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Abstract

Owing to their generality, transformation models can be used to set-up and compute
many interesting regression models for discrete and continuous responses. This document
focuses on the analysis of clustered observations. Marginal predictive distributions are
defined by transformation models and their joint normal distribution depends on a struc-
tured covariance matrix. Applications with skewed, bounded, and survival continuous
outcomes as well as binary and ordered categorical responses are presented. Data is anal-
ysed by a proof-of-concept implementation of parametric linear transformation models for
clustered observations available in the tram add-on package to the R system for statistical
computing.

Keywords: conditional mixed models, marginal models, marginal predictive distributions, sur-
vival analysis, categorical data analysis.

1. Introduction

The purpose of this document is to compare marginally interpretable linear transformation
models for clustered observations (Barbanti and Hothorn 2022) to conventional conditional
formulations of mixed-effects models where such an overlap exists. In addition, novel transfor-
mation models going beyond the capabilities of convential mixed-effects models are estimated
and interpreted. A proof-of-concept implementation available in package tram (Hothorn et al.
2022) is applied. The results presented in this document can be reproduced from the mtram

demo

R> install.packages("tram")

R> demo("mtram", package = "tram")

2. Normal and Non-normal Mixed-effects Models

First we consider mixed-effects models for reaction times in the sleep deprivation study (Be-
lenky et al. 2003). The average reaction times to a specific task over several days of sleep

Please cite this document as: Luisa Barbanti and Torsten Hothorn (2022) Some Applications of Marginally
Interpretable Linear Transformation Models for Clustered Observations. R package vignette version 0.8-0, URL
https://CRAN.R-project.org/package=tram.
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Figure 1: Sleep deprivation: Average reaction times to a specific task over several days of
sleep deprivation for 18 subjects from Belenky et al. (2003).

deprivation are given for i = 1, . . . , N = 18 subjects in Figure 1. The data are often used to
illustrate conditional normal linear mixed-effects models with correlated random intercepts
and slopes.

The classical normal linear random-intercept/random-slope model, treating the study partic-
ipants as independent observations, is fitted by maximum likelihood to the data using the
lmer() function from the lme4 add-on package (Bates et al. 2015):

R> sleep_lmer <- lmer(Reaction ~ Days + (Days | Subject),

+ data = sleepstudy, REML = FALSE)

The corresponding conditional model for subject i reads

P(Reaction ≤ y | day, i) = Φ

(

y − α− βday− αi − βiday

σ

)

, (αi, βi) ∼ N2(0,G(γ))

with σ−2G = Λ(γ)Λ(γ)¦ and

Λ(γ) =

(

γ1 0
γ2 γ3

)

, γ = (γ1, γ2, γ3)
¦.

The same model, however using the alternative parameterisation and an independent (of lme4,
only the update() method for Cholesky factors is reused) gradient-based maximisation of the
log-likelihood, is estimated in a two-step approach as

R> library("tram")
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R> sleep_LM <- Lm(Reaction ~ Days, data = sleepstudy)

R> sleep_LMmer <- mtram(sleep_LM, ~ (Days | Subject), data = sleepstudy)

The first call to Lm() computes the equivalent of a normal linear regression model parame-
terised as a linear transformation model ignoring the longitudinal nature of the observations.
The purpose if to set-up the necessary model infrastructure (model matrices, inverse link func-
tions, etc.) and to compute reasonable starting values for the fixed effects. The second call
to mtram() specifies the random effects structure (here a correlated pair of random intercept
for subject and random slope for days) and optimises the likelihood for all model parameters
ϑ1, α̃, β̃, and γ in the model (here also looking at the conditional model for subject i)

P(Reaction ≤ y | day, i) = Φ
(

ϑ1y + α̃− β̃day− α̃i − β̃iday
)

, (α̃i, β̃i) ∼ N2(0,Λ(γ)Λ(γ))

that is, all fixed and random effect parameters are divided by the residual standard deviation
σ (this is the reparameterisation applied by Lm()). Of course, the parameter ϑ1, the inverse
residual standard deviation, is ensured to be positive via an additional constraint in the
optimiser maximising the log-likelihood.

The log-likelihoods of the two models fitted by lmer() and mtram() are very close

R> logLik(sleep_lmer)

'log Lik.' -875.9697 (df=6)

R> logLik(sleep_LMmer)

'log Lik.' -875.9697 (df=6)

Looking at the model coefficients, the two procedures lead to almost identical inverse residual
standard deviations

R> (sdinv <- 1 / summary(sleep_lmer)$sigma)

[1] 0.03907485

R> coef(sleep_LMmer)["Reaction"]

Reaction

0.03907741

and fixed effects (the slope can be interpreted as inverse coefficient of variation)

R> fixef(sleep_lmer) * c(-1, 1) * sdinv

(Intercept) Days

-9.8236175 0.4090077

R> coef(sleep_LMmer)[c("(Intercept)", "Days")]
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(Intercept) Days

-9.8243917 0.4089265

The random-effect parameters γ are also reasonably close

R> sleep_lmer@theta

[1] 0.92919061 0.01816575 0.22264321

R> coef(sleep_LMmer)[-(1:3)]

gamma1 gamma2 gamma3

0.92901066 0.01843056 0.22280431

Consequently, the variance-covariance and correlation matrices

R> sleep_LMmer$G * (1 / sdinv)^2

2 x 2 sparse Matrix of class "dsCMatrix"

[1,] 565.2580 11.21410

[2,] 11.2141 32.73513

R> cov2cor(sleep_LMmer$G * (1 / sdinv)^2)

2 x 2 sparse Matrix of class "dsCMatrix"

[1,] 1.00000000 0.08243925

[2,] 0.08243925 1.00000000

R> unclass(VarCorr(sleep_lmer))$Subject

(Intercept) Days

(Intercept) 565.47697 11.05512

Days 11.05512 32.68179

attr(,"stddev")

(Intercept) Days

23.779760 5.716799

attr(,"correlation")

(Intercept) Days

(Intercept) 1.00000000 0.08132109

Days 0.08132109 1.00000000

are practically equivalent. This result indicates the correctness of the alternative implementa-
tion of normal linear mixed-effects models in the transformation model framework: mtram()
reuses some infrastructure from lme4 and Matrix, most importantly fast update methods for
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Cholesky factors, but the likelihood and corresponding optimisation relies on an independent
implementation. So why are we doing this? Because mtram() is able to deal with models or
likelihoods not available in lme4, for example the likelihood for interval-censored observations.

