numeric or factor values

dimx vector of notional dimensions for x to fill in target array

dims vector of notional dimensions of target array

Details

These are internal secr functions that you are unlikely ever to use.

Each real parameter is notionally different for each unique combination of session, individual, oc-
casion, detector and latent class, i.e., for R sessions, n individuals, S occasions and K detectors
there are potentially R×n×S×K different values. Actual models always predict a much reduced
set of distinct values, and the number of rows in the design matrix is reduced correspondingly; a
parameter index array allows these to retrieved for any combination of session, individual, occasion
and detector.

The keep.dframe option is provided for the rare occasions that a user may want to check the data
frame that is an intermediate step in computing each design matrix with model.matrix (i.e. the
data argument of model.matrix).

. . . may be used to pass contrasts.arg to model.matrix.

secr.design.MS 225

Value

For secr.design.MS, a list with the components

designMatrices list of reduced design matrices, one for each real detection parameter

parameterTable index to row of the reduced design matrix for each real detection parameter;
dim(parameterTable) = c(uniquepar, np), where uniquepar is the number of
unique combinations of paramater values (uniquepar < RnSKM) and np is
the number of parameters in the detection model.

PIA Parameter Index Array - index to row of parameterTable for a given session,
animal, occasion and detector; dim(PIA) = c(R,n,S,K,M)

R number of sessions

If models is empty then all components are NULL except for PIA which is an array of 1’s (M set
to 1).

Optionally (keep.dframe = TRUE) -

dframe dataframe of design data, one column per covariate, one row for each c(R,n,S,K,M).
For multi-session models n, S, and K refer to the maximum across sessions

validdim list giving the valid dimensions (n, S, K, M) before padding

For make.lookup, a list with components

lookup matrix of unique rows

index indices in lookup of the original rows

For insertdim, a vector with length prod(dims) containing the values replicated according to dimx.

See Also

D.designdata, model.matrix

Examples

secr.design.MS (captdata, models = list(g0 = ~b))$designMatrices
secr.design.MS (captdata, models = list(g0 = ~b))$parameterTable

peek at design data constructed for learned response model
head(captdata)
temp <- secr.design.MS (captdata, models = list(g0 = ~b),

keep.dframe = TRUE)
a1 <- temp$dframe$animal == 1 & temp$dframe$detector %in% 8:10
temp$dframe[a1,]

... and trap specific learned response model
temp <- secr.design.MS (captdata, models = list(g0 = ~bk),

keep.dframe = TRUE)
a1 <- temp$dframe$animal == 1 & temp$dframe$detector %in% 8:10
temp$dframe[a1,]

place values 1:6 in different dimensions

226 secr.fit

insertdim(1:6, 1:2, c(2,3,6))
insertdim(1:6, 3, c(2,3,6))

secr.fit Spatially Explicit Capture–Recapture

Description

Estimate animal population density with data from an array of passive detectors (traps) by fitting a
spatial detection model by maximizing the likelihood. Data must have been assembled as an object
of class capthist. Integration is by summation over the grid of points in mask.

Usage

secr.fit (capthist, model = list(D~1, g0~1, sigma~1), mask = NULL, buffer = NULL,
CL = FALSE, detectfn = NULL, binomN = NULL, start = NULL, link = list(),
fixed = list(), timecov = NULL, sessioncov = NULL, hcov = NULL,
groups = NULL, dframe = NULL, details = list(), method =
"Newton-Raphson", verify = TRUE, biasLimit = 0.01, trace = NULL,
ncores = NULL, ...)

Arguments

capthist capthist object including capture data and detector (trap) layout

mask mask object or (for a multi-session analysis) a list of mask objects, one for each
session

buffer scalar mask buffer radius if mask not specified (default 100 m)

CL logical, if true then the model is fitted by maximizing the conditional likelihood

detectfn integer code or character string for shape of detection function 0 = halfnormal,
1 = hazard rate etc. – see detectfn

binomN integer code for distribution of counts (see Details)

start vector of initial values for beta parameters, or secr object from which they may
be derived

link list with optional components corresponding to ‘real’ parameters (e.g., ‘D’, ‘g0’,
‘sigma’), each a character string in {"log", "logit", "identity", "sin"} for the link
function of one real parameter

fixed list with optional components corresponding to real parameters giving the scalar
value to which the parameter is to be fixed

model list with optional components each symbolically defining a linear predictor for
one real parameter using formula notation

timecov optional dataframe of values of time (occasion-specific) covariate(s).

secr.fit 227

sessioncov optional dataframe of values of session-specific covariate(s).

hcov character name of individual covariate for known membership of mixture classes.

groups optional vector of one or more variables with which to form groups. Each el-
ement should be the name of a factor variable in the covariates attribute of
capthist.

dframe optional data frame of design data for detection parameters

details list of additional settings, mostly model-specific (see Details)

method character string giving method for maximizing log likelihood

verify logical, if TRUE the input data are checked with verify

biasLimit numeric threshold for predicted relative bias due to buffer being too small

trace logical, if TRUE then output each evaluation of the likelihood, and other mes-
sages

ncores integer number of threads to use for parallel processing

... other arguments passed to the maximization function

Details

secr.fit fits a SECR model by maximizing the likelihood. The likelihood depends on the detector
type ("multi", "proximity", "count", "polygon" etc.) of the traps attribute of capthist (Borchers
and Efford 2008, Efford, Borchers and Byrom 2009, Efford, Dawson and Borchers 2009, Efford
2011). The ‘multi’ form of the likelihood is also used, with a warning, when detector type =
"single" (see Efford et al. 2009 for justification).

The default model is null (model = list(D~1, g0~1,sigma~1) for detectfn = 'HN' and CL = FALSE),
meaning constant density and detection probability). The set of variables available for use in lin-
ear predictors includes some that are constructed automatically (t, T, b, B, bk, Bk, k, K), group
(g), and others that appear in the covariates of the input data. See also usage for varying ef-
fort, timevaryingcov to construct other time-varying detector covariates, and secr-models.pdf and
secr-overview.pdf for more on defining models.

buffer and mask are alternative ways to define the region of integration (see mask). If mask is
not specified then a mask of type "trapbuffer" will be constructed automatically using the specified
buffer width in metres.

hcov is used to define a hybrid mixture model, used especially to model sex differences (see hcov).
(Allows some animals to be of unknown class).

The length of timecov should equal the number of sampling occasions (ncol(capthist)). Argu-
ments timecov, sessioncov and groups are used only when needed for terms in one of the model
specifications. Default link is list(D="log",g0="logit", sigma="log").

If start is missing then autoini is used for D, g0 and sigma, and other beta parameters are set
initially to arbitrary values, mostly zero. start may be a previously fitted model. In this case, a
vector of starting beta values is constructed from the old (usually nested) model and additional betas
are set to zero. Mapping of parameters follows the default in score.test, but user intervention is
not allowed. From 2.10.0 the new and old models need not share all the same ‘real’ parameters, but
any new real parameters, such as ‘pmix’ for finite mixture models, receive a starting value of 0 on
the link scale (remembering e.g., invlogit(0) = 0.5 for parameter ‘pmix’).

https://www.otago.ac.nz/density/pdfs/secr-models.pdf

228 secr.fit

binomN (previously a component of details) determines the distribution that is fitted for the num-
ber of detections of an individual at a particular detector, on a particular occasion, when the detectors
are of type ‘count’, ‘polygon’ or ‘transect’:

• binomN > 1 — binomial with size binomN

• binomN = 1 — binomial with size determined by usage

• binomN = 0 — Poisson

The default with these detectors is to fit a Poisson distribution.

details is used for various specialized settings listed below. These are described separately - see
details.

autoini session to use for starting values (default 1)
centred centre x-y coordinates
chat overdispersion of sighting counts Tu, Tm
chatonly compute overdispersion for Tu and Tm, then exit
contrasts coding of factor predictors
convexpolygon allows non-convex polygons (slower)
Dfn reparameterization of density model (seldom used directly)
Dlambda switch density reparameterization to trend model
distribution binomial vs Poisson N
fastproximity special handling of binary proximity detectors
fixedbeta specify fixed beta parameter(s)
grain grain argument of RcppParallel::parallelFor
hessian variance method
ignoreusage override usage in traps object of capthist
intwidth2 controls optimise when only one parameter
knownmarks known or unknown number of marked animals in sighting-only model
LLonly compute one likelihood for values in start
maxdistance distance threshold for selective mask
miscparm starting values for extra parameters fitted via userdist function
newdetector detector type to override detector(traps(capthist))
nsim number of simulations to compute overdispersion
param optional parameterisation code
relativeD optional relative density conditional on n
savecall optionally suppress saving of call
telemetrytype treat telemetry data as independent, dependent or concurrent
normalize rescale detection to individual range use
usecov spatial covariate of use for normalization
userdist user-provided distance function or matrix

Setting ncores = NULL uses the existing value from the environment variable RCPP_PARALLEL_NUM_THREADS
(see setNumThreads).

A mark-resight model is fitted if the markocc attribute of the capthist ‘traps’ object includes sighting
occasions. See the vignette secr-markresight.pdf for a full account.

If method = "Newton-Raphson" then nlm is used to maximize the log likelihood (minimize the

https://www.otago.ac.nz/density/pdfs/secr-markresight.pdf

secr.fit 229

negative log likelihood); otherwise optim is used with the chosen method ("BFGS", "Nelder-Mead",
etc.). If maximization fails a warning is given appropriate to the method.

From secr 2.5.1, method = "none" may be used to skip likelihood maximization and compute only
the hessian for the current dataset at the values in start, and the corresponding variance-covariance
matrix of beta parameters. The computation uses fdHess from nlme.

If verify = TRUE then verify is called to check capthist and mask; analysis is aborted if "errors"
are found. Some conditions that trigger an "error" are benign (e.g., no detections in some sessions
of a multi-session study of a sparse population); use verify = FALSE to avoid the check. See also
Note.

If buffer is used rather than mask, and biasLimit is valid, then the estimated density is checked
for bias due to the choice of buffer. A warning is generated when buffer appears to be too small
(predicted RB(D-hat) > biasLimit, default 1% relative bias). The prediction uses bias.D. No
check is performed when mask is specified, when biasLimit is 0, negative or NA, or when the
detector type is "polygon", "transect", "polygonX" or "transectX".

Function list.secr.fit is a way to fit several models at once.

Value

When details$LLonly = TRUE a single log-likelihood is returned, with attributes

npar number of parameters to be estimated,

preptime elapsed setup time in seconds,

LLtime elapsed time for single likelihood evaluation, exclusive of setup.

Otherwise, secr.fit returns an object of class secr representing the fitted SECR model. This has
components

call function call)

capthist saved input

mask saved input

detectfn saved input

CL saved input

timecov saved input

sessioncov saved input

hcov saved input

groups saved input

dframe saved input

designD design matrix for density model; may be NULL

designNE design matrix for noneuc model; may be NULL

design reduced design matrices for detection parameters, parameter table and parameter
index array for actual animals (see secr.design.MS)

design0 reduced design matrices for detection parameters, parameter table and parameter
index array for ‘naive’ animal (see secr.design.MS)

230 secr.fit

start vector of starting values for beta parameters

link list with one component for each real parameter (typically ‘D’, ‘g0’, ‘sigma’),giving
the name of the link function used for each real parameter.

fixed saved input

parindx list with one component for each real parameter giving the indices of the ‘beta’
parameters associated with each real parameter

model saved input

details saved input

vars vector of unique variable names in model

betanames names of beta parameters

realnames names of fitted (real) parameters

fit list describing the fit (output from nlm or optim)

beta.vcv variance-covariance matrix of beta parameters

smoothsetup list of objects specifying smooths in mgcv
learnedresponse

logical; TRUE if any learned response in detection model

version secr version number

starttime character string of date and time at start of fit

proctime processor time for model fit, in seconds

The environment variable RCPP_PARALLEL_NUM_THREADS is updated if an integer value is
provided for ncores.

Warning

** Mark-resight data formats and models are experimental in secr 2.10.0 and subject to change **

Note

One system of units is used throughout secr. Distances are in metres and areas are in hectares (ha).
The unit of density is animals per hectare. 1 ha = 10000 m^2 = 0.01 km^2. To convert density to
animals / km^2, multiply by 100.

When you display an ‘secr’ object by typing its name at the command prompt, you implicitly call
its ‘print’ method print.secr, which in turn calls predict.secr to tabulate estimates of the ‘real’
parameters. Confidence limits (lcl, ucl) are for a 100(1-alpha)% interval, where alpha defaults to
0.05 (95% interval); alpha may be varied in print.secr or predict.secr.

AIC, logLik and vcov methods are also provided. Take care with using AIC: not all models are
comparable (see Notes section of AIC.secr) and large differences in AIC may relate to trivial
differences in estimated density.

derived is used to compute the derived parameters ‘esa’ (effective sampling area) and ‘D’ (density)
for models fitted by maximizing the conditional likelihood (CL = TRUE).

Components ‘version’ and ‘starttime’ were introduced in version 1.2.7, and recording of the com-
pletion time in ‘fitted’ was discontinued.

secr.fit 231

The Newton-Raphson algorithm is fast, but it sometimes fails to compute the information matrix
correctly, causing some or all standard errors to be set to NA. This usually indicates a major problem
in fitting the model, and parameter estimates should not be trusted. See Troubleshooting.

The component D in output was replaced with N from version 2.3. Use region.N to obtain SE or
confidence intervals for N-hat, or to infer N for a different region.

Prior to version 2.3.2 the buffer bias check could be switched off by setting verify = FALSE. This
is now done by setting biasLimit = 0 or biasLimit = NA .

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture–recapture studies. Biometrics 64, 377–385.

Efford, M. G. (2004) Density estimation in live-trapping studies. Oikos 106, 598–610.

Efford, M. G. (2011) Estimation of population density by spatially explicit capture–recapture with
area searches. Ecology 92, 2202–2207.

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit
capture–recapture: likelihood-based methods. In: D. L. Thompson, E. G. Cooch and M. J. Conroy
(eds) Modeling Demographic Processes in Marked Populations. Springer. Pp. 255–269.

Efford, M. G., Dawson, D. K. and Borchers, D. L. (2009) Population density estimated from loca-
tions of individuals on a passive detector array. Ecology 90, 2676–2682.

See Also

Detection functions, AIC.secr, capthist, details, derived, hcov, mask, list.secr.fit, predict.secr,
print.secr, region.N, Speed tips Troubleshooting userdist usage, vcov.secr, verify,

Examples

Not run:

construct test data (array of 48 `multi-catch' traps)

detectors <- make.grid (nx = 6, ny = 8, detector = "multi")
detections <- sim.capthist (detectors, popn = list(D = 10,

buffer = 100), detectpar = list(g0 = 0.2, sigma = 25))

fit & print null (constant parameter) model
secr0 <- secr.fit (detections)
secr0 ## uses print method for secr

compare fit of null model with learned-response model for g0

secrb <- secr.fit (detections, model = g0~b)
AIC (secr0, secrb)

typical result

model detectfn npar logLik AIC AICc dAICc AICwt

232 secr.test

secr0 D~1 g0~1 sigma~1 halfnormal 3 -347.1210 700.242 700.928 0.000 0.7733
secrb D~1 g0~b sigma~1 halfnormal 4 -347.1026 702.205 703.382 2.454 0.2267

End(Not run)

secr.test Goodness-of-Fit Test

Description

Simple Monte-Carlo goodness-of-fit tests for full-likelihood SECR models. The approach is to
calculate a statistic from either the raw data or a fitted model, and to relate this to the distribution of
the statistic under the original fitted model. The distribution is estimated by simulating data from
the model, and possibly re-fitting the model to each simulated dataset.

The suitability of different test statistics has yet to be assessed.

Usage

secr.test(object, nsim = 99, statfn, fit = FALSE, seed =
NULL, ncores = NULL, tracelevel = 1)

Arguments

object a fitted secr model

nsim integer number of replicates

statfn function to compute a numeric vector of one or more statistics from a single-
session ‘capthist’ object or from a fitted model (see Details)

fit logical; if TRUE the model is re-fitted to each simulated dataset

seed either NULL or an integer that will be used in a call to set.seed

ncores integer number of threads for parallel processing

tracelevel see sim.secr

Details

The test statistic(s) may be computed either on a dataset or on a fitted model, as determined by the
argument fit. The single argument expected by statfn should be either a ‘capthist’ object (fit =
FALSE) or an ‘secr’ object (fit = TRUE).

The default statistic when fit = FALSE is the proportion of individuals observed on only one oc-
casion, which is equivalent to statfn = function(CH) c(f1 = sum(apply(abs(CH) > 0,1,sum)
== 1) / nrow(CH)). Repeat detections on one occasion at the same or different detectors are not
counted. The default statistic is therefore not appropriate for some data, specifically from ‘count’
or ‘polygon’ detectors with few occasions or only one.

secr.test 233

The default statistic when fit = TRUE is the deviance divided by the residual degrees of freedom
(i.e., statfn = function(object) c(devdf = deviance(object) / df.residual(object))).

The reported probability (p) is the rank of the observed value in the vector combining the observed
value and simulated values, divided by (nsim + 1). Ranks are computed with rank using the default
ties.method = "average".

Simulations take account of the usage attribute of detectors in the original capthist object, given that
usage was defined and ignoreusage was not set.

Setting ncores = NULL uses the existing value from the environment variable RCPP_PARALLEL_NUM_THREADS
(see setNumThreads).

statfn may return a vector of statistics for each observed or simulated dataset or model: then the
value of each statistic will be calculated for every simulated dataset, and summarised. If fit = TRUE
the vector of statistics may include both those computed on the raw data (object$capthist) and the
fitted model.

Value

An object of class c('secrtest','list') with components:

object as input

nsim as input

statfn as input

fit as input

seed as input

output list comprising the simulated values, the observed value(s), and estimated prob-
abilities

For multi-session input when fit = FALSE, ‘output’ is a list in which each session provides one
component.

Print and plot methods are provided for ‘secrtest’ objects.

Note

simulate.secr is always used to simulate the raw data, but simulate.secr does not work for
all types of fitted model. Models fitted by maximizing the likelihood conditional on n (CL = TRUE
in secr.fit) potentially include individual covariates whose distribution in the population is un-
known. This precludes simulation, and conditional-likelihood models in general are therefore not
covered by secr.test.

Other exclusions include exotic non-binary behavioural responses (“bn", “bkn", “bkc", “Bkc" - but
these are generally undocumented in any case).

If fit = TRUE then sim.secr is used.

At each simulation a new population is generated across the extent of the original mask. If the extent
is unduly large then time will be wasted simulating the possibility of detection for many essentially
undetectable animals. This is an argument for keeping the mask tight - large enough only to avoid
mask-induced bias.

234 secrdemo

See Also

print.secrtest, plot.secrtest, simulate.secr, sim.secr, deviance.secr

Examples

Not run:

secr.test(secrdemo.0, nsim = 99)

secr.test(ovenbird.model.1, nsim = 20)

example combining raw data summary and model fit
assumes single-session
bothfn <- function(object) {

CH <- object$capthist
f1 <- sum(apply(abs(CH) > 0, 1, sum) == 1) / nrow(CH)
devdf <- deviance(object) / df.residual(object)
c(f1 = f1, devdf = devdf)

}
test <- secr.test (secrdemo.0, nsim = 19, statfn = bothfn, fit = TRUE)
test
plot(test, main = '')

End(Not run)

secrdemo SECR Models Fitted to Demonstration Data

Description

Demonstration data from program Density are provided as text files in the ‘extdata’ folder, as raw
dataframes (trapXY, captXY), and as a combined capthist object (captdata) ready for input to
secr.fit.

The fitted models are objects of class secr formed by

secrdemo.0 <- secr.fit (captdata)

secrdemo.b <- secr.fit (captdata, model = list(g0 = ~b))

secrdemo.CL <- secr.fit (captdata, CL = TRUE)

Usage

data(secrdemo)

secrdemo 235

Details

The raw data are 235 fictional captures of 76 animals over 5 occasions in 100 single-catch traps 30
metres apart on a square grid with origin at (365,365).

Dataframe trapXY contains the data from the Density input file ‘trap.txt’, and captXY contains the
data from ‘capt.txt’ (Efford 2012).

The fitted models use a halfnormal detection function and the likelihood for multi-catch traps (ex-
pect estimates of g0 to be biased because of trap saturation Efford et al. 2009). The first is a null
model (i.e. parameters constant) and the second fits a learned trap response.

Object Description
captXY data.frame of capture data
trapXY data.frame of trap locations
captdata capthist object
secrdemo.0 fitted secr model – null
secrdemo.b fitted secr model – g0 trap response
secrdemo.CL fitted secr model – null, conditional likelihood

References

Efford, M. G. (2012) DENSITY 5.0: software for spatially explicit capture–recapture. Department
of Mathematics and Statistics, University of Otago, Dunedin, New Zealand. https://www.otago.
ac.nz/density/.

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit
capture-recapture: likelihood-based methods. In: D. L. Thomson, E. G. Cooch and M. J. Conroy
(eds) Modeling Demographic Processes in Marked Populations. Springer, New York. Pp. 255–269.

See Also

capthist, read.capthist

Examples

Not run:

navigate to folder with raw data files
olddir <- setwd (system.file("extdata", package="secr"))

construct capthist object from raw data
captdata <- read.capthist ("capt.txt", "trap.txt", fmt = "XY", detector = "single")

generate demonstration fits
secrdemo.0 <- secr.fit (captdata)
secrdemo.CL <- secr.fit (captdata, CL = TRUE)
secrdemo.b <- secr.fit (captdata, model = list(g0 ~ b))

restore previous setting
setwd(olddir)

https://www.otago.ac.nz/density/
https://www.otago.ac.nz/density/

236 secrRNG

End(Not run)

display the null model fit, using the print method for secr
secrdemo.0

compare fit of models
AIC(secrdemo.0, secrdemo.b)

display estimates for the two models (single session)
collate(secrdemo.0, secrdemo.b)[1,,,]

secrRNG Random Number Seed

Description

The use of random number seeds in secr is explained.

Random numbers in R

R provides several kinds of random number generator (RNG) in the base package (see RNG). These
are used both explicitly, in functions such as runif and rnorm, and implicitly (sample).

A seed suitable for any kind of RNG is held in a vector of 626 integers named .Random.seed. The
vector is not to be modified directly by users. Instead, to start a reproducible stream of random
numbers, the user calls set.seed with a single non-null integer argument. This has the effect of
initialising .Random.seed. The value of .Random.seed may nevertheless be stored and restored to
reset the RNG state.

set.seed with a NULL argument initialises .Random.seed to an indeterminate (time- and process-
dependent) value. The same happens if a random number function is called before .Random.seed
has been set.

Handling of RNG seed for simulation in package stats

The ‘official’ approach to setting and storing the RNG seed is shown in code and documentation for
the generic function simulate in the stats package.

• The generic has argument ‘seed’ with default NULL.

• If ‘seed’ is non-null then set.seed is called.

• The returned value has an attribute “seed” whose value is either (i) if specified, the integer
value of the ‘seed’ argument (with its own attribute “kind” from RNGkind), or (ii) the original
vector .Random.seed.

• On exit the RNG state in .Random.seed is reset to the value that applied when the function
was called.

For NULL seed input, the saved RNGstate may be used to reset .Random.seed (see Examples).

secrRNG 237

Use of random numbers in secr

Many functions in secr call on random numbers, sometimes in unexpected places. For example
autoini selects a random sample to thin points and speed computation. In most functions there is
no provision for direct control of the random number state: users won’t usually care, and if they do
then set.seed may be called for the particular R session.

However, control of the RNG seed is required for reproducible data generation in simulation func-
tions. These functions typically have a ‘seed’ argument that is used internally in a call to set.seed.
Handling of seeds in the simulation functions of secr largely follows stats::simulate as de-
scribed in the preceding section.

