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spectralGraphTopology-package

Package spectralGraphTopology

Description

This package provides estimators to learn k-component, bipartite, and k-component bipartite graphs
from data by imposing spectral constraints on the eigenvalues and eigenvectors of the Laplacian
and adjacency matrices. Those estimators leverages spectral properties of the graphical models as a
prior information, which turn out to play key roles in unsupervised machine learning tasks such as
community detection.
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Functions

learn_k_component_graph learn_bipartite_graph learn_bipartite_k_component_graph cluster_k_component_graph
learn_laplacian_gle_mm learn_laplacian_gle_admm L A

Help

For a quick help see the README file: GitHub-README.

Author(s)

Ze Vinicius and Daniel P. Palomar

References

S. Kumar, J. Ying, J. V. de Miranda Cardoso, and D. P. Palomar (2019). <https://arxiv.org/abs/1904.09792>

N., Feiping, W., Xiaoqian, J., Michael I., and H., Heng. (2016). The Constrained Laplacian Rank
Algorithm for Graph-based Clustering, AAAI’16. <http://dl.acm.org/citation.cfm?id=3016100.3016174>

Licheng Zhao, Yiwei Wang, Sandeep Kumar, and Daniel P. Palomar. Optimization Algorithms for
Graph Laplacian Estimation via ADMM and MM IEEE Trans. on Signal Processing, vol. 67, no.
16, pp. 4231-4244, Aug. 2019

A Computes the Adjacency linear operator which maps a vector of
weights into a valid Adjacency matrix.

Description

Computes the Adjacency linear operator which maps a vector of weights into a valid Adjacency
matrix.

Usage

A(w)

Arguments

w weight vector of the graph

Value

Aw the Adjacency matrix

Examples

library(spectralGraphTopology)
Aw <- A(c(1, 0, 1))
Aw

https://github.com/dppalomar/spectralGraphTopology/blob/master/README.md
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accuracy Computes the accuracy between two matrices

Description

Computes the accuracy between two matrices

Usage

accuracy(Wtrue, West, eps = 1e-04)

Arguments

Wtrue true matrix

West estimated matrix

eps real number such that edges whose values are smaller than eps are not considered
in the computation of the fscore

Examples

library(spectralGraphTopology)
X <- L(c(1, 0, 1))
accuracy(X, X)

Astar Computes the Astar operator.

Description

Computes the Astar operator.

Usage

Astar(M)

Arguments

M matrix

Value

w vector
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block_diag Constructs a block diagonal matrix from a list of square matrices

Description

Constructs a block diagonal matrix from a list of square matrices

Usage

block_diag(...)

Arguments

... list of matrices or individual matrices

Value

block diagonal matrix

Examples

library(spectralGraphTopology)
X <- L(c(1, 0, 1))
Y <- L(c(1, 0, 1, 0, 0, 1))
B <- block_diag(X, Y)
B

cluster_k_component_graph

Cluster a k-component graph from data using the Con-
strained Laplacian Rank algorithm Cluster a k-component
graph on the basis of an observed data matrix. Check out
https://mirca.github.io/spectralGraphTopology for code examples.

Description

Cluster a k-component graph from data using the Constrained Laplacian Rank algorithm

Cluster a k-component graph on the basis of an observed data matrix. Check out https://mirca.github.io/spectralGraphTopology
for code examples.
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Usage

cluster_k_component_graph(
Y,
k = 1,
m = 5,
lmd = 1,
eigtol = 1e-09,
edgetol = 1e-06,
maxiter = 1000

)

Arguments

Y a pxn data matrix, where p is the number of nodes and n is the number of features
(or data points per node)

k the number of components of the graph

m the maximum number of possible connections for a given node used to build an
affinity matrix

lmd L2-norm regularization hyperparameter

eigtol value below which eigenvalues are considered to be zero

edgetol value below which edge weights are considered to be zero

maxiter the maximum number of iterations

Value

A list containing the following elements:

laplacian the estimated Laplacian Matrix

adjacency the estimated Adjacency Matrix

eigvals the eigenvalues of the Laplacian Matrix

lmd_seq sequence of lmd values at every iteration

elapsed_time elapsed time at every iteration

Author(s)