Let’s assume that the timing of the reaction times was less accurate than suggested by the
numerical representation of the results. The following code

R> library("survival")

R> sleepstudy$Reaction_I <- with(sleepstudy, Surv(Reaction - 20, Reaction + 20,

+ type = "interval2"))

R> sleepstudy$Reaction_I[1:5]

[1] [229.5600, 269.5600] [238.7047, 278.7047] [230.8006, 270.8006]

[4] [301.4398, 341.4398] [336.8519, 376.8519]

converts the outcome to interval-censored values, where each interval has length 40. The
above mixed model can now be estimated by maximising the likelihood corresponding to
interval-censored observations:

R> sleep_LM_I <- Lm(Reaction_I ~ Days, data = sleepstudy)

R> sleep_LMmer_I <- mtram(sleep_LM_I, ~ (Days | Subject), data = sleepstudy)

Of course, the log-likelihood changes (because this is a log-probability and not a log-density
of a continuous distribution) but the parameter estimates are reasonably close

R> logLik(sleep_LMmer_I)

'log Lik.' -214.9675 (df=6)

R> coef(sleep_LMmer_I)

(Intercept) Reaction_I Days gamma1 gamma2 gamma3

-9.78770607 0.03900116 0.41633415 0.83398952 0.07584130 0.19038611

R> coef(sleep_LMmer)

(Intercept) Reaction Days gamma1 gamma2 gamma3

-9.82439168 0.03907741 0.40892652 0.92901066 0.01843056 0.22280431

The next question is if the normal assumption for reaction times is appropriate. In the
transformation world, this assumption is simple to assess because we can easily (theoretically
and in-silico) switch to the non-normal linear mixed-effects transformation model

P(Reaction ≤ y | day, i) = Φ
(

h(y)− β̃day− α̃i − β̃iday
)

, (α̃i, β̃i) ∼ N2(0,Λ(γ)Λ(γ))

where h(y) = a(y)¦ϑ represents a monotone non-decreasing transformation function. The
function implementing such a more flexible model in named in honor of the first paper on the
analysis of transformed responses by Box and Cox (1964) but it does not simply apply what
is known as a Box-Cox transformation. Bernstein polynomials h(y) = a(y)¦ϑ under suitable
constraints (Hothorn et al. 2018) are applied instead by
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Figure 2: Sleep deprivation: Data-driven transformation ĥ of average reaction times to sleep
deprivation. The non-linearity induces a non-normal marginal distribution function of reaction
times.

R> sleep_BC <- BoxCox(Reaction ~ Days, data = sleepstudy)

R> sleep_BCmer <- mtram(sleep_BC, ~ (Days | Subject), data = sleepstudy,

+ Hessian = TRUE)

R> logLik(sleep_BCmer)

'log Lik.' -859.5455 (df=11)

The increase in the log-likelihood compared to the normal model is not a big surprise. Plot-
ting the transformation function h(y) = a(y)¦ϑ as a function of reaction time can help to
assess deviations from normality because the latter assumption implies a linear transforma-
tion function. Figure 2 clearly indicates that models allowing a certain skewness of reaction
times will provide a better fit to the data. This might also not come as a big surprise to
experienced data analysts.

Such probit-type mixed-effects models have been studied before, mostly by merging a Box-
Cox power transformation h with a grid-search over REML estimates (Gurka et al. 2006),
a conditional likelihood (Hutmacher et al. 2011), or a grid-search maximising the profile
likelihood (Maruo et al. 2017). Recently, Tang et al. (2018) and Wu and Wang (2019)
proposed a monotone spline parameterisation of h in a Bayesian context. The model presented
here was estimated by simultaneously maximising the log-likelihood (Barbanti and Hothorn
2022) with respect to the parameters ϑ, β, and γ. For a linear Bernstein polynomial of order
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Figure 3: Sleep deprivation: Marginal distribution of reaction times, separately for each
day of study participation. The grey step-function corresponds to the empirical cumulative
distribution function, the blue line to the marginal cumulative distribution of a normal linear
mixed-effects model, and the orange line to a non-normal linear mixed-effects transformation
model.

one, the models obtained with this approach and classical maximum likelihood estimation in
normal linear mixed-effects models are equivalent (up to reparameterisation of β).

However, what does this finding mean in terms of a direct comparison of the model and the
data? Looking at the marginal cumulative distribution functions of average reaction time
conditional on days of sleep deprivation in Figure 3 one finds that the non-normal marginal
transformation models provided a better fit to the marginal empirical cumulative distribution
functions than the normal marginal models. Especially for short reaction times in the first
week of sleep deprivation, the orange marginal cumulative distribution is much closer to the
empirical cumulative distribution function representing the marginal distribution of reaction
times at each single day of study participation.

It should be noted that the small positive correlation between random intercept and random
slope observed in the normal linear mixed-effects model turned into a negative correlation in
this non-normal model

R> cov2cor(sleep_BCmer$G)

2 x 2 sparse Matrix of class "dsCMatrix"

[1,] 1.0000000 -0.1946629

[2,] -0.1946629 1.0000000
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What is the uncertainty associated with this parameter? The correlation is a non-linear func-
tion of γ and therefore the direct computation of confidence intervals questionable. However,
we can extract an estimate of the covariance of the estimated model parameters from the
model and, relying on the asymptotic normality of the maximum likelihood estimators, we
can sample from the asymptotic distribution of the variance of the random intercept α̃, the
random slope β̃, and their correlation

R> library("mvtnorm")

R> VC <- solve(sleep_BCmer$Hessian)

R> idx <- (nrow(VC) - 2):nrow(VC)

R> Rcoef <- rmvnorm(1000, mean = coef(sleep_BCmer), sigma = VC)[,idx]

R> ret <- apply(Rcoef, 1, function(gamma) {

+ L <- matrix(c(gamma[1:2], 0, gamma[3]), nrow = 2)

+ V <- tcrossprod(L)

+ c(diag(V), cov2cor(V)[1,2])

+ })

The 95% confidence intervals

R> ### variance random intercept

R> quantile(ret[1,], c(.025, .5, .975))

2.5% 50% 97.5%

0.9127821 2.5713595 5.2493469

R> ### variance random slope

R> quantile(ret[2,], c(.025, .5, .975))

2.5% 50% 97.5%

0.01890987 0.05348231 0.10594879

R> ### correlation random intercept / random slope

R> quantile(ret[3,], c(.025, .5, .975))

2.5% 50% 97.5%

-0.6193527 -0.1883314 0.4689778

indicate rather strong unobserved heterogeneity affecting the intercept and less pronouned
variability in the slope. There is only weak information about the correlation of the two
random effects contained in the data.

The downside of this approach is that, although the model is nicely interpretable on the scale
of marginal or conditional distribution functions, the direct interpretation of the fixed effect β̃
is not very straightforward because it corresponds to the conditional mean after transforming
the outcome. This interpretability issue can be addressed by exchanging the probit link to a
logit link
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Figure 4: Sleep deprivation: Marginal distribution of reaction times, separately for each
day of study participation. The grey step-function corresponds to the empirical cumulative
distribution function, the blue line to the marginal cumulative distribution of a normal linear
mixed-effects model, and the orange lines to a non-normal probit (solid) and marginal logit
(dotted) transformation model.

R> sleep_C <- Colr(Reaction ~ Days, data = sleepstudy)

R> sleep_Cmer <- mtram(sleep_C, ~ (Days | Subject), data = sleepstudy)

R> logLik(sleep_Cmer)

'log Lik.' -860.6377 (df=11)

Here, the in-sample log-likelihood increases compared to the probit model and the marginal
distributions obtained from this model are shown in Figure 4. How to interpret models of
this type is discussed in Section 4.