The relevant functions are –

Function Default Saved attribute Note
randomHabitat NULL seed or RNGstate
secr.test NULL seed or RNGstate calls and retains seed from simulate.secr
sim.capthist NULL seed or RNGstate
sim.resight NULL seed or RNGstate Seed may be passed in . . . argument
sim.popn NULL seed or RNGstate
sim.secr NULL seed or RNGstate
simulate.secr NULL seed or RNGstate S3 method called by sim.secr

Setting seed = NULL in any of these functions has the effect of continuing the existing random
number stream; it is not the same as calling set.seed(NULL).

Parallel processing

Two models are used for parallel processing in secr, corresponding to multi-threading with package
RcppParallel (e.g. secr.fit) and parallel cores in package parallel (e.g. chat.nk).

In the parallel model the L’Ecuyer pseudorandom generator is used to provide a separate random
number stream for each core (see clusterSetRNGStream).

When using Rcpp the state of the random number generator is set in C++ with the call RNGScope
scope;that automatically resets the state of the generator on exit (Eddelbuettel 2013 p. 115).

Random number streams in separate RcppParallel threads are (probably) not independent. Thus
there are potential issues with RNG calls in multi-threaded code. However, in secr 4.0 all RNG
calls in C++ code are outside multi-threaded contexts, with the exception of simulations allowing
for overdispersion in mark–resight estimates (Rcpp exported function sightingchatcpp). The impli-
cations for mark-resight estimates have not been explored, and it is unclear whether more elaborate
solutions are needed.

References

Eddelbuettel, D. 2013. Seamless R and C++ integration with Rcpp. Springer.

See Also

Parallel, set.seed, simulate, sim.capthist, sim.popn, sim.resight, secr.test, simulate.secr

238 secrtest

Examples

Not run:

lmfit <- lm(speed ~ dist, data = cars)

1. NULL seed
r1 <- simulate(lmfit, seed = NULL)
r2 <- simulate(lmfit, seed = NULL)
restore RNGstate, assuming RNGkind unchanged
.Random.seed <- attr(r1, "seed")
r3 <- simulate(lmfit, seed = NULL)
r1[1:6,1]
r2[1:6,1]
r3[1:6,1]

2. explicit seed
r4 <- simulate(lmfit, seed = 123)
r5 <- simulate(lmfit, seed = attr(r4, "seed"))
r4[1:6,1]
r5[1:6,1]

End(Not run)

secrtest Goodness-of-fit Test Results

Description

S3 class for results from secr.test.

Usage

S3 method for class 'secrtest'
print(x, terse = TRUE, ...)
S3 method for class 'secrtest'
plot(x, stat, ...)

Arguments

x secrtest object from secr.test

terse logical; if TRUE only p values are displayed

stat character; names of statistics to plot (default: all)

... other arguments passed to hist by plot.secrtest

session 239

Details

An ‘secrtest’ object is output from secr.test.

plot.secrtest plots a histogram of the simulated values.

If plot.secrtest is applied to an object with more than one statistic then multiple plots are pro-
duced, so a multi-figure layout should be prepared (par(mfrow = c(1,2)) for 2 plots side by side).
Include the hist argument main = '' to suppress the ugly plot labels, and ensure each statistic is
named by statfn so that the x-axis is labelled correctly (See the Examples in help for secr.test).

See Also

secr.test

Examples

Not run:

tmp <- secr.test(ovenbird.model.1)
if (inherits(tmp, 'secrtest')) {

tmp ## terse print
print(tmp, terse = FALSE)
par(mfrow = c(1,5))
plot(tmp, main = '', xlim=c(0,1), breaks=seq(0,1,0.05))
par(mfrow = c(1,1)) ## reset to default

}

End(Not run)

session Session Vector

Description

Extract or replace the session names of a capthist object.

Usage

session(object, ...)
session(object) <- value

Arguments

object object with ‘session’ attribute e.g. capthist

value character vector or vector that may be coerced to character, one value per session

... other arguments (not used)

240 setNumThreads

Details

Replacement values will be coerced to character.

Value

a character vector with one value for each session in capthist

Note

Like Density, secr uses the term ‘session’ for a closed-population sample. A session usually in-
cludes data from several closely-spaced capture occasions (often consecutive days). Each ‘primary
session’ in the ‘robust’ design of Pollock (1982) would be treated as a session in secr. secr also
uses ‘session’ for independent subsets of the capture data distinguished by characteristics other than
sampling time (as above). For example, two grids trapped simultaneously could be analysed as dis-
tinct sessions if (i) they were far enough apart that there was negligible prospect of the same animal
being caught on both grids, and (ii) there was interest in comparing estimates from the two grids, or
fitting a common detection model.

The log likelihood for a session model is the sum of the separate session log likelihoods. Although
this assumes independence of sampling, parameters may be shared across sessions, or session-
specific parameter values may be functions of session-level covariates. For many purposes, ‘ses-
sions’ are equivalent to ‘groups’. For multi-session models the detector array and mask are specified
separately for each session. Group models are therefore generally simpler to implement. On the
other hand, sessions offer more flexibility in defining and evaluating between-session models, in-
cluding trend models.

References

Pollock, K. H. (1982) A capture-recapture design robust to unequal probability of capture. Journal
of Wildlife Management 46, 752–757.

See Also

capthist

Examples

session(captdata)

setNumThreads Number of Threads

Description

Set or report the number of cores to be used for multi-threaded operations. A wrapper for the
RcppParallel function setThreadOptions (Allaire et al. 2019).

setNumThreads 241

Usage

setNumThreads(ncores, ...)

Arguments

ncores integer number of threads to use

... other arguments passed to RcppParallel::setThreadOptions, specifically stack-
Size

Details

If ncores is NULL then the current value of the environment variable RCPP_PARALLEL_NUM_THREADS
is used. RCPP_PARALLEL_NUM_THREADS defaults to 2 at the start of a session (assuming at
least 2 logical cores available).

Calling setNumThreads() with no arguments is a handy way to check how many threads are in use.

The value of RCPP_PARALLEL_NUM_THREADS is also reset when a multi-threaded function
such as secr.fit is called with a non-NULL value of the ncores argument. This value applies in
later calls of secr.fit with ncores = NULL until changed.

Value

The new value of the environment variable RCPP_PARALLEL_NUM_THREADS.

Note

The mechanism for setting the number of threads changed between versions 4.1.0 and 4.2.0. The
default number of cores is now capped at 2 to meet CRAN requirements. Setting ncores = NULL
previously specified one less than the number of available cores.

References

Allaire, J. J., Francois, R., Ushey, K., Vandenbrouck, G., Geelnard, M. and Intel (2019) Rcpp-
Parallel: Parallel Programming Tools for ’Rcpp’. R package version 4.4.4. https://CRAN.R-
project.org/package=RcppParallel.

See Also

Parallel, setThreadOptions Sys.getenv

Examples

determine current number of threads

setNumThreads()

Not run:

242 shareFactorLevels

set new number of threads
setNumThreads(7)

a call to secr.fit that specifies 'ncores' also sets the
number of threads, as we see here

fit <- secr.fit(captdata, trace = FALSE, ncores = 8)
setNumThreads()

End(Not run)

shareFactorLevels Fix Inconsistent Covariates

Description

Factor covariates can give trouble in multi-session models if the levels differ among sessions. A
warning is provided by verify.capthist. This function forces factor covariates to use the same
levels.

Usage

shareFactorLevels(object, columns = NULL, stringsAsFactors = TRUE)

Arguments

object multi-session capthist object or list of traps or mask objects

columns indices of columns to fix (default all)
stringsAsFactors

logical; if TRUE then character columns are converted to factor

Details

Factor-valued covariates are coerced to use the same set of levels for each session of a multi-session
capthist object or each component of a list of traps or masks. The combined level set is the union
of all levels in separate sessions. The order of levels follows the default in factor (alphabetical
according to current locale).

Setting stringsAsFactors = TRUE causes character-valued columns to be converted to factors.

Value

An object of the same class as input. A single-session object is passed unchanged except for possible
conversion of character values to factor (stringsAsFactors = TRUE).

sighting 243

See Also

verify.capthist

sighting Sighting Attributes

Description

Extract or replace the markocc attribute of a traps object that distinguishes marking occasions
from sighting occasions. Also, extract or replace the attributes Tu, Tm and Tn of a capthist object,
used for storing counts of sightings. All attributes are optional, but Tu, Tm and Tn require markocc
to be specified.

Usage

markocc(object, ...)
markocc(object) <- value
sighting(object)
Tu(object, ...)
Tu(object) <- value
Tm(object, ...)
Tm(object) <- value
Tn(object, ...)
Tn(object) <- value

Arguments

object traps object (markocc) or capthist object (Tu, Tm, Tn)
value numeric matrix of detectors x occasions, or a vector (see Details)
... other arguments (not used)

Details

For replacement of markocc, ‘value’ should be a vector of integers indicating the occasions on
which animals are sighted only (0) or marked or recaptured (1).

For replacement of Tu, Tm or Tn, ‘value’ may be a scalar (total count) or a detectors x occasions
matrix.

Value

markocc(object) returns the markocc vector of the traps object. markocc(object) may be NULL.

Tu, Tm and Tn return the respective attributes of a capthist object, or NULL if they are unspecified.

sighting(object) returns TRUE if the markocc attribute indicates at least one sighting-only occasion.

See Also

traps, addSightings, sightingPlot, secr-markresight.pdf

https://www.otago.ac.nz/density/pdfs/secr-markresight.pdf

244 signal

signal Signal Fields

Description

Extract or replace signal attributes of a ‘capthist’ object.

Usage

signalframe(object)
signalframe(object) <- value

S3 method for class 'capthist'
signal(object, ...)
S3 method for class 'capthist'
noise(object, ...)

signal(object) <- value
noise(object) <- value

Arguments

object a ‘capthist’ object

value replacement value (see Details)

... other arguments (not used)

Details

Signal attributes of a ‘capthist’ object are stored in a dataframe called the signalframe. This has one
row per detection. The signalframe includes the primary field ‘signal’ and an unlimited number of
other fields. To extract the signal field alone use the signal method.

These functions extract data on detections, ignoring occasions when an animal was not detected.
Detections are ordered by occasion, animalID and trap.

Replacement values must precisely match object in number of detections and in their order.

Value

For signalframe , a dataframe containing signal data and covariates, one row per detection. The
data frame has one row per detection. See signalmatrix for a matrix with one row per cue and
columns for different microphones.

For signal and noise, a numeric vector with one element per detection.

If object has multiple sessions, the result is a list with one component per session.

signalmatrix 245

See Also

capthist, signalmatrix

Examples

ovensong dataset has very simple signalframe
head(signalframe(signalCH))

signalmatrix Reformat Signal Data

Description

Produce sound x microphone matrix, possibly with sound covariates as extra columns.

Usage

signalmatrix(object, noise = FALSE, recodezero = FALSE,
prefix = "Ch", signalcovariates = NULL, names = NULL)

Arguments

object object inheriting from secr class ‘capthist’

noise logical; if TRUE, noise is extracted instead of signal

recodezero logical; if TRUE zero signals are set to NA

prefix character value used to form channel names
signalcovariates

character vector of covariate names from signalframe to add as columns

names character vector of column names

Details

This function extracts signal or noise data from a capthist object, where it is stored in the ‘signal-
frame’ attribute, as a more natural sound x microphone table. There is no equivalent replacement
function.

The signalcovariates argument may be used to specify additional columns of the signal frame to
collapse and add as columns to the right of the actual signal data. Ordinarily there will be multiple
rows in signalframe for each row in the output; the covariate value is taken from the first matching
row.

If names is not provided, column names are constructed from the detector names. If the length of
names is less than the number of columns, simple numerical names are constructed.

246 sim.capthist

Value

A dataframe with dim = c(n,K+j) where n is the number of separate sounds, K is the number of
microphones, and j is the number of covariates (by default j = 0).

See Also

ovensong

Examples

use 'secr' ovenbird data
signalmatrix(signalCH)

sim.capthist Simulate Detection Histories

Description

Create a set of capture or marking-and-resighting histories by simulated sampling of a 2-D popula-
tion using an array of detectors.

Usage

sim.capthist(traps, popn = list(D = 5, buffer = 100,
Ndist = "poisson"), detectfn = 0, detectpar = list(),
noccasions = 5, nsessions = 1, binomN = NULL, exactN = NULL,
p.available = 1, renumber = TRUE, seed = NULL,
maxperpoly = 100, chulltol = 0.001, userdist = NULL,
savepopn = FALSE)

sim.resight(traps, popn = list(D = 5, buffer = 100, Ndist = "poisson"), ...,
pID = 1, unmarked = TRUE, nonID = TRUE, unresolved = FALSE, unsighted = TRUE,
pmark = 0.5, Nmark = NULL, markingmask = NULL)

Arguments

traps traps object with the locations and other attributes of detectors

popn locations of individuals in the population to be sampled, either as a popn object
(see sim.popn) or a list with the named components.

detectfn integer code or character string for shape of detection function 0 = halfnormal
etc. – see detectfn

detectpar list of values for named parameters of detection function

noccasions number of occasions to simulate

nsessions number of sessions to simulate

binomN integer code for distribution of counts (see Details)

sim.capthist 247

exactN integer number of telemetry fixes per occasion

p.available vector of one or two probabilities (see Details)

renumber logical for whether output rows should labeled sequentially (TRUE) or retain
the numbering of the population from which they were drawn (FALSE)

seed either NULL or an integer that will be used in a call to set.seed

maxperpoly integer maximum number of detections of an individual in one polygon or tran-
sect on any occasion

chulltol numeric buffer (m) for polygon around telemetry locations

userdist user-defined distance function or matrix (see details)

savepopn logical; if TRUE then the popn (input or simulated) is saved as an attribute

... arguments to pass to sim.capthist

pID probability of individual identification for marked animals

unmarked logical, if TRUE unmarked individuals are not recorded during ‘sighting’

nonID logical, if TRUE then unidentified marked individuals are not recorded during
‘sighting’

unresolved logical, if TRUE then individuals of unresolved mark status are not recorded
during ‘sighting’

unsighted logical, if TRUE and sighting only then capthist includes all-zero histories

pmark numeric probability that an individual is ‘pre-marked’ (see Details)

Nmark number of individuals to be ‘pre-marked’ (see Details)

markingmask mask object

Details

If popn is not of class ‘popn’ then a homogeneous Poisson population with the desired density
(animals/ha) is first simulated over the rectangular area of the bounding box of traps plus a buffer
of the requested width (metres). The detection algorithm depends on the detector type of traps. For
‘proximity’ detectors, the actual detection probability of animal i at detector j is the naive probability
given by the detection function. For ‘single’ and ‘multi’ detectors the naive probability is modified
by competition between detectors and, in the case of ‘single’ detectors, between animals. See Efford
(2004) and other papers below for details.

Detection parameters in detectpar are specific to the detection function, which is indicated by
detectfn. Parameters may vary with time - for this provide a vector of length noccasions. The
g0 parameter may vary both by time and detector - for this provide a matrix with noccasions rows
and as many columns as there are detectors. The default detection parameters are list(g0 = 0.2,
sigma = 25, z = 1).

The default is to simulate a single session. This may be overridden by providing a list of populations
to sample (argument popn) or by specifying nsessions > 1 (if both then the number of sessions
must match). Using nsessions > 1 results in replicate samples of populations with the same density
etc. as specified directly in the popn argument.

binomN determines the statistical distribution of the number of detections of an individual at a
particular ‘count’ detector or polygon on a particular occasion. A Poisson distribution is indicated

248 sim.capthist

by binomN = 0; see secr.fit for more. The distribution is always Bernoulli (binary) for ‘proximity’
and ‘signal’ detectors.

If exactN is not specified or zero then the number of telemetry fixes is a random variable determined
by the other detection settings.

p.available specifies temporary non-availability for detection in multi-session simulations. If a
single probability is specified then temporary non-availability is random (independent from session
to session). If two probabilities are given then non-availability is Markovian (dependent on previous
state) and the two values are for animals available and not available at the preceding session. In the
Markovian case, availability in the first session is assigned at random according to the equilibrium
probability p2 / (1 - p1 + p2). Incomplete availability is not implemented for sampling lists of
populations.

detectpar may include a component ‘truncate’ for the distance beyond which detection probability
is set to zero. By default this value is NULL (no specific limit).

detectpar may also include a component ‘recapfactor’ for a general learned trap response. For
‘single’ and ‘multi’ detector types the probability of detection changes by this factor for all occa-
sions after the occasion of first capture. Attempted use with other detector types causes an error. If
recapfactor x g(d) > 1.0, g(d) is truncated at 1.0. Other types of response (site-specific bk, Marko-
vian B) are not allowed.

If popn is specified by an object of class ‘popn’ then any individual covariates will be passed on;
the covariates attribute of the output is otherwise set to NULL.

The random number seed is managed as in simulate.

chulltol is used only when simulating telemetry locations. By default, a new ’traps’ polygon is
generated as the convex hull of the simulated locations, with a slight (1 mm) added buffer to ensure
boundary points are within the polygon. Buffering is suppressed if chulltol is NA or negative.

userdist cannot be set if ‘traps’ is any of polygon, polygonX, transect or transectX.

sim.resight generates mark-resight data. The ‘markocc’ attribute of ‘traps’ indicates the occa-
sions which are for sighting-only (0) or marking and recapture (1). The number of occasions is
determined by markocc. sim.capthist is first called with the arguments ‘traps’ and The de-
tector type of ‘traps’ should be ‘proximity’ or ‘count’ for sighting occasions (markocc = 0). The
detector type need not be the same for marking and sighting occasions (’multi’ is allowed on mark-
ing occasions). If . . . includes a non-null ‘seed’ the random seed is reset in sim.resight and not
passed to sim.capthist.

A special case arises when all occasions are sighting-only. Then it is assumed that individuals in the
population are marked prior to the start of sampling with a known spatial distribution (i.e. marking
does not follow a spatial detection model). By default, animals throughout the buffered area are pre-
marked with probability pmark. If Nmark is specified then a sample of size Nmark will be selected
for marking, overriding pmark.

The marked population may be restricted to a subset of the space spanned by popn by specifying
markingmask, which may have a further covariate ‘marking’ to vary the intensity of marking.

Value

For sim.capthist, an object of class capthist, a 3-dimensional array with additional attributes.
Rows represent individuals and columns represent occasions; the third dimension, codes the number

sim.capthist 249

of detections at each detector (zero or one for trap detectors (‘single’, ‘multi’) and binary proximity
detectors.

The initial state of the R random number generator is stored in the ‘seed’ attribute.

For sim.resight, an object of class capthist for which the traps object has a markocc attribute
(marking occasions), and there are further attributes Tu (sightings of unmarked animals) and Tm
(sightings of marked but not identified animals).

Note

External code is called to speed the simulations. The present version assumes a null model, i.e.,
naive detection probability is constant except for effects of distance and possibly time (using vector-
valued detection parameters from 1.2.10). You can, however, use rbind.capthist to combine
detections of population subclasses (e.g. males and females) simulated with different parameter
values. This is not valid for detector type "single" because it fails to allow for competition for traps
between subclasses. Future versions may allow more complex models.

truncate has no effect (i) when using a uniform detection function with radius (sigma) <= truncate
and (ii) with signal strength detection (detectfn 10, 11). Note that truncated detection functions are
provided for de novo simulation, but are not available when fitting models with in secr.fit or
simulating from a fitted model with sim.secr.

maxperpoly limits the size of the array allocated for detections in C code; an error results if the is
number is exceeded.

Prior to 2.10.0 sim.resight interpreted length-2 vectors of detection parameters as referring to
marking and sighting occasions; this feature has been discontinued.

References

Borchers, D. L. and Efford, M. G. (2008) Spatially explicit maximum likelihood methods for
capture–recapture studies. Biometrics 64, 377–385.

Efford, M. G. (2004) Density estimation in live-trapping studies. Oikos 106, 598–610.

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit
capture-recapture: likelihood-based methods. In: D. L. Thomson, E. G. Cooch and M. J. Conroy
(eds) Modeling Demographic Processes in Marked Populations. Springer, New York. Pp. 255–269.

Efford, M. G., Dawson, D. K. and Borchers, D. L. (2009) Population density estimated from loca-
tions of individuals on a passive detector array. Ecology 90, 2676–2682.

See Also

sim.popn, capthist, traps, popn, Detection functions, simulate, Tu, Tm

Examples

simple example
detector = "multi" (default)
temptrap <- make.grid(nx = 6, ny = 6, spacing = 20)
sim.capthist (temptrap, detectpar = list(g0 = 0.2, sigma = 20))

with detector = "proximity", there may be more than one

250 sim.popn

detection per individual per occasion
temptrap <- make.grid(nx = 6, ny = 6, spacing = 20, detector =

"proximity")
summary(sim.capthist (temptrap, detectpar = list(g0 = 0.2,

sigma = 20)))

marking on occasions 1, 3 only
temptrap <- make.grid(nx = 6, ny = 6, spacing = 20, detector = 'proximity')
markocc(temptrap) <- c(1,0,1,0,0)
CH <- sim.resight (temptrap, detectpar = list(g0 = 0.2, sigma = 20))
summary(CH)

multiple sessions
grid4 <- make.grid(nx = 2, ny = 2)
temp <- sim.capthist (grid4, popn = list(D = 1), nsessions = 20)
summary(temp, terse = TRUE)

unmarked or presence types
grid <- make.grid(nx = 10, ny = 10, detector = "unmarked")
CH <- sim.capthist (grid, noccasions = 5)
CH
"presence" and "unmarked" data are stored as "count" data
behaviour is controlled by detector type, e.g.
detector(traps(CH)) <- "presence"
CH

sim.popn Simulate 2-D Population

Description

Simulate a point process representing the locations of individual animals.

Usage

sim.popn (D, core, buffer = 100, model2D = c("poisson", "cluster",
"IHP", "coastal", "hills", "linear", "even", "rLGCP", "rThomas"),
buffertype = c("rect", "concave", "convex"), poly = NULL,
covariates = list(sex = c(M = 0.5, F = 0.5)), number.from = 1,
Ndist = c("poisson", "fixed", "specified"), nsessions = 1, details = NULL,
seed = NULL, keep.mask = model2D %in% c("IHP", "linear"),
Nbuffer = NULL, age = FALSE, ...)

tile(popn, method = "reflect")

sim.popn 251

Arguments

D density animals / hectare (10 000 m^2) (see Details for IHP case)

core data frame of points defining the core area

buffer buffer radius about core area

model2D character string for 2-D distribution

buffertype character string for buffer type

poly bounding polygon (see Details)

covariates list of named covariates

number.from integer ID for animal

Ndist character string for distribution of number of individuals

nsessions number of sessions to simulate

details optional list with additional parameters

seed either NULL or an integer that will be used in a call to set.seed

keep.mask logical; if TRUE and model2D %in% c(’IHP’,’linear’) then core is saved as the
attribute "mask"

Nbuffer integer number of individuals to simulate

age logical; if TRUE then age covariate added for multisession popn with turnover

... arguments passed to subset if poly is not NULL

popn popn object

method character string "reflect" or "copy"

Details

core must contain columns ‘x’ and ‘y’; a traps object is suitable. For buffertype = "rect",
animals are simulated in the rectangular area obtained by extending the bounding box of core by
buffer metres to top and bottom, left and right. This box has area A. If model2D = 'poisson'
the buffer type may also be ‘convex’ (points within a buffered convex polygon) or ‘concave’ (cor-
responding to a mask of type ‘trapbuffer’); these buffer types use buffer.contour.

A notional random covariate ‘sex’ is generated by default.

Each element of covariates defines a categorical (factor) covariate with the given probabilities
of membership in each class. No mechanism is provided for generating continuous covariates, but
these may be added later (see Examples).

Ndist should usually be ‘poisson’ or ‘fixed’. The number of individuals N has expected value DA.
If DA is non-integer then Ndist = "fixed" results in N ∈ {trunc(DA), trunc(DA) + 1}, with
probabilities set to yield DA individuals on average. The option ‘specified’ is undocumented; it is
used in some open-population simulations.

