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2 weightedRank-package

weightedRank-package Sensitivity Analysis Using Weighted Rank Statistics

Description

Performs a sensitivity analysis using weighted rank tests in observational studies with I blocks of
size J; see Rosenbaum (2018) <doi:10.1214/18-AOAS1153>. The package can perform adaptive
inference in block designs; see Rosenbaum (2012) <doi:10.1093/biomet/ass032>. The main func-
tions are wgtRank() and wgtRanktt() and ef2C().

Details

The DESCRIPTION file:

Package: weightedRank
Type: Package
Title: Sensitivity Analysis Using Weighted Rank Statistics
Version: 0.2.5
Authors@R: person("Paul", "Rosenbaum", email = "rosenbaum@wharton.upenn.edu", role = c("aut", "cre"))
Description: Performs a sensitivity analysis using weighted rank tests in observational studies with I blocks of size J; see Rosenbaum (2018) <doi:10.1214/18-AOAS1153>. The package can perform adaptive inference in block designs; see Rosenbaum (2012) <doi:10.1093/biomet/ass032>. The main functions are wgtRank() and wgtRanktt() and ef2C().
License: GPL-2
Encoding: UTF-8
LazyData: true
Imports: stats, graphics, mvtnorm, sensitivitymv
Suggests: sensitivitymw, sensitivitymult, DOS2
Depends: R (>= 3.5.0)
Author: Paul Rosenbaum [aut, cre]
Maintainer: Paul Rosenbaum <rosenbaum@wharton.upenn.edu>

Index of help topics:

aBP Binge Drinking and Blood Pressure
aHDL Alcohol and HDL Cholesterol
amplify Amplification of sensitivity analysis in

observational studies.
dwgtRank Weighted Rank Statistics for Evidence Factors

with Two Control Groups
ef2C Evidence Factors For Matched Triples With Two

Control Groups
weightedRank-package Sensitivity Analysis Using Weighted Rank

Statistics
wgtRank Sensitivity Analysis for Weighted Rank

Statistics in Block Designs
wgtRanktt Adaptive Inference Using Two Test Statistics in

a Block Design
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The package conducts either fixed or adaptive sensitivity analyses for observational studies with
I blocks and J individuals in each block, one treated and J-1 controls. The two main functions
are wgtRank() for a fixed test statistic, and wgtRanktt() for an adaptive choice of one of two test
statistics. The function ef2C() is used to extract two evidence factors when a treated group is
compared to two different control groups.

Author(s)

NA

Maintainer: NA

References

Berk, R. H. and Jones, D. H. (1978) <https://www.jstor.org/stable/4615706> Relatively optimal
combinations of test statistics. Scandinavian Journal of Statistics, 5, 158-162.

Quade, D. (1979) <doi:10.2307/2286991> Using weighted rankings in the analysis of complete
blocks with additive block effects. Journal of the American Statistical Association, 74, 680-683.

Rosenbaum, P. R. (1987). <doi:10.1214/ss/1177013232> The role of a second control group in an
observational study. Statistical Science, 2, 292-306.

Rosenbaum, P. R. (2011) <doi:10.1111/j.1541-0420.2010.01535.x> A new U-Statistic with superior
design sensitivity in matched observational studies. Biometrics, 67(3), 1017-1027.

Rosenbaum, P. R. (2012) <doi:10.1093/biomet/ass032> Testing one hypothesis twice in observa-
tional studies. Biometrika, 99(4), 763-774.

Rosenbaum, P. R. (2021) <doi:10.1201/9781003039648> Replication and Evidence Factors in Ob-
servational Studies. Chapman and Hall/CRC.

Rosenbaum, P. R. (2022) Bahadur efficiency of observational block designs. Manuscript.

Tardif, S. (1987) <doi:10.2307/2289476> Efficiency and optimality results for tests based on weighted
rankings. Journal of the American Statistical Association, 82(398), 637-644.