3. Models for Binary Outcomes

Here we compare different implementations of binary marginal and mixed models for the no-
toriously difficult toe nail data (Backer et al. 1998). The outcome was categorised to two levels
(this being probably the root of all troubles, as quasi-separation issues have been reported
by Sauter and Held 2016). A conditional density plot (Figure 5) suggests an improvement
in both treatment groups over time, however with a more rapid advance in patients treated
with terbinafine.
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Figure 5: Toe nail data: Conditional density plot of two outcome classes (none or mild
vs. moderate or severe) under two treatments.

3.1. Random Intercept Probit Models

We are first interested in binary probit models featuring fixed main and interaction effects
β1, β2, and β3 of treatment (itraconazole vs. terbinafine) and time. Subject-specific random
intercept models were estimated by the glmer function from package lme4 (Bates et al. 2015),
by the glmmTMB function from package glmmTMB (Brooks et al. 2017), and by direct max-
imisation of the exact discrete log-likelihood given in Appendix B of Barbanti and Hothorn
(2022).

The random intercept probit model fitted by Laplace and Adaptive Gauss-Hermite Quadra-
ture (AGQ) approximations to the likelihood give quite different results:

R> ### Laplace

R> toenail_glmer_RI_1 <-

+ glmer(outcome ~ treatment * time + (1 | patientID),

+ data = toenail, family = binomial(link = "probit"),

+ nAGQ = 1)

R> summary(toenail_glmer_RI_1)

Generalized linear mixed model fit by maximum likelihood (Laplace

Approximation) [glmerMod]

Family: binomial ( probit )

Formula: outcome ~ treatment * time + (1 | patientID)

Data: toenail

AIC BIC logLik deviance df.resid

1286.1 1313.9 -638.1 1276.1 1903
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Scaled residuals:

Min 1Q Median 3Q Max

-3.519 -0.017 -0.004 0.000 54.237

Random effects:

Groups Name Variance Std.Dev.

patientID (Intercept) 20.93 4.575

Number of obs: 1908, groups: patientID, 294

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.39483 0.21921 -15.487 <2e-16 ***

treatmentterbinafine -0.02875 0.25202 -0.114 0.9092

time -0.21797 0.02257 -9.657 <2e-16 ***

treatmentterbinafine:time -0.07135 0.03425 -2.083 0.0372 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:

(Intr) trtmnt time

trtmnttrbnf -0.591

time -0.008 0.099

trtmnttrbn: 0.093 -0.141 -0.630

R> toenail_glmer_RI_1@theta

[1] 4.574859

R> ### Adaptive Gaussian Quadrature

R> toenail_glmer_RI_2 <-

+ glmer(outcome ~ treatment * time + (1 | patientID),

+ data = toenail, family = binomial(link = "probit"),

+ nAGQ = 20)

R> summary(toenail_glmer_RI_2)

Generalized linear mixed model fit by maximum likelihood (Adaptive

Gauss-Hermite Quadrature, nAGQ = 20) [glmerMod]

Family: binomial ( probit )

Formula: outcome ~ treatment * time + (1 | patientID)

Data: toenail

AIC BIC logLik deviance df.resid

1284.6 1312.3 -637.3 1274.6 1903

Scaled residuals:

Min 1Q Median 3Q Max
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-2.857 -0.191 -0.078 -0.001 33.862

Random effects:

Groups Name Variance Std.Dev.

patientID (Intercept) 4.486 2.118

Number of obs: 1908, groups: patientID, 294

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.91050 0.22880 -3.980 6.9e-05 ***

treatmentterbinafine -0.10726 0.30730 -0.349 0.727

time -0.19128 0.02058 -9.293 < 2e-16 ***

treatmentterbinafine:time -0.06331 0.03098 -2.044 0.041 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:

(Intr) trtmnt time

trtmnttrbnf -0.650

time -0.185 0.212

trtmnttrbn: 0.192 -0.285 -0.611

R> toenail_glmer_RI_2@theta

[1] 2.117954

Package glmmTMB optimises the Laplace approximation utilising the Template Model Builder
TMB package:

R> library("glmmTMB")

R> toenail_glmmTMB_RI_3 <-

+ glmmTMB(outcome ~ treatment * time + (1 | patientID),

+ data = toenail, family = binomial(link = "probit"))

R> summary(toenail_glmmTMB_RI_3)

Family: binomial ( probit )

Formula: outcome ~ treatment * time + (1 | patientID)

Data: toenail

AIC BIC logLik deviance df.resid

1298.1 1325.9 -644.0 1288.1 1903

Random effects:

Conditional model:

Groups Name Variance Std.Dev.

patientID (Intercept) 4.417 2.102



Barbanti and Hothorn 13

Number of obs: 1908, groups: patientID, 294

Conditional model:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.10073 0.32274 -3.411 0.000648 ***

treatmentterbinafine -0.17391 0.35387 -0.491 0.623101

time -0.18933 0.02073 -9.134 < 2e-16 ***

treatmentterbinafine:time -0.06106 0.03093 -1.974 0.048340 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Surprisingly, this model is very close to the one obtained by AGQ and quite off from the
Laplace implementation in lme4 (nAGQ = 1 means Laplace).

Because of the probit link, this binary generalised linear model is equivalent to a linear trans-
formation model and we can thus use the exact likelihood implemented for the latter model
in mtram() for parameter estimation (it is still a bit nasty to set-up a constant transformation
function h(y) = α, we plan to add a more convenient interface later)

R> m <- ctm(as.basis(~ outcome, data = toenail),

+ shifting = ~ treatment * time,

+ data = toenail, todistr = "Normal", negative = TRUE)

R> toenail_probit <- mlt(m, data = toenail,

+ fixed = c("outcomemoderate or severe" = 0))

R> toenail_mtram_RI <-

+ mtram(toenail_probit, ~ (1 | patientID),

+ data = toenail, Hessian = TRUE)

R> coef(toenail_mtram_RI)

(Intercept) treatmentterbinafine

0.90894172 -0.10839001

time treatmentterbinafine:time

-0.19113766 -0.06267262

gamma1

2.11482023

For this random intercept model, the exact likelihood is defined as a one-dimensional integral
over the unit interval. We use sparse grids (Heiss and Winschel 2008; Ypma 2013) to ap-
proximate this integral. The integrand is defined by products of normal probabilities, which
are approximated as described by Matić et al. (2018). It is important to note that this like-
lihood can be computed as accurately as necessary whereas alternative implementations rely
on approximations of limited accuracy (at least for non-probit links).