If model2D = "cluster" then the simulated population approximates a Neyman-Scott clustered
Poisson distribution. Ancillary parameters are passed as components of details: details$mu is
the expected number of individuals per cluster and details$hsigma is the spatial scale (σ) of a 2-D
kernel for location within each cluster. The algorithm is

1. Determine the number of clusters (parents) as a random Poisson variate with λ = DA/µ

252 sim.popn

2. Locate each parent by drawing uniform random x- and y-coordinates

3. Determine number of offspring for each parent by drawing from a Poisson distribution with
mean mu

4. Locate offspring by adding random normal error to each parent coordinate

5. Apply toroidal wrapping to ensure all offspring locations are inside the buffered area

A special cluster option is selected if details$clone = "constant": then each parent is cloned exactly
details$mu times.

Toroidal wrapping is a compromise. The result is more faithful to the Neyman-Scott distribution if
the buffer is large enough that only a small proportion of the points are wrapped.

If model2D = "IHP" then an inhomogeneous Poisson distribution is simulated. core should be a
habitat mask and D should be one of –

• a vector of length equal to the number of cells (rows) in core,

• the name of a covariate in core that contains cell-specific densities (animals / hectare),

• a function to generate the intensity of the distribution at each mask point, or

• a constant.

If a function, D should take two arguments, a habitat mask and a list of parameter values (’core’ and
’details’ are passed internally as these arguments).

The number of individuals in each cell is either (i) Poisson-distributed with mean DA where A is
the cell area (an attribute of the mask) (Ndist = "poisson") or (ii) multinomial with size DA and
relative cell probabilities given by D (Ndist = "fixed"). buffertype and buffer are ignored, as
the extent of the population is governed entirely by the mask in core.

If model2D = "linear" then a linear population is simulated as for model2D = "IHP", except that
core should be a linearmask object from package secrlinear, and density (D) is expressed in an-
imals per km. The documentation of secrlinear should be consulted for further detail (e.g. the
wrapper function sim.linearpopn).

If model2D = "coastal" then a form of inhomogeneous Poisson distribution is simulated in which
the x- and y-coordinates are drawn from independent Beta distributions. Default parameters gener-
ate the ‘coastal’ distribution used by Fewster and Buckland (2004) for simulations of line-transect
distance sampling (x ~ Beta(1, 1.5), y ~ Beta(5, 1), which places 50% of the population in the
‘northern’ 13% of the rectangle). The four Beta parameters may be supplied in the vector compo-
nent Beta of the ‘details’ list (see Examples). The Beta parameters (1,1) give a uniform distribution.
Coordinates are scaled to fit the limits of a sampled rectangle, so this method assumes buffertype =
"rect".

If model2D = "hills" then a form of inhomogeneous Poisson distribution is simulated in which in-
tensity is a sine curve in the x- and y- directions (density varies symmetrically between 0 and 2 x D
along each axis). The number of hills in each direction (default 1) is determined by the ‘hills’ com-
ponent of the ‘details’ list (e.g. details = list(hills=c(2,3)) for 6 hills). If either number is negative
then alternate rows will be offset by half a hill. Displacements of the entire pattern to the right and
top are indicated by further elements of the ‘hills’ component (e.g. details = list(hills=c(1,1,0.5,0.5))
for 1 hill shifted half a unit to the top right; coordinates are wrapped, so the effect is to split the hill
into the four corners). Negative displacements are replaced by runif(1). Density is zero at the edge
when the displacement vector is (0,0) and rows are not offset.

sim.popn 253

If model2D = "even" then the buffered area is divided into square cells with side sqrt(10000/D) and
one animal is located at a random uniform location within each cell. If the height or width is not an
exact multiple of the cell side then one whole extra row or column of cells is added; animals located
at random in these cells are discarded if they fall outside the original area.

From secr 4.6.2, sim.popn provides an interface to two simulation functions from spatstat (Bad-
deley et al. 2015): rLGCP and rThomas.

If model2D = "rLGCP" then a log-gaussian Cox process is simulated within the buffered area. Func-
tion rLGCP in spatstat calls functions from RandomFields (Schlather et al. 2015; see Notes).
Certain options are fixed: the correlation function is RMexp from RandomFields, and there is no
provision for covariate effects. Clipping to a polygon (poly) and fixed-N (Ndist = "fixed") are not
supported. The algorithm first constructs the log spatial intensity as a realisation of a Gaussian
random field; one realisation of an IHP with that intensity is then simulated.

The parameters for model2D = "rLGCP" are the scalar density (D) and the variance and spatial scale
of the random field (passed as details arguments ‘var’ and ‘scale’). The variance is on the log
scale; the mean on the log scale is computed internally as mu = log(D) - var/2. var = 0 results
in a random uniform (Poisson) distribution. When details$saveLambda = TRUE, the discretized
intensity function is saved as the attribute "Lambda", a habitat mask with covariate "Lambda" that
may be used to construct further IHP realisations (see Examples).

If model2D = "rThomas" then a Thomas process is simulated. This is a special case of the Neyman-
Scott process in which each parent gives rise to a Poisson number of offspring (see Notes). The
expected number of offspring per parent and the spatial scatter about each parent are specified by
the details arguments ‘mu’ and ‘scale’. Argument ‘kappa’ of rThomas (density of parent process)
is computed as D/mu/1e4. Other arguments remain at their defaults, including ‘expand’ (4 * scale).
A dataframe of parent locations is saved in attribute ‘parents’. The intensity surface for each reali-
sation is saved in attribute ’Lambda’ when details$saveLambda = TRUE.

If poly is specified, points outside poly are dropped. poly may be one of the types descrbed in
boundarytoSF.

The subset method is called internally when poly is used; the . . . argument may be used to pass
values for keep.poly and poly.habitat.

Multi-session populations may be generated with nsessions > 1. Multi-session populations may
be independent or generated by per capita turnover from a starting population. In the ‘independent’
case (details$lambda not specified) D or Nbuffer may be a vector of length equal to nsessions.
Turnover is controlled by survival, growth rate and movement parameters provided as components
of details and described in turnover. The optional covariate ’age’ is the number of sessions from
the session of recruitment.

The random number seed is managed as in simulate.lm.

Function tile replicates a popn pattern by either reflecting or copying and translating it to fill a 3 x
3 grid.

Value

An object of class c("popn", "data.frame") a data frame with columns ‘x’ and ‘y’. Rows corre-
spond to individuals. Individual covariates (optional) are stored as a data frame attribute. The initial
state of the R random number generator is stored in the ‘seed’ attribute.

If model2D = "linear" the output is of class c("linearpopn", "popn", "data.frame").

If model2D = "IHP" or model2D = "linear" the value of core is stored in the ‘mask’ attribute.

254 sim.popn

Notes

Package RandomFields is not currently on CRAN. It may be installed with this code:

install.packages("RandomFields", repos = c("https://spatstat.r-universe.dev", "https://cloud.r-project.org"))

model2D = "rThomas" and model2D = "cluster" (the builtin Neyman-Scott implementation) are
equivalent. There may be some subtle differences. The spatstat implementation is usually to be
preferred.

References

Baddeley, A., Rubak, E., and Turner, R. 2015. Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press, London. ISBN 9781482210200, https://www.routledge.com/Spatial-
Point-Patterns-Methodology-and-Applications-with-R/Baddeley-Rubak-Turner/p/book/9781482210200/.

Fewster, R. M. and Buckland, S. T. 2004. Assessment of distance sampling estimators. In: S.
T. Buckland, D. R. Anderson, K. P. Burnham, J. L. Laake, D. L. Borchers and L. Thomas (eds)
Advanced distance sampling. Oxford University Press, Oxford, U. K. Pp. 281–306.

Schlather, M., Malinowski, A., Menck, P. J., Oesting, M. and Strokorb, K. 2015. Analysis, simula-
tion and prediction of multivariate random fields with package RandomFields. Journal of Statistical
Software, 63, 1–25. URL https://www.jstatsoft.org/v63/i08/.

See Also

popn, plot.popn, randomHabitat, turnover, simulate

Examples

temppop <- sim.popn (D = 10, expand.grid(x = c(0,100), y =
c(0,100)), buffer = 50)

plot, distinguishing "M" and "F"
plot(temppop, pch = 1, cex= 1.5,

col = c("green","red")[covariates(temppop)$sex])

add a continuous covariate
assumes covariates(temppop) is non-null
covariates(temppop)$size <- rnorm (nrow(temppop), mean = 15, sd = 3)
summary(covariates(temppop))

Neyman-Scott cluster distribution (see also rThomas)
par(xpd = TRUE, mfrow=c(2,3))
for (h in c(5,15))
for (m in c(1,4,16)) {

temppop <- sim.popn (D = 10, expand.grid(x = c(0,100),
y = c(0,100)), model2D = "cluster", buffer = 100,
details = list(mu = m, hsigma = h))

plot(temppop)
text (50,230,paste(" mu =",m, "hsigma =",h))

}
par(xpd = FALSE, mfrow=c(1,1)) ## defaults

sim.popn 255

Inhomogeneous Poisson distribution
xy <- secrdemo.0$mask$x + secrdemo.0$mask$y - 900
tempD <- xy^2 / 1000
plot(sim.popn(tempD, secrdemo.0$mask, model2D = "IHP"))

Coastal distribution in 1000-m square, homogeneous in
x-direction
arena <- data.frame(x = c(0, 1000, 1000, 0),

y = c(0, 0, 1000, 1000))
plot(sim.popn(D = 5, core = arena, buffer = 0, model2D =

"coastal", details = list(Beta = c(1, 1, 5, 1))))

Hills
plot(sim.popn(D = 100, core = arena, model2D = "hills",

buffer = 0, details = list(hills = c(-2,3,0,0))),
cex = 0.4)

tile demonstration
pop <- sim.popn(D = 100, core = make.grid(), model2D = "coastal")
par(mfrow = c(1,2), mar = c(2,2,2,2))
plot(tile(pop, "copy"))
polygon(cbind(-100,200,200,-100), c(-100,-100,200,200),

col = "red", density = 0)
title("copy")
plot(tile(pop, "reflect"))
polygon(cbind(-100,200,200,-100), c(-100,-100,200,200),

col = "red", density = 0)
title("reflect")

Not run:

simulate from inhomogeneous fitted density model

regionmask <- make.mask(traps(possumCH), type = "polygon",
spacing = 20, poly = possumremovalarea)

dts <- distancetotrap(regionmask, possumarea)
covariates(regionmask) <- data.frame(d.to.shore = dts)
dsurf <- predictDsurface(possum.model.Ds, regionmask)
possD <- covariates(dsurf)$D.0
posspop <- sim.popn(D = possD, core = dsurf, model = "IHP")
plot(regionmask, dots = FALSE, ppoly = FALSE)
plot(posspop, add = TRUE, frame = FALSE)
plot(traps(possumCH), add = TRUE)

randomHabitat demonstration
- assumes igraph has been installed

The wrapper function randomDensity may be passed to generate
a new habitat map each time sim.popn is called. The `details' argument
of sim.popn is passed to randomDensity as the `parm' argument.

tempmask <- make.mask(nx = 100, ny = 100, spacing = 20)

256 sim.secr

pop <- sim.popn(D = randomDensity, core = tempmask, model2D = "IHP",
details = list(D = 10, p = 0.4, A = 0.5))

plot(attr(pop, 'mask'), cov = 'D', dots = FALSE)
plot(pop, add = TRUE)

rLGCP demonstration
- assumes spatstat and RandomFields have been installed

if (requireNamespace("spatstat") && requireNamespace("RandomFields")) {
msk <- make.mask(traps(captdata))
details argument 'spacing' ensures core matches Lambda below
pop <- sim.popn(D = 20, core = msk, buffer = 0,

model2D = "rLGCP", details = list(var=1, scale = 30, saveLambda = TRUE),
seed = 1234)

plot(pop)
plot(traps(captdata), add = TRUE)

another IHP realisation from same LGCP intensity surface
lgcp <- attr(pop, 'Lambda')
pop2 <- sim.popn(D = 'Lambda', core = lgcp, model2D = "IHP")
plot (lgcp, covariate = "Lambda", dots = FALSE)
plot (pop2, add = TRUE, frame = FALSE)

check input and output masks match
summary(lgcp)
summary(msk)

}

End(Not run)

sim.secr Simulate From Fitted secr Model

Description

Simulate a spatially distributed population, sample from that population with an array of detectors,
and optionally fit an SECR model to the simulated data.

Usage

S3 method for class 'secr'
simulate(object, nsim = 1, seed = NULL, maxperpoly = 100,

chat = 1, ...)

sim.secr(object, nsim = 1, extractfn = function(x) c(deviance =
deviance(x), df = df.residual(x)), seed = NULL, maxperpoly = 100,
data = NULL, tracelevel = 1, hessian = c("none", "auto", "fdHess"),

sim.secr 257

start = objectfitpar, ncores = NULL)

sim.detect(object, popnlist, maxperpoly = 100, renumber = TRUE)

Arguments

object a fitted secr model

nsim integer number of replicates

seed either NULL or an integer that will be used in a call to set.seed

maxperpoly integer maximum number of detections of an individual in one polygon or tran-
sect on any occasion

chat real value for overdispersion parameter

ncores integer number of threads used by secr.fit

extractfn function to extract output values from fitted model

data optional list of simulated data saved from previous call to simulate.secr

tracelevel integer for level of detail in reporting (0,1,2)

hessian character or logical controlling the computation of the Hessian matrix

start vector of starting ‘beta’ values for secr.fit

... other arguments (not used)

popnlist list of popn objects

renumber logical; if TRUE then

Details

For each replicate, simulate.secr calls sim.popn to generate session- and group-specific realiza-
tions of the (possibly inhomogeneous) 2-D Poisson distribution fitted in object, across the habitat
mask(s) in object. Group subpopulations are combined using rbind.popn within each session; in-
formation to reconstruct groups is retained in the individual-level factor covariate(s) of the resulting
popn object (corresponding to object$groups). Each population is then sampled using the fitted
detection model and detector (trap) array(s) in object.

The random number seed is managed as in simulate.lm.

Certain model types are not supported by simulate.secr. These include models fitted using con-
ditional likelihood (object$CL = TRUE), telemetry models and exotic behavioural response models.

Detector type is determined by detector(traps(object$capthist)).

sim.secr is a wrapper function. If data = NULL (the default) then it calls simulate.secr to gen-
erate nsim new datasets. If data is provided then nsim is taken to be length(data). secr.fit
is called to fit the original model to each new dataset. Results are summarized according to the
user-provided function extractfn. The default extractfn returns the deviance and its degrees
of freedom; a NULL value for extractfn returns the fitted secr objects after trimming to reduce
bulk. Simulation uses the detector type of the data, even when another likelihood is fitted (this is the
case with single-catch data, for which a multi-catch likelihood is fitted). Warning messages from
secr.fit are suppressed.

258 sim.secr

extractfn should be a function that takes an secr object as its only argument.

tracelevel=0 suppresses most messages; tracelevel=1 gives a terse message at the start of each
fit; tracelevel=2 also sets ‘details$trace = TRUE’ for secr.fit, causing each likelihood evalua-
tion to be reported.

hessian controls computation of the Hessian matrix from which variances and covariances are
obtained. hessian replaces the value in object\$details. Options are "none" (no variances),
"auto" (the default) or "fdhess" (see secr.fit). It is OK (and faster) to use hessian="none"
unless extractfn needs variances or covariances. Logical TRUE and FALSE are interpreted by
secr.fit as "auto" and "none".

If ncores = NULL then the existing value from the environment variable RCPP_PARALLEL_NUM_THREADS
is used (see setNumThreads).

sim.capthist is a more direct way to simulate data from a null model (i.e. one with constant
parameters for density and detection), or from a time-varying model.

sim.detect is a function used internally that will not usually be called directly.

Value

For simulate.secr, a list of data sets (‘capthist’ objects). This list has class c("secrdata",
"list"); the initial state of the random number generator (roughly, the value of .Random.seed) is
stored as the attribute ‘seed’.

The value from sim.secr depends on extractfn: if that returns a numeric vector of length n.extract
then the value is a matrix with dim = c(nsim, n.extract) (i.e., the matrix has one row per repli-
cate and one column for each extracted value). Otherwise, the value returned by sim.secr is a list
with one component per replicate (strictly, an object of class = c("secrlist", "list")). Each
simulated fit may be retrieved in toto by specifying extractfn = identity, or slimmed down by
specifying extractfn = NULL or extractfn = trim, which are equivalent.

For either form of output from sim.secr the initial state of the random number generator is stored
as the attribute ‘seed’.

For sim.detect a list of ‘capthist’ objects.

Warning

sim.secr does not work for mark–resight models.

Note

The value returned by simulate.secr is a list of ‘capthist’ objects; if there is more than one session,
each ‘capthist’ is itself a sort of list .

The classes ‘secrdata’ and ‘secrlist’ are used only to override the ugly and usually unwanted print-
ing of the seed attribute. However, a few other methods are available for ‘secrlist’ objects (e.g.
plot.secrlist).

The default value for start in sim.secr is the previously fitted parameter vector. Alternatives are
NULL or object$start.

See Also

sim.capthist, secr.fit, simulate, secr.test

skink 259

Examples

Not run:

previously fitted model
simulate(secrdemo.0, nsim = 2)

The following has been superceded by secr.test()

this would take a long time...
sims <- sim.secr(secrdemo.0, nsim = 99)
deviance(secrdemo.0)
devs <- c(deviance(secrdemo.0),sims$deviance)
quantile(devs, probs=c(0.95))
rank(devs)[1] / length(devs)

to assess bias and CI coverage
extrfn <- function (object) unlist(predict(object)["D",-1])
sims <- sim.secr(secrdemo.0, nsim = 50, hessian = "auto",

extractfn = extrfn)
sims

with a larger sample, could get parametric bootstrap CI
quantile(sims[,1], c(0.025, 0.975))

End(Not run)

skink Skink Pitfall Data

Description

Data from a study of skinks (Oligosoma infrapunctatum and O. lineoocellatum) in New Zealand.

Usage

infraCH
lineoCH
LStraps

Details

Lizards were studied over several years on a steep bracken-covered hillside on Lake Station in the
Upper Buller Valley, South Island, New Zealand. Pitfall traps (sunken cans baited with a morsel
of fruit in sugar syrup) were set in two large grids, each 11 x 21 traps nominally 5 meters apart,

260 skink

surveyed by tape and compass (locations determined later with precision surveying equipment - see
Examples). Three diurnal lizard species were trapped: Oligosoma infrapunctatum, O. lineoocella-
tum and O. polychroma (Scincidae). The smallest species O. polychroma was seldom caught and
these data are not included. The two other species are almost equal in average size (about 160 mm
total length); they are long-lived and probably mature in their second or third year. The study aimed
to examine their habitat use and competitive interactions.

Traps were set for 12 3-day sessions over 1995–1996, but some sessions yielded very few captures
because skinks were inactive, and some sessions were incomplete for logistical reasons. The data
are from sessions 6 and 7 in late spring (17–20 October 1995 and 14–17 November 1995). Traps
were cleared daily; the few skinks present when traps were closed on the morning of the fourth
day are treated as Day 3 captures. Individuals were marked uniquely by clipping one toe on each
foot. Natural toe loss caused some problems with long-term identification; captures were dropped
from the dataset when identity was uncertain. Released animals were occasionally recaptured in a
different trap on the same day; these records were also discarded.

The data are provided as two two-session capthist objects ‘infraCH’ and ‘lineoCH’. Also in-
cluded is ‘LStraps’, the traps object with the coordinates and covariates of the trap sites (these
data are also embedded in each of the capthist objects). Pitfall traps are multi-catch traps so
detector(LStraps) = ‘multi’.

Habitat data for each trap site are included as a dataframe of trap covariates in LStraps. Ground
cover and vegetation were recorded for a 1-m radius plot at each trap site. The dataframe also
gives the total number of captures of each species by site on 31 days between April 1995 and
March 1996, and the maximum potential annual solar radiation calculated from slope and aspect
(Frank and Lee 1966). Each site was assigned to a habitat class by fuzzy clustering (Kaufman and
Rousseauw 1990; package cluster) of a distance matrix using the ground cover, vegetation and solar
radiation variables. Sites in class 1 were open with bare ground or low-canopy vegetation including
the heath-like Leucopogon fraseri and grasses; sites in class 2 had more-closed vegetation, lacking
Leucopogon fraseri and with a higher canopy that often included Coriaria arborea. Site variables
are listed with definitions in the attribute habitat.variables of LStraps (see Examples).

Object Description
infraCH multi-session capthist object O. infrapunctatum
lineoCH multi-session capthist object O. lineoocellatum
LStraps traps object – Lake Station grids

Source

M. G. Efford, B. W. Thomas and N. J. Spencer unpublished data.

References

Efford, M. G., Spencer, N. J., Thomas, B. W., Mason, R. F. and Williams, P. In prep. Distribution
of sympatric skink species in relation to habitat.

Frank, E. C. and Lee , R. (1966) Potential solar beam irradiation on slopes. United States Forest
Service Research Paper RM-118.

Kaufman, L. and Rousseauw, P. J. (1990) Finding groups in data: an introduction to cluster analy-
sis. John Wiley & Sons, New York.

smooths 261

Spencer, N. J., Thomas, B. W., Mason, R. F. and Dugdale, J. S. (1998) Diet and life history variation
in the sympatric lizards Oligosoma nigriplantare polychroma and Oligosoma lineoocellatum. New
Zealand Journal of Zoology 25: 457–463.

See Also

capthist, covariates

Examples

summary (infraCH)
summary (lineoCH)

check mean distance to nearest trap etc.
summary(LStraps)

LStraps has several site covariates; terse descriptions are in
an extra attribute that may be displayed thus
attr(LStraps, "habitat.variables")

For density modelling we need covariate values at each point in the
habitat mask. This requires both on-grid interpolation and
extrapolation beyond the grids. One (crude) possibility is to
extrapolate a mask covariate from a covariate of the nearest trap:

LSmask <- make.mask(LStraps, buffer = 30, type = "trapbuffer")
temp <- nearesttrap(LSmask, LStraps)
habclass <- covariates(LStraps)$class[temp]
habclass <- factor (habclass, levels = c(1,2))
covariates(LSmask) <- data.frame(habclass)

plot mask with colour-coded covariate
par(fg = "white") ## white pixel borders
plot (LSmask, covariate = "habclass", dots = FALSE, axes = FALSE,

col = c("yellow", "green"), border = 0)
plot(LStraps, add = TRUE, detpar = list(pch = 16))
par(fg = "black") ## default

smooths Smooth Terms in SECR Models

Description

From version 2.9.0, the model formulae provided to secr.fit may include smooth terms as spec-
ified for the mgcv function ‘gam’, with some restrictions. Smooth terms may be used for both
density and detection parameters.

262 smooths

Details

The specification of smooth terms is explained in formula.gam. Only a subset of options are
relevant to ‘secr’. Penalized splines are not available. The smooth function may be ‘s’ or ‘te’.

The ‘wiggliness’ of the curve is controlled by the argument k, which in this implementation is set
by the user. The argument ‘fx’ should be set to TRUE.

See also the example in secr-densitysurfaces.pdf.

Background

Regression splines are a very flexible way to represent non-linear responses in generalized additive
models (e.g., mgcv, Wood 2006). Borchers and Kidney (2014) have shown how they may be used to
model 2-dimensional trend in density in secrgam, an R package that extends secr. Their approach
is to use mgcv to construct regression spline basis functions from mask x- and y-coordinates, and
possibly additional mask covariates, and to pass these as covariates to secr. The idea of using mgcv
to construct the basis functions is applied within secr from version 2.9.

Smooth semi-parametric responses are also useful for modelling variation in detection parameters
such as g0 and sigma over time, or in response to individual or detector-level covariates, when (1)
a linear or other parametric response is arbitrary or implausible, and (2) sampling spans a range of
times or levels of the covariate(s).