Examples

data(aHDL)
y<-t(matrix(aHDL$hdl,4,406))
wgtRank(y,phi="u878",gamma=6) # New U-statistic weights (8,7,8)
wgtRanktt(y,phi1="u868",phi2="u878",gamma=5.9)

aBP Binge Drinking and Blood Pressure

Description

A matched observational study from NHANES with two control groups, examining the possible
effects of on blood pressure of frequent binge drinking of alcohol.
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Usage

data("aBP")

Format

A data frame with 621 observations on the following 13 variables.

SEQN NHANES identification number

age Age in years

female 1=female, 0=male

education Education, with levels: "<9th" = less than 9th grade, "9-11" = grades 9 to 11, "HS" =
high school, "SomeCol" = Some College, ">=BA" = BA degree or more

bmi BMI or body-mass index

waisthip Waist-to-hip ratio

vigorR Engages in vigorous recreational exercise, 1=yes, 0=no

smokenow Do you smoke now? Answers: Everyday, Some days, No

bpRX Reports currently taking medication for high blood pressure

bpSystolic Systolic blood pressure, mm Hg. Average of up to three readings.

bpDiastolic Diastolic blood pressure, mm Hg. Average of up to three readings.

group Drinking group, B=currently engages in frequent binge drinking, N=never binged regularly,
and drank at most one drink per week in the last year, P=binged on most days for some period
in the past but stopped, nevery binged in the last year, and drank at most one drink per week
in the last year. See Details.

mset Matched set indicator, 1, 2, ..., 207. There are 207 blocks of size 3, each containing one B,
one N and one P.

Details

The data are from data from the 2017-2020 National Health and Nutrition Examination Survey
(which was interrupted by COVID-19, so it is not a survey). There were 5624 people who were at
least 20 years of age, with an alcohol use survey, blood pressure measurements and covariates used
here. Blood pressure measurements are the average of up to three measurements. One question
asked about binge drinking in the past, defined as 4 drinks for women or 5 drinks for men. Question
ALQ151 asks (essentially): "Was there ever a time or times in your life when you drank 4/5 or
more drinks of any kind of alcoholic beverage almost every day?" Another question ALQ142 asked
about binge drinking last year: "During the past 12 months, about how often did you have 4/5 or
more drinks of any alcoholic beverage?" Question ALQ121 about the overall frequency of alcohol
consumption in the past 12 months. Proper use of ALQ121 and ALQ142 accounts for certain
screening questions. By definition, group "binge" responded by saying that they engaged in binge
drinking on 3 or more days each week in the past 12 months. By definition, group "never" responded
to ALQ142 saying they never binged in the past 12 months, responded to ALQ151 saying they had
no past time when they binged almost every day, and drank any alcohol on at most one day a week
in the past 12 months. By definition, group "past" said yes to question ALQ151, so there was a
period in their life of binge drinking almost every day, but they never binged in the past 12 months,
and drank alcohol on at most one day a week in the past 12 months. There were 9232 people aged
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20 or more. Of these, 9187 had covariate information, aside from BMI and waist/hip ratio. Of these,
7876 had an alcohol survey. Of these, 7281 had at least one measurement of diastolic and systolic
blood pressure. Of these, 7076 had body measurements, namely BMI and waist/hip ratio. The three
treatment groups — binge, never and past — are mutually exclusive but not exhaustive, and 5624
people fell in one of the groups. All 207 members of the binge group were matched to one control
from each control group. Before matching, the never group had 3995 people and the past group
had 505 people. The never group was large enough to closely match two or three controls to each
member of the binge group, but that was not done in this illustrative example. Up to 3 repeated
measures of blood pressure were often present, and the analysis uses their average.

Note

The data are used as an example in Rosenbaum (2023).

Source

US National Health and Nutrition Examination Survey (https://www.cdc.gov/nchs/nhanes/index.htm)

References

Roerecke, M., Kaczorowski, J., Tobe, S. W., Gmel, G., Hasan, O. S. and Rehm, J. (2017). <doi:10.1016/S2468-
2667(17)30003-8> The effect of a reduction in alcohol consumption on blood pressure: a systematic
review and meta-analysis. Lancet Public Health, 2, e108-e120.