The results (model parameters and likelihoods) are very close to those obtained by AGQ
(lme4) or glmmTMB, indicating a very good quality the various approximations used. We
can also compare the corresponding covariances

R> vcov(toenail_glmer_RI_2)
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4 x 4 Matrix of class "dpoMatrix"

(Intercept) treatmentterbinafine time

(Intercept) 0.052347885 -0.045691072 -0.0008721340

treatmentterbinafine -0.045691072 0.094431279 0.0013398065

time -0.000872134 0.001339806 0.0004236656

treatmentterbinafine:time 0.001360056 -0.002716156 -0.0003893870

treatmentterbinafine:time

(Intercept) 0.0013600559

treatmentterbinafine -0.0027161555

time -0.0003893870

treatmentterbinafine:time 0.0009595159

R> solve(toenail_mtram_RI$Hessian)[1:4, 1:4]

[,1] [,2] [,3] [,4]

[1,] 0.0521524646 0.045580017 0.0008711729 -0.0013461179

[2,] 0.0455800172 0.094251843 0.0013333649 -0.0026823091

[3,] 0.0008711729 0.001333365 0.0004220717 -0.0003886723

[4,] -0.0013461179 -0.002682309 -0.0003886723 0.0009473105

which are also in good agreement.

The marginal effects, that is, a marginal binary probit model, are given by the scaled condi-
tional coefficients

R> cf <- coef(toenail_mtram_RI)

R> cf[2:4] / sqrt(1 + cf["gamma1"]^2)

treatmentterbinafine time

-0.04633378 -0.08170616

treatmentterbinafine:time

-0.02679084

Such marginal effects can be estimated directly by generalised estimation equations (GEE).
For the probit model, three models corresponding to different working correlations can be
estimated for example by package geepack:

R> library("geepack")

R> gin <- geeglm(I((0:1)[outcome]) ~ treatment * time,

+ id = patientID, data = toenail, corstr = "independence",

+ family = binomial(link = "probit"))

R> gex <- geeglm(I((0:1)[outcome]) ~ treatment * time,

+ id = patientID, data = toenail, cor = "exchangeable",

+ family = binomial(link = "probit"))

R> gun <- geeglm(I((0:1)[outcome]) ~ treatment * time,

+ id = patientID, data = toenail, cor = "unstructured",

+ family = binomial(link = "probit"))
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The effects are not very close to what we obtained earlier, and it seems the choice of the
working correlations matters here:

R> cbind(mtram = cf[2:4] / sqrt(1 + cf["gamma1"]^2),

+ indep = coef(gin)[-1],

+ excha = coef(gex)[-1],

+ unstr = coef(gun)[-1])

mtram indep excha unstr

treatmentterbinafine -0.04633378 -0.01100164 -0.01476371 0.01635082

time -0.08170616 -0.09278168 -0.09289552 -0.06893793

treatmentterbinafine:time -0.02679084 -0.03198835 -0.03717801 -0.04468491

At least in biostatistics, the probit model is less popular than the logit model owing to the
better interpretability of the fixed effects as conditional log-odds ratios in the latter. Thus,
we replicate the SAS analysis reported in Chapter 10 of Molenberghs and Verbeke (2005)

R> gin <- geeglm(I((0:1)[outcome]) ~ treatment * time,

+ id = patientID, data = toenail, corstr = "independence",

+ family = binomial())

R> gex <- geeglm(I((0:1)[outcome]) ~ treatment * time,

+ id = patientID, data = toenail, cor = "exchangeable",

+ family = binomial())

R> gun <- geeglm(I((0:1)[outcome]) ~ treatment * time,

+ id = patientID, data = toenail, cor = "unstructured",

+ family = binomial())

Again, results are dependent on hyperparameters and also not in very good agreement with
SAS output reported by Molenberghs and Verbeke (2005)

R> coef(gin)

(Intercept) treatmentterbinafine

-0.5566272539 -0.0005816551

time treatmentterbinafine:time

-0.1703077912 -0.0672216238

R> coef(gex)

(Intercept) treatmentterbinafine

-0.581922602 0.007180366

time treatmentterbinafine:time

-0.171280029 -0.077733152

R> coef(gun)
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(Intercept) treatmentterbinafine

-0.73961933 0.03730057

time treatmentterbinafine:time

-0.13189562 -0.08960660

Alternatively, we can use the transformation approach to compute marginally interpretable
time-dependent log-odds ratios from random intercept transformation logit models:

R> m <- ctm(as.basis(~ outcome, data = toenail),

+ shifting = ~ treatment * time,

+ data = toenail, todistr = "Logistic", negative = TRUE)

R> toenail_logit <- mlt(m, data = toenail,

+ fixed = c("outcomemoderate or severe" = 0))

R> toenail_mtram_logit <- mtram(toenail_logit, ~ (1 | patientID),

+ data = toenail, Hessian = TRUE)

It is important to note that this model is not a logistic mixed-effects model and thus we can’t
expect to obtain identical results from glmer() as it was (partially) the case for the probit
model. The marginal log-odds ratios are

R> cf <- coef(toenail_mtram_logit)

R> cf[2:4] / sqrt(1 + cf["gamma1"]^2)

treatmentterbinafine time

-0.06026026 -0.14915910

treatmentterbinafine:time

-0.05870216

and an asymptotic confidence interval for the temporal treatment effect can be obtained from
a small simulation

R> S <- rmvnorm(10000, mean = coef(toenail_mtram_logit),

+ sigma = solve(toenail_mtram_logit$Hessian))

R> (ci <- quantile(S[,"treatmentterbinafine:time"] / sqrt(1 + S[, "gamma1"]^2),

+ prob = c(.025, .975)))

2.5% 97.5%

-0.114030986 -0.007916931

The interval indicates a marginally significant treatment effect, that is, an odds ratio for none
or mild symptoms of 0.94 per month, with 95% confidence interval (0.89, 0.99).

A direct comparison of the marginal log-odds ratios with GEE results highlight the discrep-
ancies

R> cbind(mtram = cf[2:4] / sqrt(1 + cf["gamma1"]^2),

+ indep = coef(gin)[-1],

+ excha = coef(gex)[-1],

+ unstr = coef(gun)[-1])
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mtram indep excha

treatmentterbinafine -0.06026026 -0.0005816551 0.007180366

time -0.14915910 -0.1703077912 -0.171280029

treatmentterbinafine:time -0.05870216 -0.0672216238 -0.077733152

unstr

treatmentterbinafine 0.03730057

time -0.13189562

treatmentterbinafine:time -0.08960660

Following Molenberghs and Verbeke (2005), we use the GEE with unstructured working cor-
relation to compute a confidence interval for the temporal treatment effect on the odds ratio
scale

R> exp(coef(gun)["treatmentterbinafine:time"] +

+ c(-1, 1) * qnorm(.975) * sqrt(diag(vcov(gun)))["treatmentterbinafine:time"])

[1] 0.8318745 1.0048723

In respect of this temporal treatment effect, GEE and marginal transformation models provide
similar results, but the “significance” of the temporal treatment effect seems to be affected by
numerical issues arising when fitting such models to this data.