Ze Vinicius and Daniel Palomar

References

Nie, Feiping and Wang, Xiaoqian and Jordan, Michael I. and Huang, Heng. The Constrained Lapla-
cian Rank Algorithm for Graph-based Clustering, 2016, AAAI’16. http://dl.acm.org/citation.cfm?id=3016100.3016174
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Examples

library(clusterSim)
library(spectralGraphTopology)
library(igraph)
set.seed(1)
# number of nodes per cluster
N <- 30
# generate datapoints
twomoon <- shapes.two.moon(N)
# estimate underlying graph
graph <- cluster_k_component_graph(twomoon$data, k = 2)
# build network
net <- graph_from_adjacency_matrix(graph$adjacency, mode = "undirected", weighted = TRUE)
# colorify nodes and edges
colors <- c("#706FD3", "#FF5252", "#33D9B2")
V(net)$cluster <- twomoon$clusters
E(net)$color <- apply(as.data.frame(get.edgelist(net)), 1,

function(x) ifelse(V(net)$cluster[x[1]] == V(net)$cluster[x[2]],
colors[V(net)$cluster[x[1]]], '#000000'))

V(net)$color <- c(colors[1], colors[2])[twomoon$clusters]
# plot network
plot(net, layout = twomoon$data, vertex.label = NA, vertex.size = 3)

D Computes the degree operator from the vector of edge weights.

Description

Computes the degree operator from the vector of edge weights.

Usage

D(w)

Arguments

w vector

Value

Dw vector
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Dstar Computes the Dstar operator, i.e., the adjoint of the D operator.

Description

Computes the Dstar operator, i.e., the adjoint of the D operator.

Usage

Dstar(w)

Arguments

w vector

Value

Dstar(w) vector

fdr Computes the false discovery rate between two matrices

Description

Computes the false discovery rate between two matrices

Usage

fdr(Wtrue, West, eps = 1e-04)

Arguments

Wtrue true matrix

West estimated matrix

eps real number such that edges whose values are smaller than eps are not considered
in the computation of the fscore

Examples

library(spectralGraphTopology)
X <- L(c(1, 0, 1))
fdr(X, X)
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fscore Computes the fscore between two matrices

Description

Computes the fscore between two matrices

Usage

fscore(Wtrue, West, eps = 1e-04)

Arguments

Wtrue true matrix

West estimated matrix

eps real number such that edges whose values are smaller than eps are not considered
in the computation of the fscore

Examples

library(spectralGraphTopology)
X <- L(c(1, 0, 1))
fscore(X, X)

L Computes the Laplacian linear operator which maps a vector of
weights into a valid Laplacian matrix.

Description

Computes the Laplacian linear operator which maps a vector of weights into a valid Laplacian
matrix.

Usage

L(w)

Arguments

w weight vector of the graph

Value

Lw the Laplacian matrix
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Examples

library(spectralGraphTopology)
Lw <- L(c(1, 0, 1))
Lw

learn_bipartite_graph Learn a bipartite graph Learns a bipartite graph on the basis of an
observed data matrix

Description

Learn a bipartite graph

Learns a bipartite graph on the basis of an observed data matrix

Usage

learn_bipartite_graph(
S,
is_data_matrix = FALSE,
z = 0,
nu = 10000,
alpha = 0,
w0 = "naive",
m = 7,
maxiter = 10000,
abstol = 1e-06,
reltol = 1e-04,
record_weights = FALSE,
verbose = TRUE

)