For a concrete example, consider a population sampled monthly for a year (i.e., 12 ‘sessions’). If
home range size varies seasonally then the parameter sigma may vary in a more-or-less sinusoidal
fashion. A linear trend is obviously inadequate, and a quadratic is not much better. However, a sine
curve is hard to fit (we would need to estimate its phase, amplitude, mean and spatial scale) and
assumes the increase and decrease phases are equally steep. An extreme solution is to treat month
as a factor and estimate a separate parameter for each level (month). A smooth (semi-parametric)
curve may capture the main features of seasonal variation with fewer parameters.

Warning

This implementation of smooth models results in large fitted objects, on account of the need to store
setup information from mgcv. It is also vulnerable to future changes in mgcv.

Expect that the implementation will change in later versions of secr, and that smooth models fitted
in the this version will not necessarily be compatible with predict and predictDsurface in later
versions.

Note

Setting the intercept of a smooth to zero is not a canned option in mgcv, and is not offered in secr.
It may be achieved by placing a knot at zero and hacking the matrix of basis functions to drop the
corresponding column, plus some more jiggling.

References

Borchers, D. L. and Kidney, D. (2014) Flexible density surface estimation for spatially explicit
capture–recapture surveys. Technical Report, University of St Andrews.

Wood, S. N. (2006) Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC.

https://www.otago.ac.nz/density/pdfs/secr-densitysurfaces.pdf

snip 263

See Also

formula.gam

Examples

Not run:

smooth density surface
possum.model.sxy <- secr.fit(possumCH, mask = possummask,

model = D ~ s(x,y, k = 6, fx = TRUE), trace = FALSE)
fittedsurface <- predictDsurface(possum.model.sxy)
par(mar = c(1,1,1,6))
plot(fittedsurface)
plot(fittedsurface, plottype = 'contour', add = TRUE)
par(mar = c(5,4,4,2) + 0.1) ## reset to default

Now try smooth on g0

For the smooth we use 'Session' which is coded numerically (0:4)
rather than the factor 'session' ('2005', '2006', '2007', '2008',
'2009')

ovenbird.model.g0 <- secr.fit(ovenCH, mask = ovenmask,
model = g0 ~ session, trace = FALSE)

ovenbird.model.sg0 <- secr.fit(ovenCH, mask = ovenmask,
model = g0 ~ s(Session, k = 3, fx = TRUE), trace = FALSE)

AIC(ovenbird.model.g0, ovenbird.model.sg0)

Or over occasions within a session...

fit.sT3 <- secr.fit(captdata, model = g0 ~ s(T, k = 3, fx = TRUE),
trace = FALSE)

pred <- predict(fit.sT3, newdata = data.frame(T = 0:4))

plot(sapply(pred, '[', 'g0', 'estimate'))

End(Not run)

snip Slice Transect Into Shorter Sections

Description

This function splits the transects in a ‘transect’ or ‘transectX’ traps object into multiple shorter
sections. The function may also be applied directly to a capthist object based on transect data. This
makes it easy to convert detection data collected along linear transects to point detection data (see
Example).

264 snip

Usage

snip(object, from = 0, by = 1000, length.out = NULL, keep.incomplete = TRUE, tol = 0.01)

Arguments

object secr ‘traps’ or ‘capthist’ object based on transects

from numeric starting posiiton (m)

by numeric length of new transects (m)

length.out numeric number of new transects, as alternative to ‘by’
keep.incomplete

logical; if TRUE then initial or terminal sections of each original transect that
are less than ‘by’ will be retained in the output

tol numeric tolerance for xyontransect (capthist only)

Details

If a positive length.out is specified, by will be computed as (transectlength(object) - from)
/ length.out.

Value

A ‘traps’ or ‘capthist’ object, according to the input. If keep.incomplete == FALSE animals and
detections from the

Warning

snip does not work for mark–resight data.

See Also

transectlength, discretize

Examples

x <- seq(0, 4*pi, length = 41)
temptrans <- make.transect(x = x*100, y = sin(x)*300)
plot (snip(temptrans, by = 200), markvertices = 1)

Not run:

simulate some captures
tempcapt <- sim.capthist(temptrans, popn = list(D = 2,

buffer = 300), detectfn = 'HHN', binomN = 0,
detectpar = list(lambda0 = 0.5, sigma = 50))

snip capture histories

sort.capthist 265

tempCH <- snip(tempcapt, by = 20)

collapse from 'transect' to 'count', discarding location within transects
tempCH <- reduce(tempCH, outputdetector = "count")

fit secr model and examine H-T estimates of density
fails with detectfn = 'HN'
fit <- secr.fit(tempCH, buffer = 300, CL = TRUE, detectfn = 'HHN', trace = FALSE)
derived(fit)

also, may split an existing transect into equal lengths
same result:
plot(snip(temptrans, by = transectlength(temptrans)/10),

markvertices = 1)
plot(snip(temptrans, length.out = 10), markvertices = 1)

End(Not run)

sort.capthist Sort Rows of capthist or mask Object

Description

Rows are sorted by fields in covariates or by a provided sort key of length equal to the number of
rows.

Usage

S3 method for class 'capthist'
sort(x, decreasing = FALSE, by = "",

byrowname = TRUE,...)

S3 method for class 'mask'
sort(x, decreasing = FALSE, by = "",

byrowname = TRUE,...)

Arguments

x capthist object

decreasing logical. Should the sort be increasing or decreasing?

by character vector (names of covariates) or data frame whose columns will be used
as sort keys

byrowname logical. Should row name be used as a final sort key?

... other arguments (not used)

266 spacing

Details

For multi-session capthist objects only the named covariate form is suitable as the number of rows
varies between sessions.

If requested, rows are sorted by rowname within by. The effect of the defaultsis to sort by rowname.

The attribute markingpoints of a mask object is removed if present, as it is no longer meaningful.

Value

capthist or mask object with sorted rows; any relevant attributes are also sorted (covariates, signal,
xy)

See Also

capthist

Examples

sort(ovenCH, by = "Sex")
covariates(ovenCH)[["2005"]]
covariates(sort(ovenCH, by = "Sex"))[["2005"]]

spacing Detector or Mask Spacing

Description

Extract or replace the spacing attribute of a detector array or mask.

Usage

spacing(object, ...)
spacing(object) <- value

S3 method for class 'traps'
spacing(object, ..., recalculate = FALSE)
S3 method for class 'mask'
spacing(object, ..., recalculate = FALSE)

Arguments

object object with ‘spacing’ attribute e.g. traps

value numeric value for spacing

... other arguments (not used)

recalculate logical; if TRUE compute average spacing afresh

speed 267

Details

The ‘spacing’ attribute of a detector array is the average distance from one detector to the nearest
other detector.

The attribute was not always set by make.grid() and read.traps() in versions of secr before
1.5.0. If the attribute is found to be NULL then spacing will compute it on the fly.

Value

scalar numeric value of mean spacing, or a vector if object has multiple sessions

See Also

traps

Examples

temptrap <- make.grid(nx = 6, ny = 8)
spacing(temptrap)

speed Speed Tips

Description

A list of ways to make secr.fit run faster.

Use an appropriate mask

Check the extent and spacing of the habitat mask that you are using. Execution time is roughly
proportional to the number of mask points (nrow(mymask)). Default settings can lead to very large
masks for detector arrays that are elongated ‘north-south’ because the number of points in the east-
west direction is fixed. Compare results with a much sparser mask (e.g., nx = 32 instead of nx =
64).

Use conditional likelihood

If you don’t need to model variation in density over space or time then consider maximizing the
conditional likelihood in secr.fit (CL = TRUE). This reduces the complexity of the optimization
problem, especially where there are several sessions and you want session-specific density estimates
(by default, derived() returns a separate estimate for each session even if the detection parameters
are constant across sessions).

268 speed

Model selection

Do you really need to fit all those complex models? Chasing down small decrements in AIC is
so last-century. Remember that detection parameters are mostly nuisance parameters, and models
with big differences in AIC may barely differ in their density estimates. This is a good topic for
further research - we seem to need a ‘focussed information criterion’ (Claeskens and Hjort 2008) to
discern the differences that matter. Be aware of the effects that can really make a difference: learned
responses (b, bk etc.) and massive unmodelled heterogeneity.

Use score.test() to compare nested models. At each stage this requires only the more simple model
to have been fitted in full; further processing is required to obtain a numerical estimate of the gradi-
ent of the likelihood surface for the more complex model, but this is much faster than maximizing
the likelihood. The tradeoff is that the score test is only approximate, and you may want to later
verify the results using a full AIC comparison.

Break problem down

Suppose you are fitting models to multiple separate datasets that fit the general description of ‘ses-
sions’. If you are fitting separate detection parameters to each session (i.e., you do not need to pool
detection information), and you are not modelling trend in density across sessions, then it is much
quicker to fit each session separately than to try to do it all at once. See Examples.

Mash replicated clusters of detectors

If your detectors are arranged in similar clusters (e.g., small square grids) then try the function mash.

Reduce sparse ‘proximity’ data to ‘multi’

Full data from ‘proximity’ detectors has dimensions n x S x K (n is number of individuals, S is
number of occasions, K is number of traps). If the data are sparse (i.e. multiple detections of an
individual on one occasion are rare) then it is efficient to treat proximity data as multi-catch data (di-
mension n x S, maximum of one detection per occasion). Use reduce(proxCH, outputdetector
= "multi").

Use multiple cores when applicable

Most computers these days have multiple processors and these will be used by secr if the user sets
ncores greater than one in secr.fit, sim.secr and some other functions. If ncores = NULL then
the existing value from the environment variable RCPP_PARALLEL_NUM_THREADS is used
(see setNumThreads).

Avoid covariates with many levels

Categorical (factor) covariates with many levels and continuous covariates that take many values are
not handled efficiently in secr.fit, and can dramatically slow down analyses and increase memory
requirements.

speed 269

Set appropriate typsize

Setting typsize manually in the call of ‘secr.fit‘ can speed up fitting when magnitudes on the link
scale are very different (for example, when an identity link is used for density and density is very
small or very large).

Simulations

Model fitting is not needed to assess power. The precision of estimates from secr.fit can be predicted
without laboriously fitting models to simulated datasets. Just use method = "none" to obtain the
asymptotic variance at the known parameter values for which data have been simulated (e.g. with
sim.capthist()).

Suppress computation of standard errors by derived(). For a model fitted by conditional likelihood
(CL = TRUE) the subsequent computation of derived density estimates can take appreciable time.
If variances are not needed (e.g., when the aim is to predict the bias of the estimator across a large
number of simulations) it is efficient to set se.D = FALSE in derived().

It is tempting to save a list with the entire ‘secr’ object from each simulated fit, and to later extract
summary statistics as needed. Be aware that with large simulations the overheads associated with
storage of the list can become very large. The solution is to anticipate the summary statistics you
will want and save only these.

References

Claeskens, G. and Hjort N. L. (2008) Model Selection and Model Averaging. Cambridge: Cam-
bridge University Press.

Examples

Not run:

compare timing of combined model with separate single-session models
for 5-session ovenbird mistnetting data: 2977/78 = 38-fold difference

setNumThreads(7)

system.time(fit1 <- secr.fit(ovenCH, buffer = 300, trace = FALSE,
model = list(D ~ session, g0 ~ session, sigma ~ session)))

user system elapsed
1837.71 31.81 730.56

system.time(fit2 <- lapply (ovenCH, secr.fit, buffer = 300, trace = FALSE))
user system elapsed
43.74 0.46 11.13

ratio of density estimates
collate(fit1)[,1,1,"D"] / sapply(fit2, function(x) predict(x)["D","estimate"])
session=2005 session=2006 session=2007 session=2008 session=2009
1.0000198 1.0000603 0.9999761 0.9999737 0.9999539

270 stoatDNA

End(Not run)

stoatDNA Stoat DNA Data

Description

Data of A. E. Byrom from a study of stoats (Mustela erminea) in New Zealand. Individuals were
identified from DNA in hair samples.

Usage

stoatCH
stoat.model.HN
stoat.model.EX

Details

The data are from a pilot study of stoats in red beech (Nothofagus fusca) forest in the Matakitaki
Valley, South Island, New Zealand. Sticky hair-sampling tubes (n = 94) were placed on a 3-km x 3-
km grid with 500-m spacing between lines and 250-m spacing along lines. Tubes were baited with
rabbit meat and checked daily for 7 days, starting on 15 December 2001. Stoat hair samples were
identified to individual using DNA microsatellites amplified by PCR from follicular tissue (Gleeson
et al. 2010). Six loci were amplified and the mean number of alleles was 7.3 per locus. Not all
loci could be amplified in 27% of samples. A total of 40 hair samples were collected (Gleeson et
al. 2010), but only 30 appear in this dataset; the rest presumably did not yield sufficient DNA for
genotyping.

The data are provided as a single-session capthist object ‘stoatCH’. Hair tubes are ‘proximity’
detectors which allow an individual to be detected at multiple detectors on one occasion (day), but
there are no multiple detections in this dataset and for historical reasons the data are provided as
detector type ‘multi’. Two pre-fitted models are included: stoat.model.HN and stoat.model.EX.

Object Description
stoatCH capthist object
stoat.model.HN fitted secr model – null, halfnormal detection function
stoat.model.EX fitted secr model – null, exponential detection function

Note

The log-likelihood values reported for these data by secr.fit differ by a constant from those
published by Efford et al. (2009) because the earlier version of DENSITY used in that analysis
did not include the multinomial coefficient, which in this case is log(20!) or about +42.336. The
previous analysis also used a coarser habitat mask than the default in secr (32 x 32 rather than 64 x

stoatDNA 271

64) and this slightly alters the log-likelihood and ∆AIC values.

Fitting the hazard-rate detection function previously required the shape parameter z (or b) to be
fixed, but the model can be fitted in secr without fixing z. However, the hazard rate function can
cause problems owing to its long tail, and it is not recommended. The check on the buffer width,
usually applied automatically on completion of secr.fit, causes an error and must be suppressed with
biasLimit = NA (see Examples).

Gleeson et al. (2010) address the question of whether there is enough variability at the sampled
microsatellite loci to distinguish individuals. The reference to 98 sampling sites in that paper is a
minor error (A. E. Byrom pers. comm.).

Source

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit
capture-recapture: likelihood-based methods. In: D. L. Thomson, E. G. Cooch and M. J. Conroy
(eds) Modeling Demographic Processes in Marked Populations. Springer, New York. Pp. 255–269.

References

Gleeson, D. M., Byrom, A. E. and Howitt, R. L. J. (2010) Non-invasive methods for genotyping of
stoats (Mustela erminea) in New Zealand: potential for field applications. New Zealand Journal of
Ecology 34, 356–359. Available on-line at https://newzealandecology.org/nzje/2936/.

See Also

capthist, Detection functions, secr.fit

Examples

summary(stoatCH)

Not run:

stoat.model.HN <- secr.fit(stoatCH, buffer = 1000, detectfn = 0)

this generates an error unless we use biasLimit = NA
to suppress the default bias check

stoat.model.EX <- secr.fit(stoatCH, buffer = 1000, detectfn = 2)
confint(stoat.model.HN, "D")
Profile likelihood interval(s)...
lcl ucl
D 0.01275125 0.04055662

End(Not run)

plot fitted detection functions
xv <- seq(0,800,10)
plot(stoat.model.EX, xval = xv, ylim = c(0,0.12), limits = FALSE,

lty = 2)
plot(stoat.model.HN, xval = xv, limits = FALSE, lty = 1, add = TRUE)

https://newzealandecology.org/nzje/2936/

272 strip.legend

review density estimates
collate(stoat.model.HN, stoat.model.EX,

realnames = "D", perm = c(2,3,4,1))
modelAverage(stoat.model.HN, stoat.model.EX, realnames = "D")

strip.legend Colour Strip Legend

Description

This function is used with shaded plots to display a legend.

Usage

strip.legend(xy, legend, col, legendtype = c("breaks", "intervals", "other"),
tileborder = NA, height = 0.5, width = 0.06, inset = 0.06, text.offset = 0.02,
text.cex = 0.9, xpd = TRUE, scale = 1, title = "", box = NA, box.col = par()$bg)

Arguments

xy location of legend (see Details)

legend character vector (see Details)

col vector of colour values

legendtype character

tileborder colour of lines around each tile in the colour strip. Use NA for none.

height height of colour strip as a fraction of the plot dimensions

width width of colour strip as a fraction of the plot dimensions

inset spacing between legend and outside plot boundary, as a fraction of the plot di-
mensions

text.offset spacing between colour strip and text, as a fraction of the plot dimensions

text.cex size of text font

xpd logical, if TRUE the legend will use the margins of the plot

scale numeric; each value x will be displayed as scale * x

title text displayed above legend

box colour of frame, if framed, otherwise NA

box.col colour of background, if framed, otherwise ignored

strip.legend 273

Details

The location of the legend is determined by xy which may be one of the character values "topright",
"topleft", "bottomright", "bottomleft", "right", "left", or the x-y coordinates (in user units) of the
top-left corner of the colour strip. Coordinates may be given as a vector or a list, and the output
from locator(1) is suitable.

For more on colours, see notes in plot.mask and colors and terrain.colors

If legendtype = 'breaks' then labels are placed at the class boundaries; otherwise, the labels are
centred vertically. If legendtype = 'breaks' or legendtype = 'intervals' then numeric values
are extracted from the input, otherwise the text strings in legend are used as provided.

The legend itself may be provided as a vector of values or as the class labels output from plot.mask.
Class labels are generated by cut in the form ‘(0,20]’, ‘(20,40]’, etc. These are parsed to construct
either breaks (0,20,40,...) or intervals (‘0-20’, ‘20-40’,...) as requested in the legendtype argument.

box may also be TRUE/FALSE; if TRUE the foreground colour is used par()$fg.

Value

Invisibly returns a vector of user coordinates for the left, right, bottom and top of the colour strip.

Note

From secr 2.9.0, the default behaviour of plot.mask is to call strip.legend to display a legend
in the top right of the plot, labeled at breaks.

See Also

plot.mask

Examples

temptrap <- make.grid()
tempmask <- make.mask(temptrap)
covariates (tempmask) <- data.frame(circle =

exp(-(tempmask$x^2 + tempmask$y^2)/10000))
tmpleg <- plot (tempmask, covariate = "circle", dots = FALSE,

breaks = 10, legend = FALSE)
strip.legend (xy = 'topright', col = terrain.colors(10),

legend = tmpleg, title = "Test plot")

if (interactive()) {
a custom axis using the returned values
par(mar = c(2,2,2,6))
plot (tempmask, covariate = "circle", dots = FALSE,

breaks = 10, legend = FALSE)
b <- strip.legend (locator(1), col = terrain.colors(10),

legendtype = "other", legend = " ", title = "Test plot",
height = 0.3, box = NA)

axis(side = 4, pos = b[2]+5, at = seq(b[4], b[3], length = 3),

274 subset.capthist

lab = seq(0,1,0.5), las = 1, tck = -0.02)
par(mar = c(5,4,4,2) + 0.1) ## reset to default

}

subset.capthist Subset or Split capthist Object

Description

Create a new capthist object or list of objects by selecting rows (individuals), columns (occasions)
and traps from an existing capthist object.

Usage

S3 method for class 'capthist'
subset(x, subset = NULL, occasions = NULL, traps = NULL,

sessions = NULL, cutval = NULL, dropnullCH = TRUE, dropnullocc = FALSE,
dropunused = TRUE, droplowsignals = TRUE, dropNAsignals = FALSE,
cutabssignal = TRUE, renumber = FALSE, ...)

S3 method for class 'capthist'
split(x, f, drop = FALSE, prefix = "S", bytrap = FALSE,
byoccasion = FALSE, ...)

Arguments

x object of class capthist

subset vector of subscripts to select rows (individuals) (see Details for variations)

occasions vector of subscripts to select columns (occasions)

traps vector of subscripts to select detectors (traps)

sessions vector of subscripts to select sessions

cutval new threshold for signal strength

dropnullCH logical for whether null (all-zero) capture histories should be dropped

dropnullocc logical for whether occasions with no detections should be dropped

dropunused logical for whether never-used detectors should be dropped

droplowsignals logical for whether cutval should be applied at each microphone rather than to
sound as a whole

dropNAsignals logical for whether detections with missing signal should be dropped

cutabssignal logical for whether to apply cutval to absolute signal strength or the difference
between signal and noise

renumber logical for whether row.names should be replaced with sequence number in new
capthist

subset.capthist 275

f factor or object that may be coerced to a factor

drop logical indicating if levels that do not occur should be dropped (if f is a factor)

prefix a character prefix to be used for component names when values of f are numeric

bytrap logical; if TRUE then each level of f identifies traps to include

byoccasion logical; if TRUE then each level of f identifies occasions to include

... other arguments passed to subset.capthist (split.capthist) or to optional subset
function (subset.capthist)

Details

Subscript vectors may be either logical- (length equal to the relevant dimension of x), character- or
integer-valued. Subsetting is applied to attributes (e.g. covariates, traps) as appropriate. The
default action is to include all animals, occasions, and detectors if the relevant argument is omitted.

When traps is provided, detections at other detectors are set to zero, as if the detector had not been
used, and the corresponding rows are removed from traps. If the detector type is ‘proximity’ then
selecting traps also reduces the third dimension of the capthist array.

split generates a list in which each component is a capthist object. Each component corresponds
to a level of f. Multi-session capthists are accepted in secr >= 4.4.0; f should then be a list of factors
with one component per session and the same levels in all.

To combine (pool) occasions use reduce.capthist. There is no equivalent of unlist for lists of
capthist objects.

The effect of droplowsignals = FALSE is to retain below-threshold measurements of signal strength
on all channels (microphones) as long as the signal is above cutval on at least one. In this case
all retained sounds are treated as detected on all microphones. This fails when signals are already
missing on some channels.

Subsetting is awkward with multi-session input when the criterion is an individual covariate. See
the Examples for one way this can be tackled.

Value

capthist object with the requested subset of observations, or a list of such objects (i.e., a multi-
session capthist object). List input results in list output, except when a single session is selected.

Warning

split.capthist does not work for mark–resight data.

See Also

capthist, rbind.capthist, reduce.capthist

Examples

tempcapt <- sim.capthist (make.grid(nx = 6, ny = 6), noccasions = 6)
summary(subset(tempcapt, occasions = c(1,3,5)))

276 subset.mask

Consider `proximity' detections at a random subset of detectors
This would not make sense for `multi' detectors, as the
excluded detectors influence detection probabilities in
sim.capthist.

tempcapt2 <- sim.capthist (make.grid(nx = 6, ny = 6,
detector = "proximity"), noccasions = 6)

tempcapt3 <- subset(tempcapt2, traps = sample(1:36, 18,
replace = FALSE))

summary(tempcapt3)
plot(tempcapt3)

tempcapt4 <- split (tempcapt2, f = sample (c("A","B"),
nrow(tempcapt2), replace = TRUE))

summary(tempcapt4)

Split out captures on alternate rows of a grid
tempcapt5 <- split(captdata, f = rep(1:2, 50), bytrap = TRUE)
summary(tempcapt5)

Divide one session into two by occasion
tempcapt6 <- split(captdata, f = factor(c(1,1,2,2,2)), byoccasion = TRUE)
summary(tempcapt6)

Applying a covariate criterion across all sessions of a
multi-session capthist object e.g. selecting male ovenbirds from the
2005--2009 ovenCH dataset. We include a restriction on occasions
to demonstrate the use of 'MoreArgs'. Note that mapply() creates a
list, and the class of the output must be restored manually.

ovenCH.males <- mapply(subset, ovenCH,
subset = lapply(ovenCH, function(x) covariates(x)$Sex == "M"),
MoreArgs = list(occasions = 1:5))

class(ovenCH.males) <- class(ovenCH)
summary(ovenCH.males, terse = TRUE)

A simpler approach using a function to define subset
subsetfn <- function(x, sex) covariates(x)$Sex == sex
ovenCH.males <- subset(ovenCH, subset = subsetfn, sex = "M")
summary(ovenCH.males, terse = TRUE)

subset.mask Subset, Split or Combine Mask Objects

Description

Retain selected rows of a mask object.

subset.mask 277

Usage

S3 method for class 'mask'
subset(x, subset, ...)