From the marginal transformation model, we can compute and plot marginally interpretable
probabilities and odds ratios over time

R> tmp <- toenail_logit

R> cf <- coef(tmp)

R> cf <- cf[names(cf) != "outcomemoderate or severe"]

R> sdrf <- rev(coef(toenail_mtram_logit))[1]

R> cf <- coef(toenail_mtram_logit)[names(cf)] / sqrt(sdrf^2 + 1)

R> cf <- c(cf[1], "outcomemoderate or severe" = 0, cf[-1])

R> coef(tmp) <- cf

R> time <- 0:180/10

R> treatment <- sort(unique(toenail$treatment))

R> nd <- expand.grid(time = time, treatment = treatment)

R> nd$prob_logit <- predict(tmp, newdata = nd, type = "distribution")[1,]

R> nd$odds <- exp(predict(tmp, newdata = nd, type = "trafo")[1,])

We can also sample from the distribution of the maximum likelihood estimators to obtain an
idea about the uncertainty (Figure 6).

From the logit and probit models, we can also obtain marginally interpretable probabilities
as (probit)

R> tmp <- toenail_logit

R> cf <- coef(tmp)

R> cf <- cf[names(cf) != "outcomemoderate or severe"]

R> sdrf <- rev(coef(toenail_mtram_logit))[1]

R> cf <- coef(toenail_mtram_logit)[names(cf)]
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Figure 6: Toe nail data: Marginal odds ratio over time (from a logistic random intercept
model). The blue line represents the maximum likelihood estimator, the grey lines are samples
from the corresponding distribution.

R> cf <- c(cf[1], "outcomemoderate or severe" = 0, cf[-1])

R> coef(tmp) <- cf

R> pr <- predict(tmp, newdata = nd, type = "distribution")[1,]

R> nd$prob_logit <- pnorm(qnorm(pr) / sdrf)

and (logit)

R> tmp <- toenail_probit

R> cf <- coef(tmp)

R> cf <- cf[names(cf) != "outcomemoderate or severe"]

R> sdrf <- rev(coef(toenail_mtram_RI))[1]

R> cf <- coef(toenail_mtram_RI)[names(cf)] / sqrt(sdrf^2 + 1)

R> cf <- c(cf[1], "outcomemoderate or severe" = 0, cf[-1])

R> coef(tmp) <- cf

R> nd$prob_probit <- predict(tmp, newdata = nd, type = "distribution")[1,]

The marginal time-dependent probabilities obtained from all three models are very similar as
shown in Figure 7.

3.2. Random Intercept / Random Slope Models

Things get a bit less straightforward when a random slope is added to the model. We switch
back to the probit link allowing comparison of our implementation with other packages. Some
implementations do not allow clusters consisting of a single observation, so we remove patients
without follow-up
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Figure 7: Toe nail data: Comparison of marginal probabilities obtained from a probit lin-
ear mixed-effects model and a logistic transformation model with marginal log-odds ratio
treatment effect.

R> (rlev <- levels(toenail$patientID)[xtabs(~ patientID,

+ data = toenail) == 1])

[1] "45" "48" "63" "99" "377"

R> toenail_gr1 <- subset(toenail, !patientID %in% rlev)

R> toenail_gr1$patientID <- toenail_gr1$patientID[, drop = TRUE]

The two implementations of the Laplace approximation in packages lme4

R> toenail_glmer_RS <-

+ glmer(outcome ~ treatment * time + (1 + time | patientID),

+ data = toenail_gr1, family = binomial(link = "probit"))

R> summary(toenail_glmer_RS)

Generalized linear mixed model fit by maximum likelihood (Laplace

Approximation) [glmerMod]

Family: binomial ( probit )

Formula: outcome ~ treatment * time + (1 + time | patientID)

Data: toenail_gr1

AIC BIC logLik deviance df.resid

985.8 1024.7 -485.9 971.8 1896
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Scaled residuals:

Min 1Q Median 3Q Max

-1.85421 -0.00210 -0.00037 0.00000 2.35828

Random effects:

Groups Name Variance Std.Dev. Corr

patientID (Intercept) 118.433 10.883

time 3.305 1.818 -0.90

Number of obs: 1903, groups: patientID, 289

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.30120 0.26361 -16.316 <2e-16 ***

treatmentterbinafine 0.05419 0.34652 0.156 0.8757

time -0.06792 0.07847 -0.866 0.3867

treatmentterbinafine:time -0.23478 0.13885 -1.691 0.0909 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:

(Intr) trtmnt time

trtmnttrbnf -0.662

time -0.453 0.342

trtmnttrbn: 0.270 -0.438 -0.335

R> toenail_glmer_RS@theta

[1] 10.8826790 -1.6359589 0.7930842

and glmmTMB

R> toenail_glmmTMB_RS_1 <-

+ glmmTMB(outcome ~ treatment * time + (1 + time | patientID),

+ data = toenail_gr1, family = binomial(link = "probit"))

R> summary(toenail_glmmTMB_RS_1)

Family: binomial ( probit )

Formula: outcome ~ treatment * time + (1 + time | patientID)

Data: toenail_gr1

AIC BIC logLik deviance df.resid

962.0 1000.8 -474.0 948.0 1896

Random effects:

Conditional model:

Groups Name Variance Std.Dev. Corr
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patientID (Intercept) 121.185 11.008

time 3.512 1.874 -0.90

Number of obs: 1903, groups: patientID, 289

Conditional model:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.29367 0.26699 -16.082 <2e-16 ***

treatmentterbinafine 0.05612 0.35074 0.160 0.8729

time -0.07152 0.08140 -0.879 0.3796

treatmentterbinafine:time -0.24147 0.14454 -1.671 0.0948 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

are in good agreement.

The optimisation of the exact discrete likelihood in the transformation framework gives

R> m <- ctm(as.basis(~ outcome, data = toenail_gr1),

+ shifting = ~ treatment * time,

+ data = toenail, todistr = "Normal", negative = TRUE)

R> toenail_probit <- mlt(m, data = toenail_gr1,

+ fixed = c("outcomemoderate or severe" = 0))

R> toenail_mtram_RS <-

+ mtram(toenail_probit, ~ (1 + time | patientID),

+ data = toenail_gr1)

R> logLik(toenail_mtram_RS)

'log Lik.' -545.1163 (df=7)

R> coef(toenail_mtram_RS)

(Intercept) treatmentterbinafine

1.5773582 0.2680624

time treatmentterbinafine:time

-0.5336223 -0.1845193

gamma1 gamma2

5.2226345 -0.3726494

gamma3

0.5295844

Here, substantial differences for all parameters can be observed. Because the parameters have
the same meaning in all three implementations, we can compare the three models in light of
the exact discrete log-likelihood (Equation 6 in Barbanti and Hothorn 2022) evaluated at
these parameters. The results are given in Table 1. For the random intercept models, AGQ,
Laplace, and the discrete log-likelihood give the same results, the Laplace approximation
seemed to fail. It was not possible to apply the AGQ approach to the random intercept /
random slope model. The two implementations of the Laplace approximation in packages