Arguments

S either a pxp sample covariance/correlation matrix, or a pxn data matrix, where p
is the number of nodes and n is the number of features (or data points per node)

is_data_matrix whether the matrix S should be treated as data matrix or sample covariance
matrix

z the number of zero eigenvalues for the Adjancecy matrix

nu regularization hyperparameter for the term ||A(w) - V Psi V’||^2_F

alpha L1 regularization hyperparameter

w0 initial estimate for the weight vector the graph or a string selecting an appropri-
ate method. Available methods are: "qp": finds w0 that minimizes ||ginv(S) -
L(w0)||_F, w0 >= 0; "naive": takes w0 as the negative of the off-diagonal ele-
ments of the pseudo inverse, setting to 0 any elements s.t. w0 < 0
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m in case is_data_matrix = TRUE, then we build an affinity matrix based on Nie
et. al. 2017, where m is the maximum number of possible connections for a
given node

maxiter the maximum number of iterations

abstol absolute tolerance on the weight vector w

reltol relative tolerance on the weight vector w

record_weights whether to record the edge values at each iteration

verbose whether to output a progress bar showing the evolution of the iterations

Value

A list containing possibly the following elements:

laplacian the estimated Laplacian Matrix

adjacency the estimated Adjacency Matrix

w the estimated weight vector

psi optimization variable accounting for the eigenvalues of the Adjacency matrix

V eigenvectors of the estimated Adjacency matrix

elapsed_time elapsed time recorded at every iteration

convergence boolean flag to indicate whether or not the optimization converged

obj_fun values of the objective function at every iteration in case record_objective =
TRUE

negloglike values of the negative loglikelihood at every iteration in case record_objective =
TRUE

w_seq sequence of weight vectors at every iteration in case record_weights = TRUE

Author(s)

Ze Vinicius and Daniel Palomar

References

S. Kumar, J. Ying, J. V. M. Cardoso, D. P. Palomar. A unified framework for structured graph learn-
ing via spectral constraints. Journal of Machine Learning Research, 2020. http://jmlr.org/papers/v21/19-
276.html

Examples

library(spectralGraphTopology)
library(igraph)
library(viridis)
library(corrplot)
set.seed(42)
n1 <- 10
n2 <- 6
n <- n1 + n2
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pc <- .9
bipartite <- sample_bipartite(n1, n2, type="Gnp", p = pc, directed=FALSE)
# randomly assign edge weights to connected nodes
E(bipartite)$weight <- runif(gsize(bipartite), min = 0, max = 1)
# get true Laplacian and Adjacency
Ltrue <- as.matrix(laplacian_matrix(bipartite))
Atrue <- diag(diag(Ltrue)) - Ltrue
# get samples
Y <- MASS::mvrnorm(100 * n, rep(0, n), Sigma = MASS::ginv(Ltrue))
# compute sample covariance matrix
S <- cov(Y)
# estimate Adjacency matrix
graph <- learn_bipartite_graph(S, z = 4, verbose = FALSE)
graph$adjacency[graph$adjacency < 1e-3] <- 0
# Plot Adjacency matrices: true, noisy, and estimated
corrplot(Atrue / max(Atrue), is.corr = FALSE, method = "square",

addgrid.col = NA, tl.pos = "n", cl.cex = 1.25)
corrplot(graph$adjacency / max(graph$adjacency), is.corr = FALSE,

method = "square", addgrid.col = NA, tl.pos = "n", cl.cex = 1.25)
# build networks
estimated_bipartite <- graph_from_adjacency_matrix(graph$adjacency,

mode = "undirected",
weighted = TRUE)

V(estimated_bipartite)$type <- c(rep(0, 10), rep(1, 6))
la = layout_as_bipartite(estimated_bipartite)
colors <- viridis(20, begin = 0, end = 1, direction = -1)
c_scale <- colorRamp(colors)
E(estimated_bipartite)$color = apply(

c_scale(E(estimated_bipartite)$weight / max(E(estimated_bipartite)$weight)), 1,
function(x) rgb(x[1]/255, x[2]/255, x[3]/255))

E(bipartite)$color = apply(c_scale(E(bipartite)$weight / max(E(bipartite)$weight)), 1,
function(x) rgb(x[1]/255, x[2]/255, x[3]/255))

la = la[, c(2, 1)]
# Plot networks: true and estimated
plot(bipartite, layout = la, vertex.color=c("red","black")[V(bipartite)$type + 1],

vertex.shape = c("square", "circle")[V(bipartite)$type + 1],
vertex.label = NA, vertex.size = 5)

plot(estimated_bipartite, layout = la,
vertex.color=c("red","black")[V(estimated_bipartite)$type + 1],
vertex.shape = c("square", "circle")[V(estimated_bipartite)$type + 1],
vertex.label = NA, vertex.size = 5)

learn_bipartite_k_component_graph

Learns a bipartite k-component graph Jointly learns the Laplacian
and Adjacency matrices of a graph on the basis of an observed data
matrix