S3 method for class 'mask'
split(x, f, drop = FALSE, clusters = NULL, ...)

S3 method for class 'mask'
rbind(...)

Arguments

x mask object

subset numeric or logical vector to select rows of mask

f factor or object that may be coerced to a factor

drop logical indicating if levels that do not occur should be dropped (if f is a factor)

clusters list of traps objects, each defining a cluster (alternative to f)

... two or more mask objects (rbind only)

Details

The subscripts in subset may be of type integer, character or logical as described in Extract.

The split method may use either a factor f with one value for each row or a list of clusters, each
a traps object. The output mask corresponding to each cluster is the subset of the original mask
points that lie within buffer of a trap within the cluster; buffer is computed as the maximum distance
between a mask point in x and any detector in clusters. Sub-masks specified with clusters may
overlap.

Covariates are ignored by rbind.mask.

Value

For subset, an object of class ‘mask’ with only the requested subset of rows and ‘type’ attribute
set to ‘subset’.

For split, a list of mask objects.

For rbind, an object of class ‘mask’ with all unique rows from the masks in . . . , and ‘type’ attribute
set to ‘rbind’.

Warning

The spacing attribute is carried over from the input (it is not updated automatically). In the case
of very sparse masks (i.e. those with isolated points) this may lead to an unexpected value for this
attribute. (Automatic updating requires excessive computation time and/or memory for very large
masks).

278 subset.popn

See Also

mask

Examples

tempmask <- make.mask(make.grid())
OK <- (tempmask$x + tempmask$y) > 100
tempmask <- subset(tempmask, subset = OK)
plot(tempmask)

subset.popn Subset popn Object

Description

Retain selected rows of a popn object.

Usage

S3 method for class 'popn'
subset(x, subset = NULL, sessions = NULL, poly = NULL,

poly.habitat = TRUE, keep.poly = TRUE, renumber = FALSE, ...)

Arguments

x popn object

subset vector to subscript the rows of x

sessions vector to subscript sessions if x is a multi-session population

poly bounding polygon (see Details)

poly.habitat logical for whether poly represents habitat or its inverse (non-habitat)

keep.poly logical; if TRUE any bounding polygon is saved as the attribute ‘polygon’

renumber logical for whether to renumber rows in output

... arguments passed to other functions

Details

The subscripts in subset may be of type integer, character or logical as described in Extract. By
default, all rows are retained.

In the case of a multi-session popn object (a list of populations), subset may be a list with one
component for the subscripts in each new session.

If poly is specified, points outside poly are dropped. poly may be one of the types descrbed in
boundarytoSF.

subset.traps 279

Value

An object of class popn with only the requested subset of rows. Subsetting is applied to the
covariates attribute if this is present. Attributes ‘Ndist’ and ‘model2D’ are set to NULL.

See Also

popn

Examples

temppop <- sim.popn (D = 10, expand.grid(x = c(0,100), y =
c(0,100)), buffer = 50)

50% binomial sample of simulated population
temppops <- subset(temppop, runif(nrow(temppop)) < 0.5)
plot(temppop)
plot(temppops, add = TRUE, pch = 16)

subset.traps Subset traps Object

Description

Retain selected rows of a traps object.

Usage

S3 method for class 'traps'
subset(x, subset = NULL, occasions = NULL, ...)
S3 method for class 'traps'
split(x, f, drop = FALSE, prefix = "S", byoccasion = FALSE, ...)

Arguments

x traps object

subset vector to subscript the rows of x

occasions vector to subscript columns in usage(x)

... arguments passed to other functions or to optional subset function (subset.traps)

f factor or object that may be coerced to a factor

drop logical indicating if levels that do not occur should be dropped (if f is a factor)

prefix a character prefix to be used for component names when values of f are numeric

byoccasion logical ; if TRUE then f is used to split occasions

280 suggest.buffer

Details

The subscripts in subset may be of type integer, character or logical as described in Extract. By
default, all rows are retained.

In the case of ‘polygon’ and ‘transect’ detectors, subsetting is done at the level of whole polygons or
transects. subset should therefore have the same length as levels(polyID(x)) or levels(transectID(x)).

split generates a list in which each component is a traps object. Each component corresponds to
a level of f. The argument x of split cannot be a list (i.e. x must be a single-session traps object).

If the levels of f are numeric, from version 2.10.3 a leading zero is inserted in the names of the
output list to maintain the sort order.

Value

An object of class traps with only the requested subset of rows. Subsetting is applied to usage and
covariates attributes if these are present.

Splitting with byoccasion = TRUE produces a list of traps objects, each with usage codes for a
subset of occasions. Traps not used on any occasion within a session are automatically dropped
from that session.

Warning

split.traps does not work for mark–resight data.

See Also

traps, rbind.traps

Examples

odd-numbered traps only, using modulo operator
temptrap <- make.grid(nx = 7, ny = 7)
t2 <- subset(temptrap, as.logical(1:nrow(temptrap) %% 2))
plot(t2)

this works also for even number of rows, but must change 'outer' call
temptrap <- make.grid(nx = 8, ny = 8)
t3 <- subset(temptrap, !as.logical(outer(1:8,1:8,'+')%%2))
plot(t3)

suggest.buffer Mask Buffer Width

Description

Determines a suitable buffer width for an integration mask. The ‘buffer’ in question defines a
concave polygon around a detector array constructed using make.mask with type = "trapbuffer".
The method relies on an approximation to the bias of maximum likelihood density estimates (M.
Efford unpubl).

suggest.buffer 281

Usage

suggest.buffer(object, detectfn = NULL, detectpar = NULL,
noccasions = NULL, ignoreusage = FALSE, ncores = NULL, RBtarget = 0.001,
interval = NULL, binomN = NULL, ...)

bias.D (buffer, traps, detectfn, detectpar, noccasions, binomN = NULL,
control = NULL)

Arguments

object single-session ‘secr’, ‘traps’ or ‘capthist’ object
detectfn integer code or character string for shape of detection function 0 = halfnormal

etc. – see detectfn
detectpar list of values for named parameters of detection function – see detectpar
noccasions number of sampling occasions
ignoreusage logical for whether to discard usage information from traps(capthist)

ncores integer number of threads to use for parallel processing
RBtarget numeric target for relative bias of density estimate
interval a vector containing the end-points of the interval to be searched
binomN integer code for distribution of counts (see secr.fit)
... other argument(s) passed to bias.D

buffer vector of buffer widths
traps ‘traps’ object
control list of mostly obscure numerical settings (see Details)

Details

The basic input style of suggest.buffer uses a ‘traps’ object and a detection model specified by
‘detectpar’, ‘detectfn’ and ‘noccasions’, plus a target relative bias (RB). A numerical search is con-
ducted for the buffer width that is predicted to deliver the requested RB. If interval is omitted it de-
faults to (1, 100S) where S is the spatial scale of the detection function (usually detectpar$sigma).
An error is reported if the required buffer width is not within interval. This often happens with
heavy-tailed detection functions (e.g., hazard-rate): choose another function, a larger RBtarget or
a wider interval.

Setting ncores = NULL uses the existing value from the environment variable RCPP_PARALLEL_NUM_THREADS
(see setNumThreads).

Convenient alternative input styles are –

• secr object containing a fitted model. Values of ‘traps’, ‘detectpar’, ‘detectfn’ and ‘nocca-
sions’ are extracted from object and any values supplied for these arguments are ignored.

• capthist object containing raw data. If detectpar is not supplied then autoini is used to
get ‘quick and dirty’ values of g0 and sigma for a halfnormal detection function. noccasions
is ignored. autoini tends to underestimate sigma, and the resulting buffer also tends to be
too small.

bias.D is called internally by suggest.buffer.

282 suggest.buffer

Value

suggest.buffer returns a scalar value for the suggested buffer width in metres, or a vector of such
values in the case of a multi-session object.

bias.D returns a dataframe with columns buffer and RB.D (approximate bias of density estimate
using finite buffer width, relative to estimate with infinite buffer).

Note

The algorithm in bias.D uses one-dimensional numerical integration of a polar approximation to
site-specific detection probability. This uses a further 3-part linear approximation for the length of
contours of distance-to-nearest-detector (r) as a function of r.

The approximation seems to work well for a compact detector array, but it should not be taken as
an estimate of the bias for any other purpose: do not report RB.D as "the relative bias of the density
estimate". RB.D addresses only the effect of using a finite buffer. The effect of buffer width on final
estimates should be checked with mask.check.

The default buffer type in make.mask, and hence in secr.fit, is ‘traprect’, not ‘trapbuffer’, but a
buffer width that is adequate for ‘trapbuffer’ is always adequate for ‘traprect’.

control contains various settings of little interest to the user.

The potential components of control are –

method = 1 code for method of modelling p.(X) as a function of buffer (q(r))

bfactor = 20 q(r) vs p.(X) calibration mask buffer width in multiples of trap spacing

masksample = 1000 maximum number of points sampled from calibration mask

spline.df = 10 effective degrees of freedom for smooth.spline

ncores = NULL integer number of cores

See Also

mask, make.mask, mask.check, esa.plot

Examples

Not run:

temptraps <- make.grid()
detpar <- list(g0 = 0.2, sigma = 25)
suggest.buffer(temptraps, "halfnormal", detpar, 5)

suggest.buffer(secrdemo.0)

suggest.buffer(ovenCH[[1]])

RB <- bias.D(50:150, temptraps, "halfnormal", detpar, 5)
plot(RB)

detpar <- list(g0 = 0.2, sigma = 25, z=5)

summary.capthist 283

RB <- bias.D(50:150, temptraps, "hazard rate", detpar, 5)
lines(RB)

compare to esa plot
esa.plot (temptraps, max.buffer = 150, spacing = 4, detectfn = 0,

detectpar = detpar, noccasions = 5, type = "density")

compare detection histories and fitted model as input
suggest.buffer(captdata)
suggest.buffer(secrdemo.0)

End(Not run)

summary.capthist Summarise Detections

Description

Concise description of capthist object.

Usage

S3 method for class 'capthist'
summary(object, terse = FALSE, moves = FALSE, tpa = FALSE, ...)

S3 method for class 'summary.capthist'
print(x, ...)

counts(CHlist, counts = "M(t+1)")

Arguments

object capthist object
terse logical; if TRUE return only summary counts
moves logical; if TRUE then summary includes detected movements
tpa logical; if TRUE then summary includes number of detectors per animal
x summary.capthist object
... arguments passed to other functions
CHlist capthist object, especially a multi-session object
counts character vector of count names

Details

These counts are reported by summary.capthist

284 summary.capthist

n number of individuals detected on each occasion
u number of individuals detected for the first time on each occasion
f number of individuals detected exactly f times
M(t+1) cumulative number of individuals detected
losses number of individuals reported as not released on each occasion
detections number of detections, including within-occasion ‘recaptures’
traps visited number of detectors at which at least one detection was recorded
traps set number of detectors, excluding any ‘not set’ in usage attribute of traps attribute

The last two rows are dropped if the data are nonspatial (object has no traps attribute).

Movements are as reported by moves. When terse = TRUE the number of non-zero moves is re-
ported. The temporal sequence of detections at ‘proximity’ and ‘count’ detectors is not recorded
in the capthist object, so the movement statistics are not to be taken too seriously. The problem is
minimised when detections are sparse (seldom more than one per animal per occasion), and does
not occur with ‘single‘ or ‘multi‘ detectors.

The ‘tpa’ option provides the frequency distribution of detectors per animal. When terse = TRUE
the number of animals at >= 2 detectors is reported (’Animal2’).

counts may be used to return the specified counts in a compact session x occasion table. If more
than one count is named then a list is returned with one component for each type of count.

Value

From summary.capthist, an object of class summary.capthist, a list with at least these compo-
nents

detector detector type ("single", "multi", "proximity" etc.)

ndetector number of detectors

xrange range of x coordinates of detectors

yrange range of y coordinates of detectors

spacing mean distance from each trap to nearest other trap

counts matrix of summary counts (rows) by occasion (columns). See Details.

dbar mean recapture distance

RPSV root pooled spatial variance

or, when terse = TRUE, a vector (single session) or dataframe (multiple sessions) of counts (Occa-
sions, Detections, Animals, Detectors, and optionally Moves and Animals2).

A summary of individual covariates is provided if these are present (from secr 4.0.1).

A summary of interference/non-target captures is provided if there is a nontarget attribute (from
secr 4.5.5).

See Also

dbar, RPSV, capthist

summary.mask 285

Examples

temptrap <- make.grid(nx = 5, ny = 3)
summary(sim.capthist(temptrap))
summary(sim.capthist(temptrap))$counts["n",]
summary(captdata, moves = TRUE)

summary.mask Summarise Habitat Mask

Description

Concise summary of a mask object.

Usage

S3 method for class 'mask'
summary(object, ...)
S3 method for class 'summary.mask'
print(x, ...)

Arguments

object mask object
x summary.mask object
... other arguments (not used)

Details

The bounding box is the smallest rectangular area with edges parallel to the x- and y-axes that
contains all points and their associated grid cells. A print method is provided for objects of class
summary.mask.

Value

Object of class ‘summary.mask’, a list with components

detector character string for detector type ("single","multi","proximity")
type mask type ("traprect", "trapbuffer", "pdot", "polygon", "user", "subset")
nmaskpoints number of points in mask
xrange range of x coordinates
yrange range of y coordinates
meanSD dataframe with mean and SD of x, y, and each covariate
spacing nominal spacing of points
cellarea area (ha) of grid cell associated with each point
bounding box dataframe with x-y coordinates for vertices of bounding box
covar summary of each covariate

286 summary.popn

See Also

mask

Examples

tempmask <- make.mask(make.grid())
left to right gradient
covariates (tempmask) <- data.frame(x = tempmask$x)
summary(tempmask)

summary.popn Summarise Simulated Population

Description

Concise summary of a popn object.

Usage

S3 method for class 'popn'
summary(object, collapse = FALSE, ...)
S3 method for class 'summary.popn'
print(x, ...)

Arguments

object popn object

collapse logical; if TRUE multi-session popn objects are treated as a single open popula-
tion

x summary.popn object

... other arguments (not used)

Details

By default each component of a multisession object is summarised separately. If collapse = TRUE
then turnover and movements are collated across sessions, matching individuals by rownames.

Value

For summary.popn, an object of class ‘summary.popn’ with various components. For a multisession
object and collapse = TRUE the descriptors include the numbers of new individuals (recruits) and
lost individuals (deaths), and matrices showing the status of each animal in each session (‘status’
codes 0 not recruited yet; 1 alive; -1 dead) and movement from previous session if alive then
(‘movements’).

summary.traps 287

See Also

sim.popn

Examples

grid <- make.grid(8,8)
turnover <- list(phi = 0.8, lambda = 1)
pop <- sim.popn(Nbuffer = 200, core = grid, buffer = 200, Ndist = 'fixed',

nsessions = 5, details = turnover)
summary(pop, collapse = TRUE)

summary.traps Summarise Detector Array

Description

Concise description of traps object.

Usage

S3 method for class 'traps'
summary(object, getspacing = TRUE, covariates = FALSE, ...)
S3 method for class 'summary.traps'
print(x, terse = FALSE, ...)

Arguments

object traps object

getspacing logical to calculate spacing of detectors from scratch

covariates logical; if true each covariate is summarised

x summary.traps object

terse if TRUE suppress printing of usage and covariate summary

... arguments passed to other functions

Details

When object includes both categorical (factor) covariates and usage, usage is tabulated for each
level of the covariates.

Computation of spacing (mean distance to nearest trap) is slow and may hit a memory limit when
there are many traps. In this case, turn off the computation with getspacing = FALSE.

288 timevaryingcov

Value

An object of class summary.traps, a list with elements

detector detector type ("single", "multi", "proximity" etc.)

ndetector number of detectors

xrange range of x coordinates

yrange range of y coordinates

spacing mean distance from each trap to nearest other trap

usage table of usage by occasion

covar summary of covariates

See Also

print, traps

Examples

demo.traps <- make.grid()
summary(demo.traps) ## uses print method for summary.traps object

timevaryingcov Time-varying Covariates

Description

Extract or replace time varying covariates

Usage

timevaryingcov(object, ...)
timevaryingcov(object) <- value

Arguments

object an object of class traps or capthist

value a list of named vectors

... other arguments (not used)

timevaryingcov 289

Details

The timevaryingcov attribute is a list of one or more named vectors. Each vector identifies a subset
of columns of covariates(object), one for each occasion. If character values are used they should
correspond to covariate names.

In secr models, time-varying covariates are restricted to traps objects. Time-varying (session-
specific) individual covariates may be used in openCR. The following remarks apply to time-
varying traps covariates.

The name of the vector may be used in a model formula; when the model is fitted, the value of the
trap covariate on a particular occasion is retrieved from the column indexed by the vector.

For replacement, if object already has a usage attribute, the length of each vector in value must
match exactly the number of columns in usage(object).

When converting a multi-session capthist object into a robust-design “single-session” object with
function join the argument ‘timevaryingcov’ is used to collate covariate values across sessions in
a form suitable for inclusion in openCR models (see join).

Value

timevaryingcov(object) returns the timevaryingcov attribute of object (may be NULL).

Note

It is usually better to model varying effort directly, via the usage attribute (see secr-varyingeffort.pdf).

Models for data from detectors of type ‘multi’, ‘polygonX’ or ‘transectX’ take much longer to fit
when detector covariates of any sort are used.

Time-varying covariates are not available with the (default) ’fastproximity’ option.

See secr-varyingeffort.pdf for input of detector covariates from a file.

See Also

join

Examples

make a trapping grid with simple covariates
temptrap <- make.grid(nx = 6, ny = 8, detector = "multi")
covariates (temptrap) <- data.frame(matrix(

c(rep(1,48*3),rep(2,48*2)), ncol = 5))
head(covariates (temptrap))

identify columns 1-5 as daily covariates
timevaryingcov(temptrap) <- list(blockt = 1:5)
timevaryingcov(temptrap)

Not run:

default density = 5/ha, noccasions = 5
CH <- sim.capthist(temptrap, detectpar = list(g0 = c(0.15, 0.15,

https://www.otago.ac.nz/density/pdfs/secr-varyingeffort.pdf
https://www.otago.ac.nz/density/pdfs/secr-varyingeffort.pdf

290 transformations

0.15, 0.3, 0.3), sigma = 25))

fit.1 <- secr.fit(CH, trace = FALSE)
fit.tvc2 <- secr.fit(CH, model = g0 ~ blockt, trace = FALSE)

because variation aligns with occasions, we get the same with:
fit.t2 <- secr.fit(CH, model = g0 ~ tcov, timecov = c(1,1,1,2,2),

trace = FALSE)

predict(fit.t2, newdata = data.frame(tcov = 1:2))
predict(fit.tvc2, newdata = data.frame(blockt = 1:2))

now model some more messy variation
covariates (traps(CH))[1:10,] <- 3
fit.tvc3 <- secr.fit(CH, model = g0 ~ blockt, trace = FALSE)

AIC(fit.tvc2, fit.t2, fit.tvc3)
fit.tvc3 is the 'wrong' model

End(Not run)

transformations Transform Point Array

Description

Flip (reflect), rotate or slide (translate) an array of points. Methods are provided for ‘traps’ objects
that ensure other attributes are retained. The methods may be used with rbind.traps to create
complex geometries.

Usage

flip (object, lr = FALSE, tb = FALSE, ...)
rotate (object, degrees, centrexy = NULL, ...)
shift (object, shiftxy, ...)

S3 method for class 'traps'
flip(object, lr = FALSE, tb = FALSE, ...)

S3 method for class 'traps'
rotate(object, degrees, centrexy = NULL, ...)
S3 method for class 'traps'
shift(object, shiftxy, ...)

S3 method for class 'popn'
flip(object, lr = FALSE, tb = FALSE, ...)

S3 method for class 'popn'

transformations 291

rotate(object, degrees, centrexy = NULL, ...)
S3 method for class 'popn'
shift(object, shiftxy, ...)

S3 method for class 'mask'
shift(object, shiftxy, ...)

Arguments

object a 2-column matrix or object that can be coerced to a matrix

lr either logical for whether array should be flipped left-right, or numeric value for
x-coordinate of axis about which it should be flipped left-right

tb either logical for whether array should be flipped top-bottom, or numeric value
for y-coordinate of axis about which it should be flipped top-bottom

degrees clockwise angle of rotation in degrees

centrexy vector with xy coordinates of rotation centre

shiftxy vector of x and y displacements

... other arguments (not used)

Details

flip reflects points about a vertical or horizontal axis. Logical values for lr or tb indicate that
points should be flipped about the mean on the relevant axis. Numeric values indicate the particular
axis value(s) about which points should be flipped. The default arguments result in no change.

shift shifts the location of each point by the desired amount on each axis.

rotate rotates the array about a designated point. If centrexy is NULL then rotation is about
(0,0) (rotate.default), the array centre (rotate.traps), or the centre of the bounding box
(rotate.popn).

Value

A matrix or object of class ‘traps’ or ‘popn’ with the coordinates of each point transformed as
requested.

See Also

traps, popn

Examples

temp <- matrix(runif (20) * 2 - 1, nc = 2)

flip
temp2 <- flip(temp, lr = 1)
plot(temp, xlim=c(-1.5,4), ylim = c(-1.5,1.5), pch = 16)
points (temp2, pch = 1)

292 trap.builder

arrows (temp[,1], temp[,2], temp2[,1], temp2[,2], length = 0.1)
abline(v = 1, lty = 2)

rotate
temp2 <- rotate(temp, 25)
plot(temp, xlim=c(-1.5,1.5), ylim = c(-1.5,1.5), pch = 16)
points (0,0, pch=2)
points (temp2, pch = 1)
arrows (temp[,1], temp[,2], temp2[,1], temp2[,2], length = 0.1)

shiftxy
temp2 <- shift(temp, c(0.1, 0.1))
plot(temp, xlim=c(-1.5,1.5), ylim = c(-1.5,1.5), pch = 16)
points (0,0, pch=2)
points (temp2, pch = 1)
arrows (temp[,1], temp[,2], temp2[,1], temp2[,2], length = 0.1)

flip.traps
par(mfrow = c(1,2), xpd = TRUE)
traps1 <- make.grid(nx = 8, ny = 6, ID = "numxb")
traps2 <- flip (traps1, lr = TRUE)
plot(traps1, border = 5, label = TRUE, offset = 7, gridl = FALSE)
plot(traps2, border = 5, label = TRUE, offset = 7, gridl = FALSE)
par(mfrow = c(1,1), xpd = FALSE)

rotate.traps
hollow1 <- make.grid(nx = 8, ny = 8, hollow = TRUE)
nested <- rbind (hollow1, rotate(hollow1, 45, c(70, 70)))
plot(nested, gridlines = FALSE)

shift.traps
hollow1 <- make.grid(nx = 8, ny = 8, hollow = TRUE)
hollow2 <- shift(make.grid(nx = 6, ny = 6, hollow = TRUE), c(20, 20))
nested <- rbind (hollow1, hollow2)
plot(nested, gridlines = FALSE, label = TRUE)

trap.builder Complex Detector Layouts

Description

Construct detector layouts comprising small arrays (clusters) replicated across space, possibly at a
probability sample of points.