22 Marginally Interpretable Transformation Models

RI RI + RS
glmer glmer glmmTMB glmer glmmTMB

L AGQ L (7) L L (7)

α -3.39 -0.91 -1.10 0.91 -4.30 -4.30 1.58
β1 -0.03 -0.11 -0.17 -0.11 0.05 0.05 0.27
β2 -0.22 -0.19 -0.19 -0.19 -0.07 -0.07 -0.53
β3 -0.07 -0.06 -0.06 -0.06 -0.23 -0.23 -0.18
γ1 4.57 2.12 2.10 2.11 10.88 11.01 5.22
γ2 0.00 0.00 0.00 0.00 -1.64 -1.68 -0.37
γ3 0.00 0.00 0.00 0.00 0.79 0.83 0.53

LogLik -675.22 -637.34 -638.54 -637.34 -628.12 -630.65 -545.12
Time (sec) 3.49 2.18 1.89 2.16 7.50 3.87 9.92

Table 1: Toe nail data. Binary probit models featuring fixed intercepts α, treatment effects
β1, time effects β2, and time-treatment interactions β3 are compared. Random intercept (RI)
and random intercept/random slope (RI + RS) models were estimated by the Laplace (L) and
Adaptive Gauss-Hermite Quadrature (AGQ) approximations to the likelihood (implemented
in packages lme4 and glmmTMB). In addition, the exact discrete log-likelihood (7) was used
for model fitting and evaluation (the in-sample log-likelihood (7) for all models and timings
of all procedures are given in the last two lines).

lme4 and glmmTMB differed for the random intercept model but agreed for the random
intercept / random slope model. The log-likelihood obtained by direct maximisation of (7)
resulted in the best fitting model with the least extreme parameter estimates. Computing
times for all procedures were comparable.

4. Proportional Odds Models for Bounded Responses

Manuguerra and Heller (2010) proposed a mixed-effects model for bounded responses whose
fixed effects can be interpreted as log-odds ratios. We fit a transformation model to data from
a randomised controlled trial on chronic neck pain treatment (Chow et al. 2006). The data
are visualised in Figure 8. Subjective neck pain levels were assessed on a visual analog scale,
that is, on a bounded interval.

Manuguerra and Heller (2010) suggested the conditional model

logit(P(pain ≤ y | treatment, time, i)) =

h(y) + βActive + β7 weeks + β12 weeks + β7 weeks, Active + β12 weeks, Active + αi

with random intercepts α̃i such that the odds at baseline, for example, are given by

P(pain ≤ y | Active, baseline, i)

P(pain > y | Active, baseline, i)
= exp(βActive)

P(pain ≤ y | Placebo, baseline, i)

P(pain > y | Placebo, baseline, i)

R> library("ordinalCont")
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Figure 8: Neck pain: Trajectories of neck pain assessed on a visual analog scale with and
without low-level laser therapy.

R> neck_ocm <- ocm(vas ~ laser * time + (1 | id), data = pain_df,

+ scale = c(0, 1))

The results

R> summary(neck_ocm)

Call:

ocm(formula = vas ~ laser * time + (1 | id), data = pain_df,

scale = c(0, 1))

Random effects:

Name Variance Std.Dev.

Intercept|id 5.755 2.399

Coefficients:

Estimate StdErr t.value p.value

laserActive -2.07922 0.65055 -3.1961 0.001918 **

time7 weeks -0.60366 0.35744 -1.6889 0.094689 .

time12 weeks -0.23804 0.36365 -0.6546 0.514395

laserActive:time7 weeks 4.40817 0.56073 7.8615 7.604e-12 ***

laserActive:time12 weeks 3.38593 0.53925 6.2790 1.159e-08 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

suggest that there is a difference at baseline; the pain distribution of subjects in the placebo
group on the odds scale is only 12.5% of the odds in the active group for any cut-off y:
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R> exp(cbind(coef(neck_ocm)[2:6], confint(neck_ocm)[2:6,]))

2.5 % 97.5 %

laserActive 0.1250278 0.03493482 0.4474608

time7 weeks 0.5468040 0.27137954 1.1017581

time12 weeks 0.7881704 0.38643700 1.6075391

laserActive:time7 weeks 82.1194073 27.36208405 246.4577275

laserActive:time12 weeks 29.5454666 10.26785879 85.0162253

In contrast, there seems to be a very large treatment effect (at week 7, the odds in the placebo
group is 0.55 times larger than in the active group. This levels off after 12 weeks, but the
effect is still significant at the 5% level.

For comparison, we can fit a conditional mixed-effects transformation model with a differ-
ent parametrisation of the transformation function h using a Laplace approximation of the
likelihood (Támasi et al. 2022):

R> library("tramME")

R> neck_ColrME <- ColrME(vas ~ laser * time + (1 | id), data = pain_df,

+ bounds = c(0, 1), support = c(0, 1))

and coefficients

R> exp(coef(neck_ColrME))

laserActive time7 weeks time12 weeks

0.1040042 0.5184702 0.7806349

laserActive:time7 weeks laserActive:time12 weeks

130.6994999 41.9850813

The model is the same as neck_ocm, but the parameter estimates for log-odds ratios differ
quite substantially due to an alternative parameterisation of h and due to different estimation
procedures being applied.

Our marginally interpretable transformation model with the same transformation function as
the model neck_ColrME but with a completely different model formulation and optimisation
procedure for maximising the log-likelihood, can be estimated by

R> neck_Colr <- Colr(vas ~ laser * time, data = pain_df,

+ bounds = c(0, 1), support = c(0, 1),

+ extrapolate = TRUE)

R> neck_Colrmer <- mtram(neck_Colr, ~ (1 | id), data = pain_df,

+ Hessian = TRUE)

Based on this model, it is possible to derive the marginal distribution functions in the two
groups, see Figure 9.

We sample from the joint normal distribution of the maximum likelihood estimators ϑ̂1, . . . , ϑ̂7,
β̂Active, β̂7 weeks, β̂12 weeks, β̂7 weeks, Active, β̂12 weeks, Active, α̂i and compute confidence intervals
for the marginal treatment effect after 7 and 12 weeks
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Figure 9: Neck pain: Marginal distribution functions of chronic neck pain evaluated at three
different time points under placebo or active low-level laser therapy.

R> S <- solve(neck_Colrmer$Hessian)

R> rbeta <- rmvnorm(10000, mean = coef(neck_Colrmer), sigma = S)

R> s <- rbeta[, ncol(rbeta)]

R> rbeta <- rbeta[,-ncol(rbeta)] / sqrt(s^2 + 1)

R> t(apply(rbeta[, 8:12], 2, function(x) {

+ quantile(exp(x),prob = c(.025, .5, .975))}))

2.5% 50% 97.5%

laserActive 0.1126589 0.2468169 0.5037629

time7 weeks 0.4490773 0.6895826 1.0542314

time12 weeks 0.5545526 0.8495724 1.2969043

laserActive:time7 weeks 7.9513592 15.7011167 33.5790835

laserActive:time12 weeks 4.4653904 8.4837448 17.0816646

Because the model neck_Colrmer has a marginal interpretation, we can derive the marginal
probabilistic index and corresponding confidence intervals for the three time points as fol-
lows. In this case, the marginal probabilistic index obtained from model neck_Colrmer is the
probability that, for a randomly selected patient in the treatment group, the neck pain score
at time t is higher than the score for a subject in the placebo group randomly selected at the
same time point.