Description

Learns a bipartite k-component graph
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Jointly learns the Laplacian and Adjacency matrices of a graph on the basis of an observed data
matrix

Usage

learn_bipartite_k_component_graph(
S,
is_data_matrix = FALSE,
z = 0,
k = 1,
w0 = "naive",
m = 7,
alpha = 0,
beta = 10000,
rho = 0.01,
fix_beta = TRUE,
beta_max = 1e+06,
nu = 10000,
lb = 0,
ub = 10000,
maxiter = 10000,
abstol = 1e-06,
reltol = 1e-04,
eigtol = 1e-09,
record_weights = FALSE,
record_objective = FALSE,
verbose = TRUE

)

Arguments

S either a pxp sample covariance/correlation matrix, or a pxn data matrix, where p
is the number of nodes and n is the number of features (or data points per node)

is_data_matrix whether the matrix S should be treated as data matrix or sample covariance
matrix

z the number of zero eigenvalues for the Adjancecy matrix

k the number of components of the graph

w0 initial estimate for the weight vector the graph or a string selecting an appropri-
ate method. Available methods are: "qp": finds w0 that minimizes ||ginv(S) -
L(w0)||_F, w0 >= 0; "naive": takes w0 as the negative of the off-diagonal ele-
ments of the pseudo inverse, setting to 0 any elements s.t. w0 < 0

m in case is_data_matrix = TRUE, then we build an affinity matrix based on Nie
et. al. 2017, where m is the maximum number of possible connections for a
given node

alpha L1 regularization hyperparameter

beta regularization hyperparameter for the term ||L(w) - U Lambda U’||^2_F

rho how much to increase (decrease) beta in case fix_beta = FALSE
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fix_beta whether or not to fix the value of beta. In case this parameter is set to false, then
beta will increase (decrease) depending whether the number of zero eigenvalues
is lesser (greater) than k

beta_max maximum allowed value for beta

nu regularization hyperparameter for the term ||A(w) - V Psi V’||^2_F

lb lower bound for the eigenvalues of the Laplacian matrix

ub upper bound for the eigenvalues of the Laplacian matrix

maxiter the maximum number of iterations

abstol absolute tolerance on the weight vector w

reltol relative tolerance on the weight vector w

eigtol value below which eigenvalues are considered to be zero

record_weights whether to record the edge values at each iteration
record_objective

whether to record the objective function values at each iteration

verbose whether to output a progress bar showing the evolution of the iterations

Value

A list containing possibly the following elements:

laplacian the estimated Laplacian Matrix

adjacency the estimated Adjacency Matrix

w the estimated weight vector

psi optimization variable accounting for the eigenvalues of the Adjacency matrix

lambda optimization variable accounting for the eigenvalues of the Laplacian matrix

V eigenvectors of the estimated Adjacency matrix

U eigenvectors of the estimated Laplacian matrix

elapsed_time elapsed time recorded at every iteration

beta_seq sequence of values taken by beta in case fix_beta = FALSE

convergence boolean flag to indicate whether or not the optimization converged

obj_fun values of the objective function at every iteration in case record_objective =
TRUE

negloglike values of the negative loglikelihood at every iteration in case record_objective =
TRUE

w_seq sequence of weight vectors at every iteration in case record_weights = TRUE

Author(s)

Ze Vinicius and Daniel Palomar
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References

S. Kumar, J. Ying, J. V. M. Cardoso, D. P. Palomar. A unified framework for structured graph learn-
ing via spectral constraints. Journal of Machine Learning Research, 2020. http://jmlr.org/papers/v21/19-
276.html