Rosenbaum, P. R. (2023) A second evidence factor associated with a second control group. Manuscript.

Examples

# The following code creates Figure 2 in Rosenbaum (2023)

data(aBP)
attach(aBP)

yD<-t(matrix(bpDiastolic,3,207))
yS<-t(matrix(bpSystolic,3,207))
vS<-c(yS[,1]-yS[,2],yS[,1]-yS[,3],yS[,2]-yS[,3])
vD<-c(yD[,1]-yD[,2],yD[,1]-yD[,3],yD[,2]-yD[,3])
y<-(yD/median(abs(vD)))+(yS/median(abs(vS)))

par(mfrow=c(1,3))
graphics::boxplot(yD[,1]-yD[,2],yD[,1]-yD[,3],yD[,2]-yD[,3],las=1,

main="",ylab="Difference mm Hg",
names=c("B-N","B-P","N-P"),cex.main=.9,
cex.axis=.8,cex.lab=.9,xlab="Diastolic Difference")

graphics::abline(h=0)
wx<-round(stats::wilcox.test(yD[,1]-yD[,2],conf.int=TRUE)$conf.int,1)
graphics::segments(1,wx[1],1,wx[2],col="black",lwd=2)
wx<-round(stats::wilcox.test(yD[,1]-yD[,3],conf.int=TRUE)$conf.int,1)
graphics::segments(2,wx[1],2,wx[2],col="black",lwd=2)
wx<-round(stats::wilcox.test(yD[,2]-yD[,3],conf.int=TRUE)$conf.int,1)
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graphics::segments(3,wx[1],3,wx[2],col="black",lwd=2)

graphics::boxplot(yS[,1]-yS[,2],yS[,1]-yS[,3],yS[,2]-yS[,3],las=1,
main="",ylab="Difference mm Hg",
names=c("B-N","B-P","N-P"),cex.main=.9,
cex.axis=.8,cex.lab=.9,xlab="Systolic Difference")

graphics::abline(h=0)
wx<-round(stats::wilcox.test(yS[,1]-yS[,2],conf.int=TRUE)$conf.int,1)
graphics::segments(1,wx[1],1,wx[2],col="black",lwd=2)
wx<-round(stats::wilcox.test(yS[,1]-yS[,3],conf.int=TRUE)$conf.int,1)
graphics::segments(2,wx[1],2,wx[2],col="black",lwd=2)
wx<-round(stats::wilcox.test(yS[,2]-yS[,3],conf.int=TRUE)$conf.int,1)
graphics::segments(3,wx[1],3,wx[2],col="black",lwd=2)

graphics::boxplot(y[,1]-y[,2],y[,1]-y[,3],y[,2]-y[,3],las=1,
main="",ylab="(Diastolic/10.7)+(Systolic/14.7)",
names=c("B-N","B-P","N-P"),cex.main=.9,
cex.axis=.8,cex.lab=.9,xlab="Combined Difference")

graphics::abline(h=0)
wx<-round(stats::wilcox.test(y[,1]-y[,2],conf.int=TRUE)$conf.int,1)
graphics::segments(1,wx[1],1,wx[2],col="black",lwd=2)
wx<-round(stats::wilcox.test(y[,1]-y[,3],conf.int=TRUE)$conf.int,1)
graphics::segments(2,wx[1],2,wx[2],col="black",lwd=2)
wx<-round(stats::wilcox.test(y[,2]-y[,3],conf.int=TRUE)$conf.int,1)
graphics::segments(3,wx[1],3,wx[2],col="black",lwd=2)
graphics::abline(h=0)
par(mfrow=c(1,1))
detach(aBP)

aHDL Alcohol and HDL Cholesterol

Description

A small observational study of light daily alcohol consumption and HDL cholesterol – so-called
good cholesterol – derived from NHANES 2013-2014 and 2015-2016. There are 406 matched
sets of four individuals, making 1624 individuals in total. Sets were matched for age, female and
education in five ordered categories.