Usage

trap.builder (n = 10, cluster, region = NULL, frame = NULL,
method = c("SRS", "GRTS", "all", "rank"),

trap.builder 293

edgemethod = c("clip", "allowoverlap", "allinside", "anyinside", "centreinside"),
samplefactor = 2, ranks = NULL, rotation = NULL, detector,

exclude = NULL, exclmethod = c("clip", "alloutside", "anyoutside", "centreoutside"),
plt = FALSE, add = FALSE, ...)

mash (object, origin = c(0,0), clustergroup = NULL, ...)

cluster.counts (object)

cluster.centres (object)

Arguments

n integer number of clusters (ignored if method = "all")

cluster traps object

region bounding polygon(s)

frame data frame of points used as a finite sampling frame

method character string (see Details)

edgemethod character string (see Details)

samplefactor oversampling to allow for rejection of edge clusters (multiple of n)

ranks vector of relative importance (see Details)

rotation angular rotation of each cluster about centre (degrees)

detector character detector type (see detector)

exclude polygon(s) from which detectors are to be excluded

exclmethod character string (see Details)

plt logical: should array be plotted?

add logical: add to existing plot

object single-session multi-cluster capthist object, or traps object for cluster.centres

origin new coordinate origin for detector array

clustergroup list of vectors subscripting the clusters to be mashed

... other arguments passed by trap.builder to spsurvey::grts (e.g., mindis) and by
mash to make.capthist (e.g., sortrows)

Details

The detector array in cluster is replicated n times and translated to centres sampled from the area
sampling frame in region or the finite sampling frame in frame. Each cluster may be rotated about
its centre either by a fixed number of degrees (rotation positive), or by a random angle (rotation
negative).

If the cluster argument is not provided then single detectors of the given type are placed according
to the design.

294 trap.builder

The sampling frame is finite (the points in frame) whenever frame is not NULL. If region and
frame are both specified, sampling uses the finite frame but sites may be clipped using the polygon.

region and exclude may be a two-column matrix or dataframe of x-y coordinates for the boundary,
or one of the other polygon sources listed in boundarytoSF (these allow multiple polygons).

method may be "SRS", "GRTS", "all" or "rank". "SRS" takes a simple random sample (without
replacement in the case of a finite sampling frame). "GRTS" takes a spatially representative sample
using the ‘generalized random tessellation stratified’ (GRTS) method of Stevens and Olsen (2004).
"all" replicates cluster across all points in the finite sampling frame. "rank" selects n sites from
frame on the basis of their ranking on the vector ‘ranks’, which should have length equal to the
number of rows in frame; ties are resolved by drawing a site at random.

Options for edgemethod are –

edgemethod Description
"clip" reject any individual detectors outside region
"allowoverlap" no action
"allinside" reject whole cluster if any component is outside region
"anyinside" reject whole cluster if no component is inside region
"centreinside" reject whole cluster if centre outside region, and clip to region

Similarly, exclmethod may be "clip" (reject individual detectors), "alloutside" (reject whole cluster
if any component is outside exclude) etc. Sufficient additional samples ((samplefactor--1) *
n) must be drawn to allow for replacement of any rejected clusters; otherwise, an error is reported
(‘not enough clusters within polygon’).

GRTS samples require function grts in version >= 5.3.0 of package spsurvey (Dumelle et al.
2022). More sophisticated stratified designs may be specified by using grts directly.

mash collapses a multi-cluster capthist object as if all detections were made on a single cluster.
The new detector coordinates in the ‘traps’ attribute are for a single cluster with (min(x), min(y))
given by origin. clustergroup optionally selects one or more groups of clusters to mash; if
length(clustergroup) > 1 then a multisession capthist object will be generated, one ‘session’
per clustergroup. By default, all clusters are mashed.

mash discards detector-level covariates and occasion-specific ‘usage’, with a warning.

cluster.counts returns the number of distinct individuals detected per cluster in a single-session
multi-cluster capthist object.

cluster.centres returns the centroid of the detector locations in each cluster. When clusters have
been truncated these differ from the attribute centres set by make.systematic.

Value

trap.builder produces an object of class ‘traps’.

plt = TRUE causes a plot to be displayed, including the polygon or finite sampling frame as appro-
priate.

mash produces a capthist object with the same number of rows as the input but different detector
numbering and ‘traps’. An attribute ‘n.mash’ is a vector of the numbers recorded at each cluster;
its length is the number of clusters. An attribute ‘centres’ is a dataframe containing the x-y coor-
dinates of the cluster centres. The predict method for secr objects and the function derived both
recognise and adjust for mashing.

trap.builder 295

cluster.counts returns a vector with the number of individuals detected at each cluster.

cluster.centres returns a dataframe of x- and y-coordinates.

Note

The function make.systematic should be used to generate systematic random layouts. It calls
trap.builder.

The sequence number of the cluster to which each detector belongs, and its within-cluster sequence
number, may be retrieved with the functions clusterID and clustertrap.

References

Dumelle, M., Kincaid, T. M., Olsen, A. R., and Weber, M. H. (2021). spsurvey: Spatial Sampling
Design and Analysis. R package version 5.2.0.

Stevens, D. L., Jr., and Olsen, A. R. (2004) Spatially-balanced sampling of natural resources. Jour-
nal of the American Statistical Association 99, 262–278.

See Also

make.grid, traps, make.systematic, clusterID, clustertrap

Examples

solitary detectors placed randomly within a rectangle
tempgrid <- trap.builder (n = 10, method = "SRS",

region = cbind(x = c(0,1000,1000,0),
y = c(0,0,1000,1000)), plt = TRUE)

one detector in each 100-m grid cell -
a form of stratified simple random sample
origins <- expand.grid(x = seq(0, 900, 100),

y = seq(0, 1100, 100))
XY <- origins + runif(10 * 12 * 2) * 100
temp <- trap.builder (frame = XY, method = "all",

detector = "multi")
same as temp <- read.traps(data = XY)
plot(temp, border = 0) ## default grid is 100 m

Not run:

simulate some data
regular lattice of mini-arrays
minigrid <- make.grid(nx = 3, ny = 3, spacing = 50,

detector = "proximity")
tempgrid <- trap.builder (cluster = minigrid , method =

"all", frame = expand.grid(x = seq(1000, 5000, 2000),
y = seq(1000, 5000, 2000)), plt = TRUE)

tempcapt <- sim.capthist(tempgrid, popn = list(D = 10))
cluster.counts(tempcapt)
cluster.centres(tempgrid)

296 trap.builder

"mash" the CH
summary(mash(tempcapt))

compare timings (estimates are near identical)
tempmask1 <- make.mask(tempgrid, type = "clusterrect",

buffer = 200, spacing = 10)
fit1 <- secr.fit(tempcapt, mask = tempmask1, trace = FALSE)

tempmask2 <- make.mask(minigrid, spacing = 10)
fit2 <- secr.fit(mash(tempcapt), mask = tempmask2, trace = FALSE)
density estimate is adjusted automatically
for the number of mashed clusters (9)

predict(fit1)
predict(fit2)
fit1$proctime
fit2$proctime

SRS excluding detectors from a polygon

region <- cbind(x = c(0,6000,6000,0,0), y = c(0,0,6000,6000,0))
exclude <- cbind(x = c(3000,7000,7000,3000,3000), y = c(2000,2000,4000,4000,2000))
newgrid <- trap.builder (n = 40, cluster = minigrid,

method = "SRS", edgemethod = "allinside", region = region,
exclude = exclude, exclmethod = "alloutside",
plt = TRUE)

two-phase design: preliminary sample across region,
followed by selection of sites for intensive grids

arena <- data.frame(x = c(0,2000,2000,0), y = c(0,0,2500,2500))
t1 <- make.grid(nx = 1, ny = 1)
t4 <- make.grid(nx = 4, ny = 4, spacing = 50)
singletraps <- make.systematic (n = c(8,10), cluster = t1,

region = arena)
CH <- sim.capthist(singletraps, popn = list(D = 2))
plot(CH, type = "n.per.cluster", title = "Number per cluster")
temp <- trap.builder(10, frame = traps(CH), cluster = t4,

ranks = cluster.counts(CH), method = "rank",
edgemethod = "allowoverlap", plt = TRUE, add = TRUE)

GRTS sample of mini-grids within a rectangle
GRTS uses package 'spsurvey' >= 5.3.0

minigrid <- make.grid(nx = 3, ny = 3, spacing = 50,
detector = "proximity")

region <- cbind(x = c(0,6000,6000,0,0), y = c(0,0,6000,6000,0))

if (requireNamespace("spsurvey", versionCheck = list(version = ">=5.3.0"))) {

tempgrid <- trap.builder (n = 20, cluster = minigrid, region = region,
plt = TRUE, method = "GRTS")

traps 297

specifying minimum distance between cluster origins
tempgrid2 <- trap.builder (n = 20, cluster = minigrid, region = region,

plt = TRUE, method = "GRTS", mindis = 500, maxtry = 10)
use spsurvey::warnprnt() to view warnings (e.g., maxtry inadequate)

}

End(Not run)

traps Detector Array

Description

An object of class traps encapsulates a set of detector (trap) locations and related data. A method
of the same name extracts or replaces the traps attribute of a capthist object.

Usage

traps(object, ...)
traps(object) <- value

Arguments

object a capthist object.

value traps object to replace previous.

... other arguments (not used).

Details

An object of class traps holds detector (trap) locations as a data frame of x-y coordinates. Trap
identifiers are used as row names. The required attribute ‘detector’ records the type of detector
("single", "multi" or "proximity" etc.; see detector for more).

Other possible attributes of a traps object are:

spacing mean distance to nearest detector
spacex
spacey
covariates dataframe of trap-specific covariates
clusterID identifier of the cluster to which each detector belongs
clustertrap sequence number of each trap within its cluster
usage a traps x occasions matrix of effort (may be binary 0/1)
markocc integer vector distinguishing marking occasions (1) from sighting occasions (0)
newtrap vector recording aggregation of detectors by reduce.traps

298 traps

If usage is specified, at least one detector must be ‘used’ (usage non-zero) on each occasion.

Various array geometries may be constructed with functions such as make.grid and make.circle,
and these may be combined or placed randomly with trap.builder.

Note

Generic methods are provided to select rows (subset.traps), combine two or more arrays (rbind.traps),
aggregate detectors (reduce.traps), shift an array (shift.traps), or rotate an array (rotate.traps).

The attributes usage and covariates may be extracted or replaced using generic methods of the
same name.

References

Efford, M. G. (2012) DENSITY 5.0: software for spatially explicit capture–recapture. Department
of Mathematics and Statistics, University of Otago, Dunedin, New Zealand. https://www.otago.
ac.nz/density/.

Efford, M. G., Borchers D. L. and Byrom, A. E. (2009) Density estimation by spatially explicit
capture-recapture: likelihood-based methods. In: D. L. Thomson, E. G. Cooch and M. J. Conroy
(eds) Modeling Demographic Processes in Marked Populations. Springer, New York. Pp. 255–269.

See Also

make.grid, read.traps, rbind.traps, reduce.traps, plot.traps, secr.fit, spacing, detector,
covariates, trap.builder, as.mask

Examples

demotraps <- make.grid(nx = 8, ny = 6, spacing = 30)
demotraps ## uses print method for traps
summary (demotraps)

plot (demotraps, border = 50, label = TRUE, offset = 8,
gridlines=FALSE)

generate an arbitrary covariate `randcov'
covariates (demotraps) <- data.frame(randcov = rnorm(48))

overplot detectors that have high covariate values
temptr <- subset(demotraps, covariates(demotraps)$randcov > 0.5)
plot (temptr, add = TRUE,

detpar = list (pch = 16, col = "green", cex = 2))

https://www.otago.ac.nz/density/
https://www.otago.ac.nz/density/

traps.info 299

traps.info Detector Attributes

Description

Extract or replace attributes of an object of class ‘traps’.

Usage

polyID(object)
polyID(object) <- value
transectID(object)
transectID(object) <- value
searcharea(object)
transectlength(object)

Arguments

object a ‘traps’ object

value replacement value (see Details)

Details

The ‘polyID’ and ‘transectID’ functions assign and extract the attribute of a ‘traps’ object that
relates vertices (rows) to particular polygons or transects. The replacement value should be a factor
of length equal to nrow(object).

The ‘searcharea’ of a ‘polygon’ traps object is a vector of the areas of the component polygons in
hectares. This value is read-only.

The ‘transectlength’ of a ‘transect’ traps object is a vector of the lengths of the component transects
in metres. This value is read-only.

Value

polyID - a factor with one level per polygon. searcharea - numeric value of polygon areas, in
hectares. transectlength - numeric value of transect lengths, in metres.

See Also

traps

Examples

default is a single polygon
temp <- make.grid(detector = "polygon", hollow = TRUE)
polyID(temp)
plot(temp)

300 Trend

split in two
temp <- make.grid(detector = "polygon", hollow = TRUE)
polyID(temp) <- factor(rep(c(1,2),rep(10,2)))
plot(temp)

Trend Density Trend

Description

Functions for multi-session density trend analysis.

Usage

predictDlambda(object, alpha = 0.05)

Arguments

object multi-session secr object output from secr.fit

alpha alpha level for confidence intervals

Details

Usage is described in secr-trend.pdf. Briefly, setting details argument ’Dlambda’ in ‘secr.fit
causes the density model (D~xxx) to be interpreted as a session-specific trend model with pa-
rameters for the initial density (D1) and each subsequent session-on-session change in density
λ[t] = D[t+ 1]/D[t].

Value

A table of session-specific estimates (initial D, subsequent λ[t]) with SE and confidence intervals.

See Also

predictDsurface, secr.fit

Examples

a model with constant lambda
msk <- make.mask(traps(ovenCH[[1]]), buffer = 300, nx = 25)
fit <- secr.fit(ovenCH, model = D~1, mask = msk, trace = FALSE,

details = list(Dlambda = TRUE), ncores = 2)
predictDlambda(fit)

https://www.otago.ac.nz/density/pdfs/secr-trend.pdf

trim 301

trim Drop Unwanted List Components

Description

Drop unwanted components from a list object, usually to save space.

Usage

Default S3 method:
trim(object, drop, keep)
S3 method for class 'secr'
trim(object, drop = c("call", "mask", "designD", "designNE",

"design", "design0"), keep = NULL)
S3 method for class 'secrlist'
trim(object, drop = c("call", "mask", "designD", "designNE",

"design", "design0"), keep = NULL)

Arguments

object a list object

drop vector identifying components to be dropped

keep vector identifying components to be kept

Details

drop may be a character vector of names or a numeric vector of indices. If both drop and keep are
given then the action is conservative, dropping only components in drop and not in keep.

Be warned that some further operations on fitted secr objects become impossible once you have
discarded the default components.

Value

a list retaining selected components.

302 Troubleshooting

Examples

names(secrdemo.0)
names(trim(secrdemo.0))

object.size(secrdemo.0)
object.size(trim(secrdemo.0))

object.size(trim(secrlist(secrdemo.0, secrdemo.b)))

Troubleshooting Problems in Fitting SECR Models

Description

Although secr.fit is quite robust, it does not always work. Inadequate data or an overambi-
tious model occasionally cause numerical problems in the algorithms used for fitting the model, or
problems of identifiability, as described for capture–recapture models in general by Gimenez et al.
(2004). Here are some tips that may help you.

This page has largely been superceded by secr-troubleshooting.pdf.

The log-likelihood values shown with trace = TRUE are all NA

Most likely you have infeasible starting values for the parameters. try some alternatives, specifying
them manually with the start argument.

secr.fit finishes, but some or all of the variances are missing

This usually means the model did not fit and the estimates should not be trusted. Extremely large
variances or standard errors also indicate problems.

• Try another maximization method (method = "Nelder-Mead" is more robust than the default).
The same maximum likelihood should be found regardless of method, so AIC values are
comparable across methods.

• Repeat the maximization with different starting values. You can use secr.fit(..., start =
last.model) where last.model is a previously fitted secr object.

• If you think the estimates are right but there was a problem in computing the variances, try
re-running secr.fit() with the previous model as starting values (see preceding) and set method
= "none". This bypasses maximization and computes the variances afresh using fdHess from
nlme.

• Try a finer mask (e.g., vary argument nx in make.mask). Check that the extent of the mask
matches your data.

https://www.otago.ac.nz/density/pdfs/secr-troubleshooting.pdf

Troubleshooting 303

• The maximization algorithms work poorly when the beta coefficients are of wildly differ-
ent magnitude. This may happen when using covariates: ensure beta coefficients are similar
(within a factor of 5–10 seems adequate, but this is not based on hard evidence) by scaling
any covariates you provide. This can be achieved by setting the typsize argument of nlm or
the parscale control argument of optim.

• Examine the model. Boundary values (e.g., g0 near 1.0) may give problems. In the case of
more complicated models you may gain insight by fixing the value of a difficult-to-estimate
parameter (argument fixed).

See also the section ‘Potential problems’ in secr-densitysurfaces.pdf.

secr.fit finishes with warning nlm code 3

This condition does not invariably indicate a failure of model fitting. Proceed with caution, checking
as suggested in the preceding section.

secr.fit crashes part of the way through maximization

A feature of the maximization algorithm used by default in nlm is that it takes a large step in the
parameter space early on in the maximization. The step may be so large that it causes floating
point underflow or overflow in one or more real parameters. This can be controlled by passing
the ‘stepmax’ argument of nlm in the . . . argument of secr.fit (see first example). See also the
previous point about scaling of covariates.

secr.fit demands more memory than is available

This is a problem particularly when using individual covariates in a model fitted by maximizing
the conditional likelihood. The memory required is then roughly proportional to the product of
the number of individuals, the number of occasions, the number of detectors and the number of
latent classes (for finite-mixture models). When maximizing the full-likelihood, substitute ‘number
of groups’ for ‘number of individuals’. [The limit is reached in external C used for the likelihood
calculation, which uses the R function ‘R_alloc’.]

The mash function may be used to reduce the number of detectors when the design uses many
identical and independent clusters. Otherwise, apply your ingenuity to simplify your model, e.g.,
by casting ‘groups’ as ‘sessions’. Memory is less often an issue on 64-bit systems (see link below).

Estimates from mixture models appear unstable

These models have known problems due to multimodality of the likelihood. See secr-finitemixtures.pdf.

References

Gimenez, O., Viallefont, A., Catchpole, E. A., Choquet, R. and Morgan, B. J. T. (2004) Methods
for investigating parameter redundancy. Animal Biodiversity and Conservation 27, 561–572.

See Also

secr.fit, Memory-limits

https://www.otago.ac.nz/density/pdfs/secr-densitysurfaces.pdf
https://www.otago.ac.nz/density/pdfs/secr-finitemixtures.pdf

304 turnover

turnover Specifying a Dynamic Population

Description

sim.popn can simulate a multi-session population with known between-session survival, recruit-
ment and movement probabilities. The parameter settings to achieve this are passed to sim.popn
in its ‘details’ argument. Components of ‘details’ that are relevant to turnover are described below;
see sim.popn for others.

Multi-session populations are generated in sim.popn whenever its argument ‘nsessions’ is greater
than 1. If details$lambda remains NULL (the default) then the population for each successive
session is generated de novo from the given density model (model2D, D etc.). If a value is specified
for details$lambda then only the first population is generated de novo; remaining populations are
generated iteratively with probabilistic mortality, recruitment and movement as described here.

Turnover components of sim.popn details argument

Component Description Default
phi per capita survival rate φ 0.7
survmodel probability model for number of survivors “binomial"
lambda finite rate of increase λ = Nt+1/Nt none
recrmodel probability model for number of recruits “poisson"
superN optional superpopulation size for ‘multinomial’ recruitment model see below
Nrecruits number of recruits to add at t+1 for ‘specified’ recruitment model 0
movemodel “static", “uncorrelated", “normal", “exponential", “t2D" or a user function “static"
move.a first parameter of movement kernel (replacing sigma.m) 0
move.b second parameter of movement kernel 1
edgemethod treatment of animals that cross the boundary “wrap"
sigma.m deprecated in 3.2.1; use move.a 0
wrap deprecated in 3.1.6; use edgemethod TRUE i.e. edgemethod = “wrap"

Survival

Survival is usually thought of as a Bernoulli process (outcome 0 or 1 for each individual) so the
number of survivors S is a binomial variable (survmodel = "binomial"). Another approach is to fix
the proportion surviving, but this can be done exactly only when φN is an integer. A (slightly ad
hoc) solution is to randomly choose between the two nearest integers with probability designed in
the long term (over many sessions) to give the required φ (survmodel = "discrete").

Population growth and recruitment

Per capita recruitment (f) is the difference between lambda and phi (f = λ − φ), which must be
non-negative (phi > lambda causes an error). The number of recruits B is a random variable whose

turnover 305

probability distribution is controlled by details$recrmodel:

Value Probability model
"constantN" Exact replacement of animals that die (B = Nt − S)
"binomial" Binomial number of recruits (B ~ bin(Nt, f)
"poisson" Poisson number of recruits (B ~ pois(fNt))
"discrete" Minimum-variance number of recruits (see Survival)
"multinomial" The POPAN model, conditioning on superpopulation size (e.g., Schwarz and Arnason 1996))
"specified" Add the number of recruits specified in Nrecruits (may be vector)

In the case of binomial recruitment there is a maximum of one recruit per existing individual, so
lambda <= (phi+1). Multinomial recruitment requires a value for the superpopulation size. This
may be provided as the details component "superN". If not specified directly, a value is inferred by
projecting a trial initial (simulated) population using the specified phi and lambda.

Specifying the integer number of recruits in each year (recrmodel ‘specified’) overrides the value
of lambda, but a non-null value should be given for lambda.

Movement

Individuals may shift their home range centre between sessions. Movement probability is governed
by a circular kernel specified by ‘movemodel’ and the parameter values ‘move.a’ and ‘move.b’ (op-
tional). By default there is no movement between sessions (movemodel = "static"). Other options
are

“IND" “uncorrelated" individuals are randomly assigned a new, independent location within the buffered area
“BVN" “normal" bivariate normal (Gaussian) kernel with parameter move.a (previously called sigma.m)
“BVE" “exponential" negative exponential (Laplace) kernel with parameter move.a
“BVT" “t2D" circular 2-dimensional t-distribution with scale parameter move.a and shape parameter move.b = df/2 (2Dt of Clark et al. 1999)
“RDE" exponential distribution of radial distance (Ergon & Gardner, 2014)
“RDG" gamma distribution of radial distance (Ergon & Gardner, 2014)
“RDL" log-normal distribution of radial distance (Ergon & Gardner, 2014)

(parameterized with move.a = exp(mu), move.b = 1/CV^2 = 1 / (exp(SD^2) - 1)

The package openCR >=1.4.0 provides functions for constructing and plotting these kernels and
summarising their properties (make.kernel; plot and summary methods for kernel objects). The
secr function extractMoves is useful for checking simulations of movement.

Models IND, BVN, BVE, and RDE may also be zero-inflated (suffix “zi"). The parameter ‘move.a’
(INDzi) or ‘move.b’ (BVNzi, BVEzi, RDEzi) is the zero-inflation probability. See Examples.

In secr <3.2.1 sigma.m was also used to indicate two special cases; these continue to work but may
be discontinued in the future:

sigma.m = 0 corresponds to movemodel = ‘static’

sigma.m < 0 corresponds to movemodel = ‘uncorrelated’

In secr >= 4.4.0, the ‘movemodel’ component may also be a user-provided function with these
characteristics: two or three arguments, the first being the number of centres to be moved (e.g., n)

306 turnover

and the others parameters of the dispersal distribution (e.g., a,b); the function should return a matrix
of n rows and 2 columns, the displacements in the x- and y-directions. The output is a set of random
points from the bivariate dispersal kernel. The function will be called with the current number of
centres and parameter values move.a and move.b as needed.

If movement takes an animal across the boundary of the arena (buffered area) in sim.popn the com-
ponent "edgemethod" comes into play. By default, locations are toroidally wrapped i.e. the animal
re-joins the population on the opposing edge. Other options are “clip” (discard), “clipandreplace”
(assign new identity at original location), “stop” (stop just inside the boundary), “reflect” (bounce
off edges to the limit of the dispersal), “normalize” = “truncate” (truncate kernel and scale proba-
bility to 1.0) and “none" (allow centres outside the buffered area). The “normalize” option (new in
secr 4.3.3) can take longer as it repeatedly relocates each individual until its destination lies within
the bounding box, up to a maximum of 500 attempts.

References

Clark, J. S, Silman, M., Kern, R., Macklin, E. and HilleRisLambers, J. (1999) Seed dispersal near
and far: patterns across temperate and tropical forests. Ecology 80, 1475–1494.