Examples

library(spectralGraphTopology)
library(igraph)
library(viridis)
library(corrplot)
set.seed(42)
w <- c(1, 0, 0, 1, 0, 1) * runif(6)
Laplacian <- block_diag(L(w), L(w))
Atrue <- diag(diag(Laplacian)) - Laplacian
bipartite <- graph_from_adjacency_matrix(Atrue, mode = "undirected", weighted = TRUE)
n <- ncol(Laplacian)
Y <- MASS::mvrnorm(40 * n, rep(0, n), MASS::ginv(Laplacian))
graph <- learn_bipartite_k_component_graph(cov(Y), k = 2, beta = 1e2, nu = 1e2, verbose = FALSE)
graph$adjacency[graph$adjacency < 1e-2] <- 0
# Plot Adjacency matrices: true, noisy, and estimated
corrplot(Atrue / max(Atrue), is.corr = FALSE, method = "square", addgrid.col = NA, tl.pos = "n",

cl.cex = 1.25)
corrplot(graph$adjacency / max(graph$adjacency), is.corr = FALSE, method = "square",

addgrid.col = NA, tl.pos = "n", cl.cex = 1.25)
# Plot networks
estimated_bipartite <- graph_from_adjacency_matrix(graph$adjacency, mode = "undirected",

weighted = TRUE)
V(bipartite)$type <- rep(c(TRUE, FALSE), 4)
V(estimated_bipartite)$type <- rep(c(TRUE, FALSE), 4)
la = layout_as_bipartite(estimated_bipartite)
colors <- viridis(20, begin = 0, end = 1, direction = -1)
c_scale <- colorRamp(colors)
E(estimated_bipartite)$color = apply(

c_scale(E(estimated_bipartite)$weight / max(E(estimated_bipartite)$weight)), 1,
function(x) rgb(x[1]/255, x[2]/255, x[3]/255))

E(bipartite)$color = apply(c_scale(E(bipartite)$weight / max(E(bipartite)$weight)), 1,
function(x) rgb(x[1]/255, x[2]/255, x[3]/255))

la = la[, c(2, 1)]
# Plot networks: true and estimated
plot(bipartite, layout = la,

vertex.color = c("red","black")[V(bipartite)$type + 1],
vertex.shape = c("square", "circle")[V(bipartite)$type + 1],
vertex.label = NA, vertex.size = 5)

plot(estimated_bipartite, layout = la,
vertex.color = c("red","black")[V(estimated_bipartite)$type + 1],
vertex.shape = c("square", "circle")[V(estimated_bipartite)$type + 1],
vertex.label = NA, vertex.size = 5)
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learn_combinatorial_graph_laplacian

Learn the Combinatorial Graph Laplacian from data Learns a graph
Laplacian matrix using the Combinatorial Graph Laplacian (CGL)
algorithm proposed by Egilmez et. al. (2017)

Description

Learn the Combinatorial Graph Laplacian from data

Learns a graph Laplacian matrix using the Combinatorial Graph Laplacian (CGL) algorithm pro-
posed by Egilmez et. al. (2017)

Usage

learn_combinatorial_graph_laplacian(
S,
A_mask = NULL,
alpha = 0,
reltol = 1e-05,
max_cycle = 10000,
regtype = 1,
record_objective = FALSE,
verbose = TRUE

)

Arguments

S sample covariance matrix

A_mask binary adjacency matrix of the graph

alpha L1-norm regularization hyperparameter

reltol minimum relative error considered for the stopping criteri

max_cycle maximum number of cycles

regtype type of L1-norm regularization. If reg_type == 1, then all elements of the Lapla-
cian matrix will be regularized. If reg_type == 2, only the off-diagonal elements
will be regularized

record_objective

whether or not to record the objective function value at every iteration. Default
is FALSE

verbose if TRUE, then a progress bar will be displayed in the console. Default is TRUE

Value

A list containing possibly the following elements

laplacian estimated Laplacian Matrix



learn_graph_sigrep 17

elapsed_time elapsed time recorded at every iteration

frod_norm relative Frobenius norm between consecutive estimates of the Laplacian matrix

convergence whether or not the algorithm has converged within the tolerance and max num-
ber of iterations

obj_fun objective function value at every iteration, in case record_objective = TRUE

References

H. E. Egilmez, E. Pavez and A. Ortega, "Graph Learning From Data Under Laplacian and Struc-
tural Constraints", in IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 6, pp.
825-841, Sept. 2017. Original MATLAB source code is available at: https://github.com/STAC-
USC/Graph_Learning

learn_graph_sigrep Learn graphs from a smooth signal representation approach This func-
tion learns a graph from a observed data matrix using the method pro-
posed by Dong (2016).