There are two possible ways to compute the marginal probabilistic index. First, we consider
the standardised version of the marginal treatment effects, that is:

R> beta <- coef(neck_Colrmer)[8:12]

R> alpha <- coef(neck_Colrmer)[13]

R> (std_beta <- cbind(beta / sqrt(1 + alpha^2)))

[,1]

laserActive -1.4103130
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time7 weeks -0.3700945

time12 weeks -0.1603065

laserActive:time7 weeks 2.7556704

laserActive:time12 weeks 2.1411043

Then we compute the marginal treatment effect for weeks 0, 7, 12 by multiplying the shift
vector with the following contrast matrix

R> ctr_mat <- matrix(c(1, 0, 0, 0, 0,

+ 1, 0, 0, 1, 0,

+ 1, 0, 0, 0, 1), nrow = 3, byrow = TRUE)

R> ctr_mat %*% std_beta

[,1]

[1,] -1.4103130

[2,] 1.3453573

[3,] 0.7307912

We simulate from the asymptotic distribution of the parameters to obtain an empirical 95%
confidence interval and pass it to the PI function by specifying the correct link function

R> (ci_emp <- t(apply(ctr_mat %*% t(rbeta[, 8:12]), 1, function(x) {

+ quantile(x, prob = c(.025, .5, .975))})))

2.5% 50% 97.5%

[1,] -2.18339022 -1.3991085 -0.6856496

[2,] 0.59251888 1.3474191 2.1561143

[3,] -0.01605276 0.7350224 1.5193881

R> PI(-ci_emp, link = "logistic")

2.5% 50% 97.5%

[1,] 0.8145589 0.7189678 0.6125138

[2,] 0.4023882 0.2881899 0.1883363

[3,] 0.5026754 0.3796606 0.2647637

Alternatively, we can compute the probabilistic index by passing a Colr model to the PI

function. However, we have to make sure that the marginal model has the correct coefficients
as obtained by standardising the coefficients from the mtram model:

R> nd <- expand.grid(time = unique(pain_df$time),

+ laser = unique(pain_df$laser))

R> neck_Colr_marg <- neck_Colr

R> neck_Colr_marg$coef <- coef(neck_Colrmer)[1:12] /

+ sqrt(coef(neck_Colrmer)[13]^2 + 1)

R> (neck_Colr_PI <- PI(neck_Colr_marg, newdata = nd[1:3, ],

+ reference = nd[4:6, ],

+ one2one = TRUE, conf.level = .95))[1:3, 1:3]
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Estimate lwr upr

4-1 0.7205063 0.5840622 0.8277764

5-2 0.2884774 0.1749461 0.4327285

6-3 0.3803291 0.2446177 0.5354269

At baseline, we obtain a probabilistic index of 0.72. After 7 weeks, its value is 0.29 and after
12 weeks 0.38. These values reflect the effect of the low-level laser therapy for patients in the
treatment group.

Of course, the confidence intervals for the estimates of the probabilistic index differ slightly
across the two methods, but the point estimates coincide.

5. Marginally Interpretable Weibull and Cox Models

The CAO/ARO/AIO-04 randomised clinical trial (Rödel et al. 2015) compared Oxaliplatin
added to fluorouracil-based preoperative chemoradiotherapy and postoperative chemother-
apy to the same therapy using fluorouracil only for rectal cancer patients. Patients were
randomised in the two treatment arms by block randomisation taking the study center, the
lymph node involvement (negative, positive), and tumour grading (T1-3 vs. T4) into account.
The primary endpoint was disease-free survival, defined as the time between randomisation
and non-radical surgery of the primary tumour (R2 resection), locoregional recurrence after
R0/1 resection, metastatic disease or progression, or death from any cause, whichever occurred
first. The observed outcomes are a mix of exact dates (time to death or incomplete removal of
the primary tumour), right-censoring (end of follow-up or drop-out), and interval-censoring
(local or distant metastases). We are interested in a clustered Cox or Weibull model for
interval-censored survival times. The survivor functions, estimated separately for each of the
four strata defined by lymph node involvement and tumour grading, are given in Figure 10.

The implementation of marginally interpretable linear transformation models is currently not
able to deal with mixed exact and censored outcomes in the same cluster. We therefore recode
exact event times as being interval-censored by adding a 4-day window to each exact event
time (variable iDFS2).

R> ### convert "exact" event dates to interval-censoring (+/- one day)

R> tmp <- CAOsurv$iDFS

R> exact <- tmp[,3] == 1

R> tmp[exact,2] <- tmp[exact,1] + 2

R> tmp[exact,1] <- pmax(tmp[exact,1] - 2, 0)

R> tmp[exact,3] <- 3

R> CAOsurv$iDFS2 <- tmp

We start with the random intercept model

P(Y > y | treatment) = exp

(

− exp

(

ϑ1 + ϑ2 log(y)− β5-FU + Ox
√

γ21 + 1

))

assuming a marginal Weibull model whose effects are scaled depending on the variance γ21
of a block-specific (interaction of lymph node involvement, tumor grading, and study center)
random intercept:
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Figure 10: Rectal cancer: Distribution of disease-free survival times for two treatments in
the four strata defined by lymph node involvement (negative or positive) and tumor grading
(T1-3 or T4).

R> CAO_SR <- Survreg(iDFS2 ~ randarm, data = CAOsurv)

R> CAO_SR_mtram <- mtram(CAO_SR, ~ (1 | Block), data = CAOsurv,

+ Hessian = TRUE)

R> logLik(CAO_SR_mtram)

'log Lik.' -2081.542 (df=4)

R> (cf <- coef(CAO_SR_mtram))

(Intercept) log(iDFS2)

-6.2990054 0.7412855

randarm5-FU + Oxaliplatin gamma1

0.2328600 0.1683613

R> (OR <- exp(-cf["randarm5-FU + Oxaliplatin"] / sqrt(cf["gamma1"]^2 + 1)))

randarm5-FU + Oxaliplatin

0.794829

We are, of course, interested in the marginal treatment effect, that is, the hazards ratio

exp

(

−β5-FU + Ox/
√

γ21 + 1

)

.