Nathan , R., Klein, E., Robledo-Arnuncio, J. J. and Revilla, E. (2012) Dispersal kernels: a review.
In: J Clobert et al. Dispersal Ecology and Evolution. Oxford University Press. Pp 187–210.

See Also

sim.popn, extractMoves

Examples

par (mfrow = c(2,3), mar = c(1,1,1,1))

birth and death only
grid <- make.grid(nx = 7, ny = 4, detector = 'proximity', spacing = 10)
pop <- sim.popn (Nbuffer = 100, core = grid, nsessions = 6,

details = list(lambda = 0.8, phi = 0.6))
sapply(pop, nrow) ## how many individuals?
plot(pop)

movement only
pop2 <- sim.popn (Nbuffer = 100, core = grid, nsessions = 6,

details = list(lambda = 1, phi = 1, movemodel = 'normal',
move.a = 10, edgemethod = "wrap"))

pop3 <- sim.popn (Nbuffer = 100, core = grid, nsessions = 6,
details = list(lambda = 1, phi = 1, movemodel = 'normal',
move.a = 10, edgemethod = "clip"))

pop4 <- sim.popn (Nbuffer = 100, core = grid, nsessions = 10,
details = list(lambda = 1, phi = 1, movemodel = 'normal',
move.a = 10, edgemethod = "stop"))

sapply(pop2, nrow) ## how many individuals?
plot(pop2)

show effect of edgemethod --
first session blue, last session red

updateCH 307

cols <- c('blue',rep('white',4),'red')
par (mfrow=c(1,2))
plot(pop2, collapse = TRUE, seqcol = cols)
plot(pop3, collapse = TRUE, seqcol = cols)

zero-inflated movement
move.b is zero-inflation probability
pop5 <- sim.popn (Nbuffer = 1000, core = grid, nsessions = 6,

details = list(lambda = 1, phi = 1, movemodel = 'RDEzi',
move.a = 50, move.b = 0.5, edgemethod = "none"))

mean(do.call(rbind,extractMoves(pop5))$d) # approx 50 * 0.5

updateCH Update Old capthist Format

Description

Before version 3.0, the internal data format for data from exclusive detectors (single, multi, prox-
imityX, transectX) was a matrix with one row per detected animal and one column per sampling
occasion; each cell was either zero or the number of the detector at which the animal was detected
(with switched sign if the animal died). The format for data from proximity and other detectors
was a 3-dimensional array (third dimension corresponding to detectors) that allowed more than one
detection per animal per occasion.

From secr 3.0 all capthist data use the 3-D format internally. This simplifies a lot of the coding, and
enables mixing of detector types within a session. The constraint that only one detection is allowed
per animal per occasion at exclusive detectors is imposed by verify().

The data input functions (read.capthist etc.) automatically generate objects in the new format.
Objects created and saved under earlier versions should be converted if they relate to the ‘exclusive’
detector types listed above.

Usage

updateCH(object)

Arguments

object capthist object

Details

The function reduce.capthist is applied with the nominal detector type as the outputdetector.

Value

Object with same class as the input.

Updating has the side effect of discarding invalid supernumerary detections (e.g. if there were two
detections of an animal on one occasion, only one will be included).

308 usage

Examples

if we had the old ovenCH !
sapply(ovenCH, dim)
sapply(updateCH(ovenCH), dim)

usage Detector Usage

Description

Extract or replace usage (effort) information of a traps object (optional).

Usage

usage(object, ...)
usage(object) <- value

Arguments

object traps object

value numeric matrix of detectors x occasions

... other arguments (not used)

Details

In secr versions before 2.5.0, usage was defined as a binary value (1 if trap k used on occasion s,
zero otherwise).

In later versions, usage may take nonnegative real values and will be interpreted as effort. This
corresponds to the constant T_s used for the duration of sampling by Borchers and Efford (2008).
Effort is modelled as a known linear coefficient of detection probability on the hazard scale (secr-
varyingeffort.pdf; Efford et al. 2013).

For replacement of usage, various forms are possible for value:

- a matrix in which the number of rows of value exactly matches the number of traps K in object

- a vector of two values, the usage (typically 1) and the number of occasions S (a K x S matrix will
be filled with the first value)

- a vector of R+1 values where R is the number of sessions in a multi-session object and elements
2..R+1 correspond to the numbers of occasions S1, S2,... in each session

- the usage only (typically 1) (only works when replacing an existing usage matrix with known
number of occasions).

Value

usage(object) returns the usage matrix of the traps object. usage(object) may be NULL.

https://www.otago.ac.nz/density/pdfs/secr-varyingeffort.pdf
https://www.otago.ac.nz/density/pdfs/secr-varyingeffort.pdf

usagePlot 309

Note

At present, assignment of usage to the traps objects of a multisession capthist object results in the
loss of session names from the latter.

References

Efford, M. G., Borchers D. L. and Mowat, G. (2013) Varying effort in capture–recapture studies.
Methods in Ecology and Evolution 4, 629–636.

See Also

traps, usagePlot, read.capthist, addSightings

Examples

demo.traps <- make.grid(nx = 6, ny = 8)
random usage over 5 occasions
usage(demo.traps) <- matrix (sample(0:1, 48*5, replace = TRUE,

p = c(0.5,0.5)), nc = 5)
usage(demo.traps)
summary(demo.traps)

usage(traps(ovenCH)) <- c(1,9,10,10,10,10)
restore lost names
names(ovenCH) <- 2005:2009

usagePlot Plot usage, detections or sightings.

Description

usagePlot displays variation in effort (usage) over detectors as a bubble plot (circles with radius
scaled so that area is proportional to effort).

sightingPlot displays spatial variation in the number of sightings at each detector as a bubble plot
(circles with radius scaled so that area is proportional to either the average number per occasion or
the total over occasions.

Usage

usagePlot(object, add = FALSE, occasions = NULL, col = "black", fill =
FALSE, scale = 2, metres = TRUE, rad = 5, ...)

sightingPlot(object, type = c("Detections", "Tu", "Tm", "Tn"), add = FALSE,
occasions = "ALL", mean = TRUE, col = "black", fill = FALSE, scale = 2,
metres = TRUE, dropunused = TRUE, title = type, legend = c(1, 2, 4, 8),
px = 0.95, py = 0.95, ...)

310 usagePlot

Arguments

object traps object with usage attribute

add logical; if FALSE plot.traps is called to create a base plot

occasions integer number(s) of the occasion(s) for which effort is plotted, "ALL", or NULL

col character or integer colour value

fill logical; if TRUE the circle is filled with the line colour

scale numeric value used to scale radius

metres logical; if TRUE scale is a value in metres (see Details)

rad numeric; radial displacement of symbol centre for each occasion from true de-
tector location (metres)

... other arguments passed to plot.traps

type character to choose among sighting types and detections of marked animals

mean logical; if TRUE then the plotted value is the average over occasions, otherwise
the sum

dropunused logical; if TRUE then detectors are omitted when they were unused on occasions

title character

legend numeric values for which legend circles will be drawn

px legend x position as fraction of user coordinates

py legend y position as fraction of user coordinates

Details

The behaviour of usagePlot is described first. By default (occasion = NULL) circles representing
usage on each occasion are plotted around the detector location at distance rad, as in the petal plot
of plot.capthist. Otherwise, the usage on a single specified occasion, or summed over occasions
(length(occasion)>1, or occasion = "ALL"), is plotted as a circle centred at the detector location.

Package sp provides an alternative to usagePlot (see Examples).

sightingPlot may be used to display either detections of marked animals (whether or not occasions
refers to sighting occasions) or any of the sighting attributes (unmarked sightings ‘Tu’, marked,
unidentified sightings ‘Tm’, or other uncertain sightings ‘Tn’).

If py is of length 2 then the values determine the vertical spread of symbols in the legend.

For both functions –

The metres argument switches between two methods. If metres = TRUE, the symbols function
is used with inches = FALSE to plot circles with radius scaled in the units of object (i.e. metres;
scale is then the radius in metres of the symbol for a detector with usage = 1.0). Otherwise, plotting
uses points; this has the advantage of producing better filled circles, but a suitable value of scale
must be found by trial and error.

Value

No value is returned by usagePlot.

sightingPlot invisibly returns a ‘traps’ object with a covariate ‘f’ holding the plotted values.

userdist 311

See Also

usage, symbols, bubble, sightings

Examples

simgrid <- make.grid(nx = 10, ny = 10, detector = "proximity")
usage(simgrid) <- matrix(rep(1:10, 50), nrow = 100, ncol = 5)
usagePlot(simgrid, border = 20, scale = 1.5, fill = FALSE,

metres = FALSE)

It is hard to get the legend just right
here is one attempt
legend (x = -50, y = 185, legend = c(1,2,5,10), pch = 1, pt.cex =

c(1,2,5,10)^0.5 * 1.5, x.intersp = 3, y.intersp = 1.8, adj = 1,
bty = "n", title = "Usage")

usagePlot(simgrid, occasion = NULL, border = 20, scale = 1.5, fill = FALSE,
metres = FALSE)

Not run:
bubble plot in package 'sp'
library(sp)
simgrid$usage <- usage(simgrid)[,1] ## occasion 1
class(simgrid) <- "data.frame"
coordinates(simgrid) <- c("x","y")
bubble(simgrid)

End(Not run)

userdist Non-Euclidean Distances

Description

Non-Euclidean distances have a variety of uses, some obscure. You probably do not need them
unless you have data from linear habitats, covered in the forthcoming package secrlinear. On the
other hand, they open up some intriguing possibilities for the advanced user. The key is to provide
an appropriate value for the component ‘userdist’ of the details argument of secr.fit.

details$userdist is either a function to compute distances between detectors and mask points,
or a pre-computed matrix of such distances. Pre-computing assumes the matrix is static (i.e. fixed
and not dependent on any estimated coefficients). The functions edist and nedist are useful for
computing static matrices of Euclidean or non-Euclidean distances (the latter is useful when there
are barriers to movement).

If details$userdist is a function then it should take the form

userdist(xy1, xy2, mask)

312 userdist

Arguments

xy1 2-column matrix of x-y coordinates of k detectors

xy2 2-column matrix of x-y coordinates of m mask points

mask habitat mask defining a non-Euclidean habitat geometry

Details

The matrix returned by the function must have exactly k rows and m columns. The function name
may be almost anything you like.

The non-Euclidean habitat geometry may or may not require access to local density (D), local
(mask) covariates, and the estimation of additional coefficients (beta variables). In order that secr.fit
can assemble these data, there is a mechanism for the user to indicate which, if any, variables are
required: when called with no arguments the function should return a character vector of variable
names. These may include covariates of ‘mask’, the dynamically computed density ‘D‘, and a
special real parameter ‘noneuc’ for which one or more coefficients will be fitted.

‘noneuc’ is like ’D’ in that it may be modelled as a function of any mask covariates, session, Session,
x, y, etc. The actual meaning attributed to ‘noneuc’ depends entirely on how it is used inside the
function.

The function may require no variables and not require estimation of additional coefficients. This is
the case for a simple linear geometry as described in documentation for the package ‘secrlinear’.

Value Interpretation
” no covariates etc. required
’D’ density at each mask point
’noneuc’ a multi-purpose real parameter

defined for each mask point
c(’D’, ’noneuc’) both of the preceding
c(’noneuc’,’habclass’) both noneuc and the mask covariate ’habclass’

The last case does not estimate a coefficient for habclass, it merely makes the raw value available
to whatever algorithm you implement.

The ‘xy2’ and ‘mask’ parameters of the userdist function overlap in practice: xy1 and xy2 only
define the points between which distances are required, whereas mask is a carrier for any and all
additional information needed by the algorithm.

Full documentation of the secr capability for non-Euclidean distances is in the separate document
secr-noneuclidean.pdf, which includes example code for the analysis of Sutherland et al. (2015).

Compatibility

User-specified distances are compatible with some but not all features of secr. Functions with a
‘userdist’ argument are certainly compatible, and others may be.

With a static userdist, region.N will generally not calculate population size for a region other
than the original mask. If you want to supply a new mask in the ‘region’ argument, replace
x$details$userdist with a distance matrix appropriate to the new mask, where ‘x’ is the name of
the fitted model.

https://www.otago.ac.nz/density/pdfs/secr-noneuclidean.pdf

utility 313

User-specified distances cannot be used with polygon or transect detectors.

When using sim.capthist to simulate detections of a new population from sim.popn you must
provide userdist as a function rather than a matrix. This is because new animals are not restricted
to locations on the ‘mask’ grid.

References

Sutherland, C., Fuller, A. K. and Royle, J. A. (2015) Modelling non-Euclidean movement and
landscape connectivity in highly structured ecological networks. Methods in Ecology and Evolution
6, 169–177.

See Also

details, secr.fit, nedist

Examples

see secr-noneuclidean.pdf

utility Utility Functions

Description

Minor functions.

Usage

getMeanSD(xy)
maskarea(mask, sessnum = 1)
masklength(mask, sessnum = 1)
edist(xy1, xy2)
nedist(xy1, xy2, mask, inf = Inf, ...)

Arguments

xy 2-column matrix or dataframe

xy1 2-column matrix or dataframe

xy2 2-column matrix or dataframe

mask mask or linearmask object

sessnum integer; for multi-session masks, the number of the session

inf numeric value to use for +infinity

... other arguments for transition

314 utility

Details

getmeanSD is used by make.mask to standardize mask coordinates.

For masklength the input should be a linear mask from secrlinear.

edist computes the Euclidean distance between each point in xy1 and each point in xy2. (This
duplicates the functionality of ‘rdist’ in package fields).

nedist computes the non-Euclidean distance between each point in xy1 and each point in xy2, in
two dimensions. The calculation uses gdistance (van Etten 2017; see also Csardi & Nepusz 2006):
a transition layer is formed representing the connections between adjacent points in mask. By
default, points within a 16-point neighbourhood are considered ‘adjacent’. Distances are obtained
by Dijkstra’s (1959) algorithm as least cost paths through the graph of all points in the mask.

nedist has some subtle options. If ‘mask’ is missing then the transition layer will be formed from
‘xy2’. If ‘mask’ has a covariate named ‘noneuc’ then this will be used to weight distances. The
. . . argument of nedist allows the user to vary arguments of transition (defaults transitionFunc-
tion = mean and directions = 16). Be warned this can lead to unexpected results! Point pairs that
are completely separated receive the distance +Inf unless a finite value is provided for the argument
‘inf’. See secr-noneuclidean.pdf for uses of nedist.

Value

For getMeanSD, a dataframe with columns ‘x’ and ‘y’ and two rows, mean and SD.

For maskarea, the summed area of mask cells in hectares (ha).

For masklength, the summed length of mask cells in kilometers (km).

For edist and nedist, a matrix with dim = c(nrow(xy1), nrow(xy2)).

References

Dijkstra, E. W. (1959) A note on two problems in connexion with graphs. Numerische Mathematik,
1, 269–271.

Csardi, G. and Nepusz, T. (2006) The igraph software package for complex network research.
InterJournal, 1695. https://igraph.org

van Etten, J. (2017) R package gdistance: Distances and routes on geographical grids. Journal of
Statistical Software, 76(1), 1–21. doi:10.18637/jss.v076.i13

Examples

getMeanSD(possummask)

https://www.otago.ac.nz/density/pdfs/secr-noneuclidean.pdf
https://igraph.org
https://doi.org/10.18637/jss.v076.i13

vcov.secr 315

vcov.secr Variance - Covariance Matrix of SECR Parameters

Description

Variance-covariance matrix of beta or real parameters from fitted secr model.

Usage

S3 method for class 'secr'
vcov(object, realnames = NULL, newdata = NULL,

byrow = FALSE, ...)

Arguments

object secr object output from the function secr.fit

realnames vector of character strings for names of ‘real’ parameters

newdata dataframe of predictor values

byrow logical for whether to compute covariances among ‘real’ parameters for each
row of new data, or among rows for each real parameter

... other arguments (not used)

Details

By default, returns the matrix of variances and covariances among the estimated model coefficients
(beta parameters).

If realnames and newdata are specified, the result is either a matrix of variances and covariances
for each ‘real’ parameter among the points in predictor-space given by the rows of newdata or
among real parameters for each row of newdata. Failure to specify newdata results in a list of
variances only.

Value

A matrix containing the variances and covariances among beta parameters on the respective link
scales, or a list of among-parameter variance-covariance matrices, one for each row of newdata, or
a list of among-row variance-covariance matrices, one for each ‘real’ parameter.

See Also

vcov, secr.fit, print.secr

Examples

previously fitted secr model
vcov(secrdemo.0)

316 verify

verify Check SECR Data

Description

Check that the data and attributes of an object are internally consistent to avoid crashing functions
such as secr.fit

Usage

Default S3 method:
verify(object, report, ...)
S3 method for class 'traps'
verify(object, report = 2, ...)
S3 method for class 'capthist'
verify(object, report = 2, tol = 0.01, ...)
S3 method for class 'mask'
verify(object, report = 2, ...)

Arguments

object an object of class ‘traps’, ‘capthist’ or ‘mask’

report integer code for level of reporting to the console. 0 = no report, 1 = errors only,
2 = full.

tol numeric tolerance for deviations from transect line (m)

... other arguments (not used)

Details

Checks are performed specific to the class of ‘object’. The default method is called when no specific
method is available (i.e. class not ‘traps’, ‘capthist’ or ‘mask’), and does not perform any checks.

verify.capthist

1. No ‘traps’ component

2. Invalid ‘traps’ component reported by verify.traps

3. No live detections

4. Missing values not allowed in capthist

5. Live detection(s) after reported dead

6. Empty detection histories (except concurrent telemetry and all-sighting data)

7. More than one capture in single-catch trap(s)

8. More than one detection per detector per occasion at proximity detector(s)

9. Signal detector signal(s) less than threshold or invalid threshold

10. Number of rows in ‘traps’ object not compatible with reported detections

verify 317

11. Number of rows in dataframe of individual covariates differs from capthist

12. Number of occasions in usage matrix differs from capthist

13. Detections at unused detectors

14. Number of coordinates does not match number of detections (‘polygon’, ‘polygonX’, ‘tran-
sect’ or ‘transectX’ detectors)

15. Coordinates of detection(s) outside polygons (‘polygon’ or ‘polygonX’ detectors)

16. Coordinates of detection(s) do not lie on any transect (‘transect’ or ‘transectX’ detectors)

17. Row names (animal identifiers) not unique

18. Levels of factor covariate(s) differ between sessions

verify.traps

1. Missing detector coordinates not allowed

2. Number of rows in dataframe of detector covariates differs from expected

3. Number of detectors in usage matrix differs from expected

4. Occasions with no used detectors

5. Polygons overlap

6. Polygons concave east-west (‘polygon’ detectors)

7. PolyID missing or not factor

8. Polygon detector is concave in east-west direction

9. Levels of factor trap covariate(s) differ between sessions

verify.mask

1. Valid x and y coordinates

2. Number of rows in covariates dataframe differs from expected

3. Levels of factor mask covariate(s) differ between sessions

Earlier errors may mask later errors: fix & re-run.

Value

A list with the component errors, a logical value indicating whether any errors were found. If
object contains multi-session data then session-specific results are contained in a further list com-
ponent bysession.

Full reporting is the same as ‘errors only’ except that a message is posted when no errors are found.

See Also

capthist, secr.fit, shareFactorLevels

318 write.captures

Examples

verify(captdata)

create null (complete) usage matrix, and mess it up
temptraps <- make.grid()
usage(temptraps) <- matrix(1, nr = nrow(temptraps), nc = 5)
usage(temptraps)[,5] <- 0
verify (temptraps)

create mask, and mess it up
tempmask <- make.mask(temptraps)
verify(tempmask)
tempmask[1,1] <- NA
verify(tempmask)

write.captures Write Data to Text File

Description

Export detections or detector layout or mask to a text file in format suitable for input to DENSITY.

Usage

write.captures(object, file = "", deblank = TRUE, header = TRUE,
append = FALSE, sess = "1", ndec = 2, covariates = FALSE, tonumeric
= TRUE, ...)

write.traps(object, file = "", deblank = TRUE, header = TRUE,
ndec = 2, covariates = FALSE, ...)

write.mask(object, file = "", header = TRUE, ndec = 2, covariates = TRUE, ...)

Arguments

object capthist or traps object

file character name of output file

deblank logical; if TRUE remove any blanks from character string used to identify de-
tectors

header logical; if TRUE output descriptive header

append logical; if TRUE output is appended to an existing file

sess character session identifier

writeGPS 319

ndec number of digits after decimal point for x,y coordinates

covariates logical or a character vector of covariates to export

tonumeric logical for whether factor and character covariates should be converted to nu-
meric values on output

... other arguments passed to write.table

Details

Existing file will be replaced without warning if append = FALSE. In the case of a multi-session
capthist file, session names are taken from object rather than sess.

write.capthist is generally simpler to use if you want to export both the capture data and trap
layout from a capthist object.

By default individual covariates are not exported. When exported they are repeated for each detec-
tion of an individual. Factor covariates are coerced to numeric before export.

For write.mask, header = TRUE also causes column names to be exposed.

Value

None

See Also

as.data.frame.capthist

Examples

write.captures (captdata)

writeGPS Upload to GPS

Description

Upload a set of point locations as waypoints to a GPS unit connected by USB or via a serial port.
Intended primarily for detector locations in a traps object. Uses the GPSBabel package which must
have been installed. Coordinates are first inverse-projected to latitude and longitude using function
st_transform from sf.

Usage

writeGPS(xy, o = "garmin", F = "usb:", proj = "+proj=nzmg")

320 writeGPS

Arguments

xy 2-column matrix or dataframe of x-y coordinates

o character output format (see GPSBabel documentation)

F character for destination (see Details)

proj character string describing projection

Details

This function is derived in part from readGPS in maptools.

For users of Garmin GPS units, useful values of o are "garmin" for direct upload via USB or serial
ports, and "gdb" for a file in Mapsource database format.

F may be "usb:" or "com4:" etc. for upload via USB or serial ports, or the name of a file to create.

The proj argument may be complex. For further information see the Examples and the vignette
secr-spatialdata.pdf. If proj is an empty string then coordinates are assumed already to be latitudes
(column 1) and longitudes (column 2).

Waypoint names are derived from the rownames of xy.

Value

No value is returned. The effect is to upload waypoints to an attached GPS or file.

Note

GPSBabel is available free from https://www.gpsbabel.org/. Remember to add it to the Path.
On Windows this means following something like Settings > Control panel > System > Advanced
settings > Environment variables > (select Path) Edit and adding ";C:/Program Files (x86)/gpsbabel"
to the end (without the quotes). Or ";C:/Program Files/gpsbabel" on 32-bit systems.

See Also

make.systematic

Examples

Example using shapefile "possumarea.shp" in
"extdata" folder. As 'cluster' is not specified,
the grid comprises single multi-catch detectors.