Description

Learn graphs from a smooth signal representation approach

This function learns a graph from a observed data matrix using the method proposed by Dong
(2016).

Usage

learn_graph_sigrep(
X,
alpha = 0.001,
beta = 0.5,
maxiter = 1000,
ftol = 1e-04,
verbose = TRUE

)

Arguments

X a p-by-n data matrix, where p is the number of nodes and n is the number of
observations

alpha hyperparameter that controls the importance of the Dirichlet energy penalty

beta hyperparameter that controls the importance of the L2-norm regularization

maxiter maximum number of iterations

ftol relative error on the objective function to be used as the stopping criteria

verbose if TRUE, then a progress bar will be displayed in the console. Default is TRUE
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Value

A list containing the following items

laplacian estimated Laplacian Matrix

Y a smoothed approximation of the data matrix X

convergence whether or not the algorithm has converged within the tolerance and max num-
ber of iterations

obj_fun objective function value at every iteration, in case record_objective = TRUE

References

X. Dong, D. Thanou, P. Frossard and P. Vandergheynst, "Learning Laplacian Matrix in Smooth
Graph Signal Representations," in IEEE Transactions on Signal Processing, vol. 64, no. 23, pp.
6160-6173, Dec.1, 2016.

learn_k_component_graph

Learn the Laplacian matrix of a k-component graph Learns a k-
component graph on the basis of an observed data matrix. Check out
https://mirca.github.io/spectralGraphTopology for code examples.

Description

Learn the Laplacian matrix of a k-component graph

Learns a k-component graph on the basis of an observed data matrix. Check out https://mirca.github.io/spectralGraphTopology
for code examples.

Usage

learn_k_component_graph(
S,
is_data_matrix = FALSE,
k = 1,
w0 = "naive",
lb = 0,
ub = 10000,
alpha = 0,
beta = 10000,
beta_max = 1e+06,
fix_beta = TRUE,
rho = 0.01,
m = 7,
eps = 1e-04,
maxiter = 10000,
abstol = 1e-06,
reltol = 1e-04,
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eigtol = 1e-09,
record_objective = FALSE,
record_weights = FALSE,
verbose = TRUE

)

Arguments

S either a pxp sample covariance/correlation matrix, or a pxn data matrix, where p
is the number of nodes and n is the number of features (or data points per node)

is_data_matrix whether the matrix S should be treated as data matrix or sample covariance
matrix

k the number of components of the graph

w0 initial estimate for the weight vector the graph or a string selecting an appropri-
ate method. Available methods are: "qp": finds w0 that minimizes ||ginv(S) -
L(w0)||_F, w0 >= 0; "naive": takes w0 as the negative of the off-diagonal ele-
ments of the pseudo inverse, setting to 0 any elements s.t. w0 < 0

lb lower bound for the eigenvalues of the Laplacian matrix

ub upper bound for the eigenvalues of the Laplacian matrix

alpha reweighted l1-norm regularization hyperparameter

beta regularization hyperparameter for the term ||L(w) - U Lambda U’||^2_F

beta_max maximum allowed value for beta

fix_beta whether or not to fix the value of beta. In case this parameter is set to false, then
beta will increase (decrease) depending whether the number of zero eigenvalues
is lesser (greater) than k

rho how much to increase (decrease) beta in case fix_beta = FALSE

m in case is_data_matrix = TRUE, then we build an affinity matrix based on Nie
et. al. 2017, where m is the maximum number of possible connections for a
given node

eps small positive constant

maxiter the maximum number of iterations

abstol absolute tolerance on the weight vector w

reltol relative tolerance on the weight vector w

eigtol value below which eigenvalues are considered to be zero

record_objective

whether to record the objective function values at each iteration

record_weights whether to record the edge values at each iteration

verbose whether to output a progress bar showing the evolution of the iterations
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Value