Usage

data("aHDL")

Format

A data frame with 1624 observations on the following 11 variables.

nh NHANES 2013-2014 is 1314, and NHANES 2015-2016 is 1516

SEQN NHANES ID number
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age Age in years

female 1=female, 0=male

education 1 is <9th grade, 3 is high school, 5 is a BA degree

z 1=light almost daily alcohol, 0=little or no alcohol last year.

grp Treated group and control groups. Daily=light almost daily alcohol, Never=fewer than 12
drinks during entire life, Rarely=more than 12 drinks in life, but fewer than 12 in the past
year, and never had a period of daily binge drinking, PastBinge = a past history of binge
drinking on most days, but currently drinks once a week or less. For details, see Rosenbaum
(2022a, Appendix).

grpL Short labels for plotting formed as the first letters of grp. D < N < R < B

hdl HDL cholesterol level mg/dL

mmercury Methylmercury level ug/L

mset Matched set indicator, 1, 2, ..., 406. The 1624 observations are in 406 matched sets, each of
size 4.

Details

There is a debate about whether light daily alcohol consumption – a single glass of red wine –
shortens or lengthens life. LoConte et al. (2018) emphasize that alcohol is a carcinogen. Suh et al.
(1992) claim reduced cardiovascular mortality brought about by an increase in high density high-
density lipoprotein (HDL) cholesterol, the so-called good cholesterol. There is on-going debate
about whether there are cardiovascular benefits, and if they exist, whether they are large enough to
offset an increased risk of cancer. This example looks at a small corner of the larger debate, namely
the effect on HDL cholesterol.

The example contains several attempts to detect unmeasured confounding bias, if present. There
is a secondary outcome thought to be unaffected by alcohol consumption, namely methylmercury
levels in the blood, likely an indicator of the consumption of fish, not of alcohol; see Pedersen et
al. (1994) and WHO (2021). There are also three control groups, all with little present alcohol
consumption, but with different uses of alcohol in the past; see the definition of variable grp above.

The appendix to Rosenbaum (2022a) describes the data and matching in detail. It is used as an
example in Rosenbaum (2022b).

The help file for boxplotTT() applies the tail transformation to this example, reproducing a plot
from Rosenbaum (2022b).

This data set is also included in the tailTransform package. See also the informedSen package
which contains a part of this data set.

Source

US National Health and Nutrition Examination Survey (NHANES), 2013-2014 and 2015-2016.

References

LoConte, N. K., Brewster, A. M., Kaur, J. S., Merrill, J. K., and Alberg, A. J. (2018). Alcohol and
cancer: a statement of the American Society of Clinical Oncology. Journal of Clinical Oncology
36, 83-93. <doi:10.1200/JCO.2017.76.1155>
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Pedersen, G. A., Mortensen, G. K. and Larsen, E. H. (1994) Beverages as a source of toxic trace ele-
ment intake. Food Additives and Contaminants, 11, 351–363. <doi:10.1080/02652039409374234>

Rosenbaum, P. R. (1987). The role of a second control group in an observational study. Statistical
Science, 2, 292-306. <doi:10.1214/ss/1177013232>

Rosenbaum, P. R. (1989). The role of known effects in observational studies. Biometrics, 45,
557-569. <doi:10.2307/2531497>

Rosenbaum, P. R. (1989). On permutation tests for hidden biases in observational studies. The
Annals of Statistics, 17, 643-653. <doi:10.1214/aos/1176347131>

Rosenbaum, P. R. (2014) Weighted M-statistics with superior design sensitivity in matched obser-
vational studies with multiple controls. Journal of the American Statistical Association, 109(507),
1145-1158 <doi:10.1080/01621459.2013.879261>

Rosenbaum, P. R. (2022a). Sensitivity analyses informed by tests for bias in observational studies.
Biometrics. <doi:10.1111/biom.13558>

Rosenbaum, P. R. (2022b). A new transformation of treated-control matched-pair differences for
graphical display. American Statistician, to appear. <doi:10.1080/00031305.2022.2063944>

Suh, I., Shaten, B. J., Cutler, J. A., and Kuller, L. H. (1992). Alcohol use and mortality from
coronary heart disease: the role of high-density lipoprotein cholesterol. Annals of Internal Medicine
116, 881-887. <doi:10.7326/0003-4819-116-11-881>

World Health Organization (2021). Mercury and Health, <https://www.who.int/news-room/fact-
sheets/detail/mercury-and-health>, (Accessed 30 August 2021).