We simply sample from the joint normal distribution of the maximum likelihood estimators
ϑ̂1, ϑ̂2, β̂5-FU + Ox, γ̂1 and compute confidence intervals for the marginal treatment effect 0.79
as
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R> S <- solve(CAO_SR_mtram$Hessian)

R> # sqrt(diag(S))

R> rbeta <- rmvnorm(10000, mean = coef(CAO_SR_mtram),

+ sigma = S)

R> s <- rbeta[, ncol(rbeta)]

R> rbeta <- rbeta[, -ncol(rbeta)] / sqrt(s^2 + 1)

R> quantile(exp(-rbeta[, ncol(rbeta)]), prob = c(.025, .5, .975))

2.5% 50% 97.5%

0.6517265 0.7957980 0.9830835

In a next step, we stratify with respect to lymph node involvement and tumor grading: For
each of the four strata, the parameters ϑ1 and ϑ2 are estimated separately:

R> CAO_SR_2 <- Survreg(iDFS2 | 0 + strat_n:strat_t ~ randarm, data = CAOsurv)

R> CAO_SR_2_mtram <- mtram(CAO_SR_2, ~ (1 | Block), data = CAOsurv,

+ Hessian = TRUE)

R> logLik(CAO_SR_2_mtram)

'log Lik.' -2067.797 (df=10)

R> (cf <- coef(CAO_SR_2_mtram))

(Intercept):strat_ncN0:strat_tcT1-3 log(iDFS2):strat_ncN0:strat_tcT1-3

-7.8833653 0.9584499

(Intercept):strat_ncN+:strat_tcT1-3 log(iDFS2):strat_ncN+:strat_tcT1-3

-6.2225174 0.7198965

(Intercept):strat_ncN0:strat_tcT4 log(iDFS2):strat_ncN0:strat_tcT4

-3.0467542 0.3711277

(Intercept):strat_ncN+:strat_tcT4 log(iDFS2):strat_ncN+:strat_tcT4

-4.8207089 0.6214653

randarm5-FU + Oxaliplatin gamma1

0.2240023 0.1474685

R> (OR_2 <- exp(-cf["randarm5-FU + Oxaliplatin"] / sqrt(cf["gamma1"]^2 + 1)))

randarm5-FU + Oxaliplatin

0.8012313

The corresponding confidence interval for the marginal treatment effect is then

2.5% 50% 97.5%

0.6539043 0.8040660 0.9921574

We now relax the Weibull assumption in the Cox model

P(Y > y | treatment) = exp

(

− exp

(

a(log(y))¦ϑ+ β5-FU + Ox
√

γ21 + 1

))

(note the positive sign of the treatment effect).
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R> CAO_Cox_2 <- Coxph(iDFS2 | 0 + strat_n:strat_t ~ randarm, data = CAOsurv,

+ support = c(1, 1700), log_first = TRUE, order = 4)

R> logLik(CAO_Cox_2)

'log Lik.' -2021.878 (df=21)

R> CAO_Cox_2_mtram <- mtram(CAO_Cox_2, ~ (1 | Block), data = CAOsurv,

+ Hessian = TRUE)

R> logLik(CAO_Cox_2_mtram)

'log Lik.' -2029.496 (df=22)

R> coef(CAO_Cox_2_mtram)

Bs1(iDFS2):strat_ncN0:strat_tcT1-3 Bs2(iDFS2):strat_ncN0:strat_tcT1-3

-6.261908e+01 -2.770310e+00

Bs3(iDFS2):strat_ncN0:strat_tcT1-3 Bs4(iDFS2):strat_ncN0:strat_tcT1-3

-2.723851e+00 -2.439057e+00

Bs5(iDFS2):strat_ncN0:strat_tcT1-3 Bs1(iDFS2):strat_ncN+:strat_tcT1-3

-7.315446e-01 -2.943890e+01

Bs2(iDFS2):strat_ncN+:strat_tcT1-3 Bs3(iDFS2):strat_ncN+:strat_tcT1-3

-4.965570e+00 -2.118701e+00

Bs4(iDFS2):strat_ncN+:strat_tcT1-3 Bs5(iDFS2):strat_ncN+:strat_tcT1-3

-1.923702e+00 -9.153759e-01

Bs1(iDFS2):strat_ncN0:strat_tcT4 Bs2(iDFS2):strat_ncN0:strat_tcT4

-4.247591e+00 -1.691163e+00

Bs3(iDFS2):strat_ncN0:strat_tcT4 Bs4(iDFS2):strat_ncN0:strat_tcT4

-1.638797e+00 -3.916641e-01

Bs5(iDFS2):strat_ncN0:strat_tcT4 Bs1(iDFS2):strat_ncN+:strat_tcT4

2.554375e-10 -3.900165e+01

Bs2(iDFS2):strat_ncN+:strat_tcT4 Bs3(iDFS2):strat_ncN+:strat_tcT4

-1.336609e+00 -1.301176e+00

Bs4(iDFS2):strat_ncN+:strat_tcT4 Bs5(iDFS2):strat_ncN+:strat_tcT4

-7.004120e-01 -2.361698e-01

randarm5-FU + Oxaliplatin gamma1

-2.784567e-01 4.926647e-02

with confidence interval

2.5% 50% 97.5%

0.6532571 0.8076616 0.9554790

For the marginally interpretable models that can be derived from model CAO_Cox_2_mtram we
can compute the probabilistic index. This value is the meaning that over all study centers, a
randomly selected patient receiving Oxaliplatin has a 56% probability of staying disease-free
longer than a randomly selected patient receiving the standard treatment only, given that
they both have the same lymph node state and tumor grading.
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R> nd <- CAOsurv[1:2, ]

R> tmp <- CAO_Cox_2

R> tmp$coef <- coef(CAO_Cox_2_mtram)[-22] / sqrt(coef(CAO_Cox_2_mtram)[22]^2 + 1)

R> (CAO_Cox_PI <- PI(tmp, newdata = nd[2, ], reference = nd[1, ],

+ one2one = TRUE, conf.level = .95))[1, ]

Estimate lwr upr

0.5690851 0.5172614 0.6194386

but we can compute the same manually as follows:

R> ci_man <- quantile(-rbeta[, ncol(rbeta)], prob = c(.025, .5, .975))

R> (CAO_Cox_PIm <- PI(ci_man, link = "minimum extreme value"))

2.5% 50% 97.5%

0.5113836 0.5532009 0.6048666

We can fit mixed-effects transformation models (Tamási and Hothorn 2021; Támasi et al.
2022) as follows:

R> CAO_Cox_2_tramME <- CoxphME(iDFS2 | 0 + strat_n:strat_t ~ randarm + (1 | Block),

+ data = CAOsurv, log_first = TRUE)

From this conditional model, we can obtain the conditional hazard ratio with confidence
interval:

R> exp(coef(CAO_Cox_2_tramME))

randarm5-FU + Oxaliplatin

0.7906073

R> exp(confint(CAO_Cox_2_tramME, parm = "randarm5-FU + Oxaliplatin",

+ estimate = TRUE))

lwr upr est

randarm5-FU + Oxaliplatin 0.6406382 0.9756832 0.7906073

which is similar to the one of the marginally interpretable model.
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A. Simulations

Empirical results presented in Section 4 of Barbanti and Hothorn (2022) can be reproduced
using

R> source(system.file("simulations", "mtram_sim.R", package = "tram"), echo = TRUE)

(this takes quite some time).
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