A list containing possibly the following elements:

laplacian the estimated Laplacian Matrix

adjacency the estimated Adjacency Matrix

w the estimated weight vector

lambda optimization variable accounting for the eigenvalues of the Laplacian matrix

U eigenvectors of the estimated Laplacian matrix

elapsed_time elapsed time recorded at every iteration

beta_seq sequence of values taken by beta in case fix_beta = FALSE

convergence boolean flag to indicate whether or not the optimization converged

obj_fun values of the objective function at every iteration in case record_objective =
TRUE

negloglike values of the negative loglikelihood at every iteration in case record_objective =
TRUE

w_seq sequence of weight vectors at every iteration in case record_weights = TRUE

Author(s)

Ze Vinicius and Daniel Palomar

References

S. Kumar, J. Ying, J. V. M. Cardoso, D. P. Palomar. A unified framework for structured graph learn-
ing via spectral constraints. Journal of Machine Learning Research, 2020. http://jmlr.org/papers/v21/19-
276.html

Examples

# design true Laplacian
Laplacian <- rbind(c(1, -1, 0, 0),

c(-1, 1, 0, 0),
c(0, 0, 1, -1),
c(0, 0, -1, 1))

n <- ncol(Laplacian)
# sample data from multivariate Gaussian
Y <- MASS::mvrnorm(n * 500, rep(0, n), MASS::ginv(Laplacian))
# estimate graph on the basis of sampled data
graph <- learn_k_component_graph(cov(Y), k = 2, beta = 10)
graph$laplacian



learn_laplacian_gle_admm 21

learn_laplacian_gle_admm

Learn the weighted Laplacian matrix of a graph using the ADMM
method

Description

Learn the weighted Laplacian matrix of a graph using the ADMM method

Usage

learn_laplacian_gle_admm(
S,
A_mask = NULL,
alpha = 0,
rho = 1,
maxiter = 10000,
reltol = 1e-05,
record_objective = FALSE,
verbose = TRUE

)

Arguments

S a pxp sample covariance/correlation matrix

A_mask the binary adjacency matrix of the graph

alpha L1 regularization hyperparameter

rho ADMM convergence rate hyperparameter

maxiter the maximum number of iterations

reltol relative tolerance on the Laplacian matrix estimation
record_objective

whether or not to record the objective function. Default is FALSE

verbose if TRUE, then a progress bar will be displayed in the console. Default is TRUE

Value

A list containing possibly the following elements:

Laplacian the estimated Laplacian Matrix

Adjacency the estimated Adjacency Matrix

convergence boolean flag to indicate whether or not the optimization converged

obj_fun values of the objective function at every iteration in case record_objective =
TRUE
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Author(s)

Ze Vinicius, Jiaxi Ying, and Daniel Palomar

References

Licheng Zhao, Yiwei Wang, Sandeep Kumar, and Daniel P. Palomar. Optimization Algorithms for
Graph Laplacian Estimation via ADMM and MM. IEEE Trans. on Signal Processing, vol. 67, no.
16, pp. 4231-4244, Aug. 2019

learn_laplacian_gle_mm

Learn the weighted Laplacian matrix of a graph using the MM method

Description

Learn the weighted Laplacian matrix of a graph using the MM method

Usage

learn_laplacian_gle_mm(
S,
A_mask = NULL,
alpha = 0,
maxiter = 10000,
reltol = 1e-05,
record_objective = FALSE,
verbose = TRUE

)

Arguments

S a pxp sample covariance/correlation matrix

A_mask the binary adjacency matrix of the graph

alpha L1 regularization hyperparameter

maxiter the maximum number of iterations

reltol relative tolerance on the weight vector w

record_objective

whether or not to record the objective function. Default is FALSE

verbose if TRUE, then a progress bar will be displayed in the console. Default is TRUE
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Value