Examples

data(aHDL)
table(aHDL$grp,aHDL$grpL) # Short labels for plotting
boxplot(aHDL$age~aHDL$grp,xlab="Group",ylab="Age")
boxplot(aHDL$education~aHDL$grp,xlab="Group",ylab="Education")
table(aHDL$female,aHDL$grpL)
table(aHDL$z,aHDL$grpL)

# The sets were also matched for is.na(aHDL$mmercury), for use
# in Rosenbaum (2022a). About half of the matched sets
# have values for mmercury.
table(is.na(aHDL$mmercury),aHDL$grp)

# See also the informedSen package for additional analysis

amplify Amplification of sensitivity analysis in observational studies.

Description

Uses the method in Rosenbaum and Silber (2009) to interpret a value of the sensitivity parameter
gamma. Each value of gamma amplifies to a curve (lambda,delta) in a two-dimensional sensitivity
analysis, the inference being the same for all points on the curve. That is, a one-dimensional sensi-
tivity analysis in terms of gamma has a two-dimensional interpretation in terms of (lambda,delta).
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Usage

amplify(gamma, lambda)

Arguments

gamma gamma > 1 is the value of the sensitivity parameter, for instance the parameter
in senmv. length(gamma)>1 will generate an error.

lambda lambda is a vector of values > gamma. An error will result unless lambda[i] >
gamma > 1 for every i.

Details

A single value of gamma, say gamma = 2.2 in the example, corresponds to a curve of values of
(lambda, delta), including (3, 7), (4, 4.33), (5, 3.57), and (7, 3) in the example. An unobserved
covariate that is associated with a lambda = 3 fold increase in the odds of treatment and a delta = 7
fold increase in the odds of a positive pair difference is equivalent to gamma = 2.2.

The curve is gamma = (lambda*delta + 1)/(lambda+delta). Amplify is given one gamma and a
vector of lambdas and solves for the vector of deltas. The calculation is elementary.

This interpretation of gamma is developed in detail in Rosenbaum and Silber (2009), and it makes
use of Wolfe’s (1974) family of semiparametric deformations of an arbitrary symmetric distribuiton.
See also Rosenbaum (2020, Section 3.6). For an elementary discussion, see Rosenbaum (2017,
Table 9.1).

Strictly speaking, the amplification describes matched pairs, not matched sets. The senm function
views a k-to-1 matched set with k controls matched to one treated individual as a collection of
k correlated treated-minus-control matched pair differences; see Rosenbaum (2007). For matched
sets, it is natural to think of the amplification as describing any one of the k matched pair differences
in a k-to-1 matched set.

The curve has asymptotes that the function amplify does not compute: gamma corresponds with
(lambda,delta) = (gamma, Inf) and (Inf, gamma).

A related though distict idea is developed in Gastwirth et al (1998). The two approaches agree when
the outcome is binary, that is, for McNemar’s test.

Value

Returns a vector of values of delta of length(lambda) with names lambda.

Note

The amplify function is also in the sensitivitymv package where a different example is used.

Author(s)

Paul R. Rosenbaum
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References

Gastwirth, J. L., Krieger, A. M., Rosenbaum, P. R. (1998) <doi:10.1093/biomet/85.4.907> Dual and
simultaneous sensitivity analysis for matched pairs. Biometrika, 85, 907-920.

Rosenbaum, P. R. and Silber, J. H. (2009) <doi:10.1198/jasa.2009.tm08470> Amplification of sen-
sitivity analysis in observational studies. Journal of the American Statistical Association, 104,
1398-1405.

Rosenbaum, P. R. (2017) <doi:10.4159/9780674982697> Observation and Experiment: An Intro-
duction to Causal Inference. Cambridge, MA: Harvard University Press. Table 9.1.