Not run:

test for availability of GPSBabel

if (nzchar(Sys.which("gpsbabel"))) {

library(sf)
shpfilename <- system.file("extdata/possumarea.shp", package = "secr")
possumarea <- st_read(shpfilename)

https://www.otago.ac.nz/density/pdfs/secr-spatialdata.pdf
https://www.gpsbabel.org/

writeGPS 321

possumgrid <- make.systematic(spacing = 100, region = possumarea,
plt = TRUE)

May upload directly to GPS...
writeGPS(possumgrid, proj = "+proj=nzmg")

...or save as Mapsource file
writeGPS(possumgrid, o = "gdb", F = "tempgrid.gdb",

proj = "+proj=nzmg")

If `region' had been specified in another projection we
would need to specify this as in Proj.4. Here is a
hypothetical example for New Zealand Transverse Mercator
with datum NZGD2000 (EPSG:2193)

NZTM <- paste("+proj=tmerc +lat_0=0 +lon_0=173 +k=0.9996",
"+x_0=1600000 +y_0=10000000 +ellps=GRS80",
" +towgs84=0,0,0,0,0,0,0 +units=m +no_defs")

writeGPS(possumgridNZTM, o = "gdb", F = "tempNZTM.txt",
proj = NZTM)

Or to upload coordinates from UTM Zone 18 in eastern
Maryland, USA...

writeGPS(MarylandUTMgrid, proj =
"+proj=utm +zone=18 +ellps=WGS84")

}

End(Not run)

Index

∗ IO
as.data.frame, 19
BUGS, 25
read.capthist, 197
read.mask, 200
read.telemetry, 201
read.traps, 203
write.captures, 318
writeGPS, 319

∗ classes
capthist, 27
Dsurface, 71
mask, 135
popn, 176
secrtest, 238
traps, 297
Trend, 300

∗ datagen
make.mask, 123
make.traps, 129
make.tri, 132
randomHabitat, 188
secrRNG, 236
sim.capthist, 246
sim.popn, 250
sim.secr, 256
summary.popn, 286
turnover, 304

∗ datasets
deermouse, 53
hornedlizard, 103
housemouse, 105
ovenbird, 146
ovensong, 148
OVpossum, 151
possum, 177
secrdemo, 234
skink, 259
stoatDNA, 270

∗ hplot
contour, 47
ellipse.secr, 72
esa.plot, 79
esa.plot.secr, 82
fxi, 91
LLsurface, 114
occasionKey, 145
plot.capthist, 160
plot.mask, 163
plot.popn, 167
plot.secr, 168
plot.traps, 170
plotMaskEdge, 172
strip.legend, 272
usagePlot, 309

∗ htest
closure.test, 40
LR.test, 118
score.test, 219
secr.test, 232

∗ manip
addCovariates, 8
addSightings, 10
addTelemetry, 12
as.mask, 20
as.popn, 21
capthist.parts, 29
chat, 30
clone, 36
cluster, 42
covariates, 49
CV, 50
D.designdata, 52
deleteMaskPoints, 55
discretize, 68
distancetotrap, 70
FAQ, 86
head, 98

322

INDEX 323

intervals, 108
join, 109
logit, 116
make.capthist, 119
make.lacework, 122
make.systematic, 126
mask.check, 136
ms, 142
pdot, 156
PG, 158
pointsInPolygon, 174
polyarea, 175
predictDsurface, 182
rbind.capthist, 192
rbind.popn, 195
rbind.traps, 196
rectangularMask, 205
reduce, 206
reduce.capthist, 207
RMarkInput, 214
Rsurface, 217
secr.design.MS, 223
shareFactorLevels, 242
sighting, 243
signal, 244
signalmatrix, 245
snip, 263
sort.capthist, 265
speed, 267
subset.capthist, 274
subset.popn, 278
subset.traps, 279
timevaryingcov, 288
transformations, 290
trap.builder, 292
traps.info, 299
trim, 301
updateCH, 307
usage, 308
verify, 316

∗ methods
raster, 191

∗ models
AIC.secr, 14
AICcompatible, 18
autoini, 22
circular, 34
closedN, 37

coef.secr, 43
confint.secr, 45
derived, 56
details, 59
detectfn, 63
detector, 65
deviance, 66
empirical.varD, 73
expected.n, 83
hcov, 95
homerange, 100
logmultinom, 117
modelAverage, 139
newdata, 143
predict.secr, 179
region.N, 210
secr.fit, 226
session, 239
sim.secr, 256
smooths, 261
spacing, 266
subset.mask, 276
suggest.buffer, 280
summary.capthist, 283
summary.mask, 285
summary.traps, 287
Troubleshooting, 302
userdist, 311
vcov.secr, 315

∗ model
fx.total, 89
pmixProfileLL, 173
RSE, 215

∗ package
secr-package, 5

∗ print
print.capthist, 184
print.secr, 185
print.traps, 187

∗ spatial
raster, 191

[.secrlist (AIC.secr), 14

addCovariates, 8
addSightings, 10, 243, 309
addTelemetry, 12, 131, 159, 201, 202
adjustVarD, 89, 181
adjustVarD (chat), 30
AIC, 17, 221

324 INDEX

AIC.secr, 14, 18, 114, 119, 140, 141, 186,
230, 231

AIC.secrlist (AIC.secr), 14
AICcompatible, 15–17, 18, 118, 119
alive (capthist.parts), 29
alongtransect (capthist.parts), 29
animalID (capthist.parts), 29
ARL (homerange), 100
arrows, 85
as.data.frame, 19
as.data.frame.capthist, 319
as.mask, 20, 125, 298
as.popn, 21
attenuationplot (plot.secr), 168
autoini, 22, 102, 153, 227, 237, 281
axis, 171

bias.D, 154, 229
bias.D (suggest.buffer), 280
binCovariate, 24, 87
boundarytoSF, 55, 127, 158, 171, 253, 278,

294
boundarytoSF (Internal), 106
bubble, 311
buffer.contour, 125, 158, 159, 176, 251
buffer.contour (contour), 47
BUGS, 25

capped (detector), 65
captdata, 6
captdata (secrdemo), 234
capthist, 7, 13, 23, 25, 27, 27, 30, 38, 40, 41,

100, 104, 117, 120, 121, 134, 142,
147, 150, 162, 178, 184, 194, 206,
209, 226, 231, 235, 240, 245, 249,
261, 266, 271, 275, 283, 284, 317

capthist.parts, 29
captXY (secrdemo), 234
centroids (homerange), 100
chat, 30
chat.nk, 89, 237
chat.nk (chat), 30
circular, 34
clip.hex, 131
clip.hex (make.tri), 132
clone, 36
closedN, 37, 213
closure.test, 40, 40, 54
cluster, 42, 75

cluster.centres, 42, 128
cluster.centres (trap.builder), 292
cluster.counts, 42
cluster.counts (trap.builder), 292
clusterID, 172, 295, 297
clusterID (cluster), 42
clusterID<- (cluster), 42
clusterSetRNGStream, 237
clustertrap, 295, 297
clustertrap (cluster), 42
clustertrap<- (cluster), 42
coef.secr, 43, 61
collate, 44, 141
colors, 273
colours, 166, 171
confint.secr, 45, 52, 153
contour, 47, 93, 115, 165, 166
Coulombe (housemouse), 105
count (detector), 65
counts (summary.capthist), 283
covariates, 24, 49, 261, 297, 298
covariates<- (covariates), 49
cut, 164, 273
cutree, 208, 209
CV, 50, 157, 216
CVa (CV), 50
CVa0 (CV), 50
CVpdot, 51, 80, 81
CVpdot (pdot), 156

D.designdata, 52, 107, 225
dbar, 23, 284
dbar (homerange), 100
deermouse, 53
deleteMaskPoints, 55, 125
derived, 51, 56, 75–77, 186, 213, 231
derived.secr, 33, 153
derivedCluster, 42
derivedCluster (empirical.varD), 73
derivedExternal (empirical.varD), 73
derivedMash (empirical.varD), 73
derivednj (empirical.varD), 73
derivedSession (empirical.varD), 73
derivedSystematic, 153
derivedSystematic (empirical.varD), 73
details, 51, 59, 101, 113, 217, 218, 228, 231,

247, 313
detectfn, 22, 34, 35, 47, 63, 80, 134, 169,

217, 218, 226, 246, 247, 281

INDEX 325

detectfnplot, 35, 65
detectfnplot (plot.secr), 168
Detection functions, 231
Detection functions (detectfn), 63
detector, 63, 65, 104, 131, 133, 199, 203,

204, 207, 284, 288, 293, 297, 298
detector<- (detector), 65
detectpar, 169, 281
detectpar (predict.secr), 179
deviance, 66
deviance.secr, 17, 234
df.residual (deviance), 66
Dfn2 (Internal), 106
discretize, 68, 209, 264
distancetotrap, 70
Dsurface, 71, 164, 166
Dsurface-class (Dsurface), 71

edist, 311
edist (utility), 313
effort (usage), 308
ellipse.bvn (ellipse.secr), 72
ellipse.secr, 72
empirical.varD, 59, 73
Enk (chat), 30
esa, 22, 77, 153
esa (derived), 56
esa.plot, 43, 79, 82, 83, 135, 136, 138, 154,

282
esa.plot.secr, 82
expected.n, 83, 153, 213
Extract, 277, 278, 280
extractMoves, 85, 305, 306

factor, 242
FAQ, 86
fdHess, 219, 220
fixedbeta (details), 59
Fletcher.chat, 31, 33, 88
flip (transformations), 290
formula.gam, 262, 263
fx.total, 89, 93
fxi, 90, 91
fxi.contour, 90
fxi.secr, 90, 153

getMeanSD (utility), 313
gridCells, 94, 173

hclust, 208, 209

hcov, 95, 105, 227, 231
head, 98, 99
homerange, 100
hornedlizard, 103
hornedlizardCH, 27
hornedlizardCH (hornedlizard), 103
housemouse, 105

identical, 18
infraCH (skink), 259
insertdim (secr.design.MS), 223
integrate, 34
interference (nontarget), 144
Internal, 106
intervals, 108
intervals<- (intervals), 108
invlogit (logit), 116
ip.secr (secr-defunct), 221

join, 59, 109, 109, 214, 215, 289

kfn, 111

legend, 165
lineoCH (skink), 259
list.secr.fit, 113, 154, 223, 229, 231
LLonly (details), 59
LLsurface, 114
LLsurface.secr, 153
locator, 273
logit, 116
logLik.secr (AIC.secr), 14
logmultinom, 117
LR.test, 17, 118, 221
LStraps (skink), 259

make.capthist, 29, 119, 198, 200
make.circle, 298
make.circle (make.traps), 129
make.grid, 122, 127, 128, 133, 204, 295, 298
make.grid (make.traps), 129
make.lacework, 122, 128
make.lookup (secr.design.MS), 223
make.mask, 9, 21, 33, 47, 48, 55, 71, 76,

80–83, 123, 136, 138, 157, 178, 190,
212, 213, 282, 302, 314

make.newdata (secr-defunct), 221
make.poly (make.traps), 129
make.systematic, 76, 123, 124, 126, 131,

294, 295, 320

326 INDEX

make.telemetry, 13
make.telemetry (make.traps), 129
make.transect (make.traps), 129
make.traps, 129
make.tri, 131, 132
makeCluster, 32
makeNewData, 180, 181
makeNewData (newdata), 143
makeStart, 134
mapply, 113
markocc, 10, 11, 130, 228, 297
markocc (sighting), 243
markocc<- (sighting), 243
mash, 42, 75, 182, 212, 268, 303
mash (trap.builder), 292
mask, 7, 21, 23, 29, 52, 79, 81–83, 125, 134,

135, 142, 166, 188, 190, 201, 218,
226, 227, 231, 252, 278, 280, 282,
286

mask-class (mask), 135
mask.check, 81, 83, 135, 136, 136, 153, 282
maskarea (utility), 313
masklength (utility), 313
maxdistance (details), 59
miscparm (details), 59
MMDM (homerange), 100
model.average (secr-defunct), 221
model.matrix, 60, 224, 225
modelAverage, 15, 17, 18, 45, 139, 141, 222
moves, 284
moves (homerange), 100
ms, 142
MS.capthist, 28, 29, 111
MS.capthist (rbind.capthist), 192
mtext, 171
multi (detector), 65
Multi-core processing (Parallel), 153

ncores (Parallel), 153
nearesttrap (distancetotrap), 70
nedist, 311, 313
nedist (utility), 313
newdata, 143
nk (chat), 30
nlm, 92, 228
noise (signal), 244
noise<- (signal), 244
noneuc (userdist), 311
nontarget, 144, 284

nontarget<- (nontarget), 144

occasion (capthist.parts), 29
occasionKey, 145, 162
optim, 229
ORL (homerange), 100
ovenbird, 6, 146, 149, 150
ovenCH (ovenbird), 146
ovenCHp (ovenbird), 146
ovenmask (ovenbird), 146
ovensong, 148, 246
over, 175
OVpossum, 151
OVpossumCH (OVpossum), 151

palettes, 166
par, 171
par.derived, 58, 59, 154
par.derived (secr-deprecated), 222
par.region.N, 154, 212
par.region.N (secr-deprecated), 222
par.secr.fit, 154
par.secr.fit (secr-deprecated), 222
Parallel, 153, 237, 241
parallel, 154
param (details), 59
pdot, 48, 81, 83, 90, 124, 125, 135, 153, 156
pdot.contour, 93, 157
pdot.contour (contour), 47
persp, 165, 166
pfn (secr-defunct), 221
PG, 158
pgamma, 64
plogis, 116
plot, 170, 172
plot.capthist, 144, 146, 160, 310
plot.Dsurface, 72, 90, 182, 205
plot.Dsurface (plot.mask), 163
plot.mask, 21, 163, 273
plot.popn, 167, 177, 254
plot.Rsurface, 218
plot.Rsurface (plot.mask), 163
plot.secr, 168
plot.secrlist (plot.secr), 168
plot.secrtest, 234
plot.secrtest (secrtest), 238
plot.traps, 131, 170, 298
plotMaskEdge, 95, 172
plotMCP (plot.capthist), 160

INDEX 327

pmixProfileLL, 173
pointsInPolygon, 108, 159, 174
polyarea, 175
polygon (detector), 65
polygonX (detector), 65
polyID, 30
polyID (traps.info), 299
polyID<- (traps.info), 299
popn, 21, 168, 176, 195, 246, 249, 254, 279,

291
population size (region.N), 210
possum, 177
possumarea (possum), 177
possumCH (possum), 177
possummask (possum), 177
possumremovalarea (possum), 177
predict.secr, 32, 33, 59, 112–114, 140, 143,

179, 182, 216, 230, 231
predict.secrlist (predict.secr), 179
predictDlambda, 108
predictDlambda (Trend), 300
predictDsurface, 72, 181, 182, 300
print, 184, 187, 288
print.capthist, 184
print.default, 184, 187
print.Dsurface (Dsurface), 71
print.secr, 17, 59, 185, 230, 231, 315
print.secrtest, 234
print.secrtest (secrtest), 238
print.summary.capthist

(summary.capthist), 283
print.summary.mask (summary.mask), 285
print.summary.popn (summary.popn), 286
print.summary.traps (summary.traps), 287
print.traps, 131, 187
proximity (detector), 65

qlogis, 116

random numbers (secrRNG), 236
randomDensity (randomHabitat), 188
randomHabitat, 188, 237, 254
rank, 233
rast (raster), 191
rast,Dsurface-method (raster), 191
rast,mask-method (raster), 191
raster, 191, 191, 192
raster,Dsurface-method (raster), 191
raster,mask-method (raster), 191

rbind.capthist, 29, 111, 192, 249, 275
rbind.mask (subset.mask), 276
rbind.popn, 195, 257
rbind.traps, 196, 280, 290, 298
read.capthist, 7, 10–12, 29, 120, 121, 197,

202, 235, 309
read.DA (BUGS), 25
read.mask, 9, 125, 136, 200
read.SPACECAP (secr-defunct), 221
read.table, 10, 11, 200
read.telemetry, 12, 13, 199, 200, 201
read.traps, 9–11, 131, 200, 203, 298
rectangularMask, 166, 205
reduce, 206
reduce.capthist, 29, 69, 104, 111, 206, 207,

275
reduce.traps, 206, 297, 298
reduce.traps (reduce.capthist), 207
region.N, 39, 40, 84, 153, 210, 231
RMarkInput, 214
RNG, 189, 236
rnorm, 236
rotate (transformations), 290
rotate.traps, 298
RPSV, 22, 284
RPSV (homerange), 100
RSE, 51, 215
RShowDoc, 66
Rsurface, 217
runif, 236

sample, 236
save, 87
score.table (score.test), 219
score.test, 17, 52, 119, 153, 219, 227
searcharea (traps.info), 299
secr, 33, 157, 170
secr (secr-package), 5
secr-defunct, 221
secr-deprecated, 222
secr-package, 5
secr.design.MS, 52, 53, 223, 229
secr.fit, 6, 7, 15, 17, 18, 22, 23, 29–31, 43,

45, 47, 52, 59, 62, 67, 80, 97, 107,
112–114, 121, 134–136, 138,
141–143, 153, 156, 173, 181, 182,
186, 201, 213, 223, 226, 237, 248,
258, 267, 271, 281, 298, 300, 303,
311, 313, 315, 317

328 INDEX

secr.make.newdata (secr-defunct), 221
secr.test, 153, 232, 237–239, 258
secrdemo, 234
secrlist, 113
secrlist (AIC.secr), 14
secrRNG, 189, 236
secrtest, 238
seed (secrRNG), 236
segments, 172
session, 109, 239
session<- (session), 239
sessionlabels (intervals), 108
sessionlabels<- (intervals), 108
set.seed, 236, 237
setNumThreads, 23, 32, 46, 57, 83, 87, 90, 92,

115, 153, 157, 212, 220, 228, 233,
240, 258, 268, 281

setThreadOptions, 241
shareFactorLevels, 242, 317
shift (transformations), 290
shift.traps, 298
sighting, 243
sightingPlot, 161, 162, 243
sightingPlot (usagePlot), 309
sightings, 311
sightings (sighting), 243
signal, 244
signal<- (signal), 244
signalCH (ovensong), 148
signalframe (signal), 244
signalframe<- (signal), 244
signalmatrix, 30, 244, 245, 245
sim.capthist, 22, 26, 29, 121, 237, 246, 258,

313
sim.detect (sim.secr), 256
sim.popn, 21, 37, 85, 168, 176, 177, 188–190,

237, 246, 249, 250, 257, 287, 304,
306, 313

sim.resight, 11, 237
sim.resight (sim.capthist), 246
sim.secr, 67, 153, 232, 234, 237, 256
simulate, 236, 237, 248, 249, 254, 258
simulate (sim.secr), 256
simulate.secr, 234, 237
single (detector), 65
skink, 24, 259
smooths, 261
snip, 68, 69, 263

sort.capthist, 265
sort.mask (sort.capthist), 265
spacing, 95, 266, 297, 298
spacing<- (spacing), 266
speed, 267
Speed tips, 87, 231
Speed tips (speed), 267
split.capthist, 111
split.capthist (subset.capthist), 274
split.mask (subset.mask), 276
split.traps (subset.traps), 279
spotHeight, 218
spotHeight (plot.mask), 163
st_crs, 95
st_transform, 319
stoat.model.EX (stoatDNA), 270
stoat.model.HN (stoatDNA), 270
stoatCH (stoatDNA), 270
stoatDNA, 118, 270
strip.legend, 165, 166, 272
subset, 253
subset.capthist, 29, 110, 194, 209, 274
subset.mask, 55, 125, 276
subset.popn, 278
subset.traps, 197, 279, 298
suggest.buffer, 135, 136, 154, 280
summary, 144
summary.capthist, 144, 283
summary.Dsurface (Dsurface), 71
summary.mask, 285
summary.popn, 286
summary.secr (print.secr), 185
summary.traps, 287
symbols, 311
Sys.getenv, 241

tail, 99
tail.capthist (head), 98
tail.Dsurface (head), 98
tail.mask (head), 98
tail.traps (head), 98
telemetered, 13
telemetered (capthist.parts), 29
telemetrytype (addTelemetry), 12
telemetrytype<- (addTelemetry), 12
telemetryxy, 13
telemetryxy (capthist.parts), 29
telemetryxy<- (capthist.parts), 29
terrain.colors, 273

INDEX 329

text, 145
tile (sim.popn), 250
timevaryingcov, 50, 110, 227, 288
timevaryingcov<- (timevaryingcov), 288
Tm, 11, 249
Tm (sighting), 243
Tm<- (sighting), 243
Tn, 11
Tn (sighting), 243
Tn<- (sighting), 243
trans3d, 165
transect (detector), 65
transectID (traps.info), 299
transectID<- (traps.info), 299
transectlength, 264
transectlength (traps.info), 299
transectX (detector), 65
transformations, 177, 290
transition, 313, 314
trap (capthist.parts), 29
trap.builder, 42, 76, 124, 127, 128, 131,

292, 298
traps, 7, 21, 29, 42, 66, 121, 131, 133, 172,

187, 197, 204, 243, 249, 267, 280,
287, 288, 291, 295, 297, 299, 309

traps object (traps), 297
traps.info, 299
traps<- (traps), 297
trapsPerAnimal (homerange), 100
trapXY (secrdemo), 234
Trend, 300
trim, 137, 257, 301
Troubleshooting, 86, 231, 302
Tu, 11, 249
Tu (sighting), 243
Tu<- (sighting), 243
turnover, 85, 168, 253, 254, 304

uniroot, 23, 45, 46
unjoin (join), 109
unRMarkInput (RMarkInput), 214
updateCH, 28, 307
usage, 23, 32, 48, 87, 144, 156, 227, 228, 231,

289, 297, 308, 311
usage<- (usage), 308
usagePlot, 309, 309
userdist, 31, 62, 156, 231, 311
utility, 313

vcov, 315
vcov.secr, 61, 231, 315
verify, 10, 25, 27, 130, 144, 193, 198, 227,

229, 231, 316
verify.capthist, 12, 138, 243

write.capthist, 319
write.capthist (read.capthist), 197
write.captures, 200, 318
write.DA (BUGS), 25
write.mask (write.captures), 318
write.SPACECAP (secr-defunct), 221
write.traps, 200
write.traps (write.captures), 318
writeGPS, 319

xy (capthist.parts), 29
xy2CH (addTelemetry), 12
xy<- (capthist.parts), 29

	secr-package
	addCovariates
	addSightings
	addTelemetry
	AIC.secr
	AICcompatible
	as.data.frame
	as.mask
	as.popn
	autoini
	binCovariate
	BUGS
	capthist
	capthist.parts
	chat
	circular
	clone
	closedN
	closure.test
	cluster
	coef.secr
	collate
	confint.secr
	contour
	covariates
	CV
	D.designdata
	deermouse
	deleteMaskPoints
	derived
	details
	detectfn
	detector
	deviance
	discretize
	distancetotrap
	Dsurface
	ellipse.secr
	empirical.varD
	esa.plot
	esa.plot.secr
	expected.n
	extractMoves
	FAQ
	Fletcher.chat
	fx.total
	fxi
	gridCells
	hcov
	head
	homerange
	hornedlizard
	housemouse
	Internal
	intervals
	join
	kfn
	list.secr.fit
	LLsurface
	logit
	logmultinom
	LR.test
	make.capthist
	make.lacework
	make.mask
	make.systematic
	make.traps
	make.tri
	makeStart
	mask
	mask.check
	modelAverage
	ms
	newdata
	nontarget
	occasionKey
	ovenbird
	ovensong
	OVpossum
	Parallel
	pdot
	PG
	plot.capthist
	plot.mask
	plot.popn
	plot.secr
	plot.traps
	plotMaskEdge
	pmixProfileLL
	pointsInPolygon
	polyarea
	popn
	possum
	predict.secr
	predictDsurface
	print.capthist
	print.secr
	print.traps
	randomHabitat
	raster
	rbind.capthist
	rbind.popn
	rbind.traps
	read.capthist
	read.mask
	read.telemetry
	read.traps
	rectangularMask
	reduce
	reduce.capthist
	region.N
	RMarkInput
	RSE
	Rsurface
	score.test
	secr-defunct
	secr-deprecated
	secr.design.MS
	secr.fit
	secr.test
	secrdemo
	secrRNG
	secrtest
	session
	setNumThreads
	shareFactorLevels
	sighting
	signal
	signalmatrix
	sim.capthist
	sim.popn
	sim.secr
	skink
	smooths
	snip
	sort.capthist
	spacing
	speed
	stoatDNA
	strip.legend
	subset.capthist
	subset.mask
	subset.popn
	subset.traps
	suggest.buffer
	summary.capthist
	summary.mask
	summary.popn
	summary.traps
	timevaryingcov
	transformations
	trap.builder
	traps
	traps.info
	Trend
	trim
	Troubleshooting
	turnover
	updateCH
	usage
	usagePlot
	userdist
	utility
	vcov.secr
	verify
	write.captures
	writeGPS
	Index