A list containing possibly the following elements:

laplacian the estimated Laplacian Matrix

Adjacency the estimated Adjacency Matrix

convergence boolean flag to indicate whether or not the optimization converged

obj_fun values of the objective function at every iteration in case record_objective =
TRUE

Author(s)

Ze Vinicius, Jiaxi Ying, and Daniel Palomar

References

Licheng Zhao, Yiwei Wang, Sandeep Kumar, and Daniel P. Palomar. Optimization Algorithms for
Graph Laplacian Estimation via ADMM and MM. IEEE Trans. on Signal Processing, vol. 67, no.
16, pp. 4231-4244, Aug. 2019

learn_smooth_approx_graph

Learns a smooth approximated graph from an observed data matrix.
Check out https://mirca.github.io/spectralGraphTopology for code ex-
amples.

Description

Learns a smooth approximated graph from an observed data matrix. Check out https://mirca.github.io/spectralGraphTopology
for code examples.

Usage

learn_smooth_approx_graph(Y, m)

Arguments

Y a p-by-n data matrix, where p is the number of nodes and n is the number of
features (or data points per node)

m the maximum number of possible connections for a given node used to build an
affinity matrix

Value

A list containing the following elements:

laplacian the estimated Laplacian Matrix
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Author(s)

Ze Vinicius and Daniel Palomar

References

Nie, Feiping and Wang, Xiaoqian and Jordan, Michael I. and Huang, Heng. The Constrained Lapla-
cian Rank Algorithm for Graph-based Clustering, 2016, AAAI’16. http://dl.acm.org/citation.cfm?id=3016100.3016174

learn_smooth_graph Learn a graph from smooth signals This function learns a connected
graph given an observed signal matrix using the method proposed by
Kalofilias (2016).

Description

Learn a graph from smooth signals

This function learns a connected graph given an observed signal matrix using the method proposed
by Kalofilias (2016).

Usage

learn_smooth_graph(
X,
alpha = 0.01,
beta = 1e-04,
step_size = 0.01,
maxiter = 1000,
tol = 1e-04

)

Arguments

X a p-by-n data matrix, where p is the number of nodes and n is the number of
observations

alpha hyperparameter that controls the importance of the Dirichlet energy penalty

beta hyperparameter that controls the importance of the L2-norm regularization

step_size learning rate

maxiter maximum number of iterations

tol relative tolerance used as stopping criteria

References

V. Kalofolias, "How to learn a graph from smooth signals", in Proc. Int. Conf. Artif. Intell. Statist.,
2016, pp. 920–929.
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Lstar Computes the Lstar operator.

Description

Computes the Lstar operator.

Usage

Lstar(M)

Arguments

M matrix

Value

w vector

npv Computes the negative predictive value between two matrices

Description

Computes the negative predictive value between two matrices

Usage

npv(Wtrue, West, eps = 1e-04)

Arguments

Wtrue true matrix

West estimated matrix

eps real number such that edges whose values are smaller than eps are not considered
in the computation of the fscore

Examples

library(spectralGraphTopology)
X <- L(c(1, 0, 1))
npv(X, X)
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recall Computes the recall between two matrices

Description

Computes the recall between two matrices

Usage

recall(Wtrue, West, eps = 1e-04)

Arguments

Wtrue true matrix

West estimated matrix

eps real number such that edges whose values are smaller than eps are not considered
in the computation of the fscore

Examples

library(spectralGraphTopology)
X <- L(c(1, 0, 1))
recall(X, X)

relative_error Computes the relative error between the true and estimated matrices

Description

Computes the relative error between the true and estimated matrices

Usage

relative_error(West, Wtrue)

Arguments

West estimated matrix

Wtrue true matrix

Examples

library(spectralGraphTopology)
X <- L(c(1, 0, 1))
relative_error(X, X)
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specificity Computes the specificity between two matrices

Description

Computes the specificity between two matrices

Usage

specificity(Wtrue, West, eps = 1e-04)

Arguments

Wtrue true matrix

West estimated matrix

eps real number such that edges whose values are smaller than eps are not considered
in the computation of the fscore

Examples

library(spectralGraphTopology)
X <- L(c(1, 0, 1))
specificity(X, X)
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