Rosenbaum, P. R. (2020) <doi:10.1007/978-3-030-46405-9> Design of Observational Studies (2nd
ed.) NY: Springer. Section 3.6.

Wolfe, D. A. (1974) <doi:10.2307/2286025> A charaterization of population weighted symmetry
and related results. Journal of the American Statistical Association, 69, 819-822.

Examples

# Consider a treated-control match pair as the unit of measure,
# analogous to one meter or one foot. The calculation
# amplify(4,7) says that, in a matched pair, gamma=4
# is the same a bias that increases the odds of treatment
# 7-fold and increases the odds of positive matched-pair
# difference in outcomes 9-fold.
amplify(4,7)
# It is also true that, in a matched pair, gamma=4
# is the same a bias that increases the odds of treatment
# 9-fold and increases the odds of positive matched-pair
# difference in outcomes 7-fold.
amplify(4,9)
# It is also true that, in a matched pair, gamma=4
# is the same a bias that increases the odds of treatment
# 5-fold and increases the odds of positive matched-pair
# difference in outcomes 19-fold.
amplify(4,5)
# The amplify function can produce the entire curve at once:
amplify(4,5:19)

dwgtRank Weighted Rank Statistics for Evidence Factors with Two Control
Groups

Description

In an observational complete block design, dwgtRank computes a sensitivity analysis for a weighted
rank statistic designed to perform well when the comparison of a treated group and two control
groups is conducted as two nearly independent evidence factors; see Rosenbaum (2023b). For this
task, a suggested setting of m, m1, m2, scores and range is given in a note in the documentation
below. A simpler way to use the suggested settings is to use the function ef2C instead.
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Usage

dwgtRank(y, gamma = 1, m = 2, m1 = 2, m2 = 2, phifunc = NULL,
alternative = "greater", scores = NULL, range = TRUE)

Arguments

y With I blocks and J individuals in each block, y is and I x J matrix or dataframe
containing the outcomes. The first column of y is compared to columns 2, ..., J.
J must be at least 2.

gamma A real number >=1 giving the value of the sensitivity parameter. gamma=1
yields a randomization test.

m One of three parameters that define the weights that attach to blocks. The three
parameters are integers with 1 <= m1 <= m2 <= m. See Details.

m1 See m.

m2 See m.

phifunc An optional function that can be used to substitute your own weights for the
weights defined by (m, m1, m2). The function must map [0,1] into [0,1]. If
phifunc is NULL, then the weight function is defined by (m, m1, m2). If phifunc
is not NULL, then it defines the weights and (m, m1, m2) are ignored.

alternative For an upper-tailed test, use the default, alternative="greater". For an lower-
tailed test, use alternative="less". An error will result if alternative is something
besides "greater" or "less". In this context, a two-sided test is best viewed as two
one-sided tests with a Bonferroni correction, e.g., testing in both tails at level
0.025 to ensure overall level of 0.05; see Cox (1977). For more information, see
the notes.

scores If scores is NULL, the scores are 1, 2, ..., J. Otherwise, scores should specify
the J scores for the J within-block ranks. If scores are specified, there must be J
scores, but the J scores need not be distinct.

range If range=TRUE, then the within-block ranges are calculated, ranked from 1 to I,
and scored (m, m1, m2) or phifunc. If range=FALSE, then the within-block gap
between the largest response and the average of the remaining J-1 responses is
used instead.

Details

The method uses a weighted rank statistic to compare the first column of y to the rest; see Rosen-
baum (2023a,b). Weighted rank statistics generalize the methods of Quade (1979) and Tardif
(1987). Quade (1979) applied unscored ranks to the I within block ranges, and used unscored
ranks within-blocks. In contrast, here, the scores of ranks of ranges or gaps are based on expres-
sion (9) in Rosenbaum (2011a); see also Rosenbaum (2014) where weighted M-statistics are used
instead of weighted rank statistics. If J=2, the method agrees exactly with the method for pairs in
Rosenbaum (2011a).

Using m=1, m1=1, m2=1, is the same as the stratified Wilcoxon rank sum with I strata, ignoring the
ranges or gaps; see Lehmann 1975, Chapter 3). Using m=2, m1=2, m2=2 applies unscored ranks to
the I ranges or gaps. Using m=5, m1=5, m2=5 is the suggestion of Conover and Salsburg (1988),
and m=8, m1=8, m2=8 is a more extreme version of the same theme. In pairs, J=2, m=8, m1=7,
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m2=8 performs well in Rosenbaum (2011a), as does m=8, m1=6, m2=8. Detailed evaluations in
terms of design sensitivity and Bahadur efficiency are in Rosenbaum (2023a,b).

Value

pval Upper bound on the one-sided P-value.

detail A vector with the standarized deviate, the statistic, its null expectation and vari-
ance and the value of gamma.

Note

SUGGESTED SETTINGS FOR m, m1, m2, range AND scores WHEN USED WITH TWO CON-
TROL GROUPS. These suggested settings are more conveniently implemented in the function
ef2C. Rosenbaum (2023b) considered a matched block design with I blocks of size 3, containing
one treated individual and one control from each of two control groups. The two evidence factors
are: (1) compare treated to the first control group, and (2) compare the second control group to
the pooled group that does not distinguish the treated individual and the control from the first con-
trol group. For the matched pair comparison (1) with one control group, the suggested settings are
(m=8, m1=7, m2=8), together with the defaults of range=TRUE and scores=NULL; see Rosenbaum
(2011a). For comparison (2), Rosenbaum (2023b) evaluated 40 statistics, judging best the statis-
tic with (m=8, m1=8, m2=8), range=FALSE, scores=c(1,2,5), as illustrated below. This statistic
had good Bahadur efficiency of a sensitivity analysis against several simple alternative hypotheses
involving a treatment effect and no unmeasured bias.

If we expect the treated group to have higher responses than controls, then comparison (1) sets
alternative to greater and comparison (2) sets alternative to less. If we expect the treated group to
have lower responses than controls, then comparison (1) sets alternative to less and comparison (2)
sets alternative to greater. See also the note about alternatives.

Suppose that the data are initially in an Ix3 matrix with outcomes for treated in the first column,
control group 1 in the second column, and control group 2 in the third column. The dwgtRank
function always compares the first column to the remaining columns. So, the first factor applies the
function to y[,1:2] and the second factor applies the function to y[,3:1]. Note carefully here that
y[,3:1] has reversed the order of the columns, so column 3 is compared with the other two columns.
If the treatment is expected to cause an increase in the response, then comparison (1) applies the
function to y[,1:2] with alternative = greater, and comparison (2) applies the function to y[,3:1]
with alternative = less. This is illustrated in the example below which reproduces analyses from
Rosenbaum (2023b). If the treatment is expected to cause a decrease in the response, then repeat
these steps with y replaced by -y, so the treatment is expected to increase -y.

Note

ALTERNATIVE. Setting alternative to less is the same as changing the sign of the within-block
scored rank, that is, changing phi(a_ij) to -phi(a_ij) in Rosenbaum (2023b); see especially equation
(1) in the on-line supplement to that paper. Note carefully that setting alternative to less does not
change the between block ranks, even when range=FALSE. In general, in dwgtRank, changing the
alternative will give a different answer from changing y to -y if range=FALSE because, unlike the
range, the gap is not invariant to the sign change. I suggest using function ef2C – the recommended
analysis – before trying out variations on that analysis using dwgtRank.
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The dwgtRank function was designed for the evidence factor analysis with two different control
groups in blocks of size 3, and this is reflected in the way alternative is defined when range=FALSE.
For a simple analysis in the suggested form, use ef2C instead of dwgtRank; it calls dwgtRank with
appropriate settings. If you wish to explore alternative settings for this problem, use dwgtRank. For
several controls from a single control group, use wgtRank instead of dwgtRank.

Note

TIES WITHIN BLOCKS. If there are ties within blocks, then these are resolved as follows. If scores
are not specified, so the within block ranks are intended to be 1, 2, ..., J, then average ranks are used
for ties. If scores are specified, then ties are resolved by the ties.method="min" in the rank function
in base R. This means that tied observations are all given the same rank, hence the same score, and
that score corresponds with the smallest rank to which a tied group is entitled. Suppose the scores
are scores=c(1,2,5) for J=3. If all three observations are different, then the smallest observation gets
score 1, the middle gets 2, and the largest gets 5. If the three values are, say, 16, 14, 14 in a block,
they get ranks 3, 1, 1, with scores 5, 1, 1. If the three values are 16, 16, 14 in a block, they get ranks
2, 2, 1, with scores 2, 2, 1. This is in keeping with the idea that we want to emphasize those blocks
in which one observation stands well above the rest. In the example, there are no within-block ties,
so the issue does not arise.

TIES BETWEEN BLOCKS. If there are ties among the I blocks in the within-block ranges or gaps,
then average ranks are used for ties.

Note

This function compares the first column of y to the other columns. To implement the second evi-
dence factor analysis in Rosenbaum (2023b), the second control group must be placed in the first
column. See the examples, where y is y[,1:2] for the first evidence factor, but y becomes y[,3:1] for
the second evidence factor. All of this is automated in the function ef2C.
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Paul R. Rosenbaum
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Examples

# The calculation below reproduce analyses from Rosenbaum (2023b).

data(aBP)
attach(aBP)

yD<-t(matrix(bpDiastolic,3,207))
yS<-t(matrix(bpSystolic,3,207))
vS<-c(yS[,1]-yS[,2],yS[,1]-yS[,3],yS[,2]-yS[,3])
vD<-c(yD[,1]-yD[,2],yD[,1]-yD[,3],yD[,2]-yD[,3])
y<-(yD/median(abs(vD)))+(yS/median(abs(vS)))
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# The following analysis contrasts the second P control
# with the pooled group consisting of the treated B
# binge drinker and the N control. That contrast creates
# a second evidence factor, not redundant with the comparison
# of B and N, yet avoids dilution of the effect by using
# a statistic like that of Conover and Salsburg (1988)
# that allows for nonresponders.

# SECOND EVIDENCE FACTOR: CONTROL2 VS TREATED+CONTROL1
dwgtRank(y[,3:1],gamma=1.45,alternative="less",

scores=c(1,2,5),range=FALSE,m=8,m1=8,m2=8)

amplify(1.45, 2.5)

# This is a much less sensitive result than is obtained
# from the stratified Wilcoxon rank sum statistic wiht
# I strata,

dwgtRank(y[,3:1],gamma=1.45,alternative="less",
scores=c(1,2,3),m=1,m1=1,m2=1)

# and theory leads us to expect this difference
# in performance of the two statistics; see Rosenbaum (2023b)

# EVIDENCE FACTOR ANALYSIS, COMBINING TWO FACTORS
# The evidence factor analysis compares treated to the first control group,
# then compares the second control group to the pooled group consisting of
# treated and first control, then combines the two analyses using meta-analysis.
# Treated/first-control matched pairs are compared using the method in
# Rosenbaum (2011).

p1<-dwgtRank(y[,1:2],gamma=2.3,alternative="greater",
m=8,m1=7,m2=8)$pval

p2<-dwgtRank(y[,3:1],gamma=1.45,alternative="less",
scores=c(1,2,5),range=FALSE,m=8,m1=8,m2=8)$pval

c(p1,p2)
sensitivitymv::truncatedP(c(p1,p2))
amplify(2.3,4)
amplify(1.45,2.5)

# THE COMBINED ANALYSIS IS INSENSITIVE TO LARGER BIASES
# The combined analysis is insensitive to larger biases
# than are its components
p1<-dwgtRank(y[,1:2],gamma=2.6,alternative="greater",

m=8,m1=7,m2=8)$pval
p2<-dwgtRank(y[,3:1],gamma=1.7,alternative="less",

scores=c(1,2,5),range=FALSE,m=8,m1=8,m2=8)$pval
c(p1,p2)
sensitivitymv::truncatedP(c(p1,p2))

amplify(2.6,5)
amplify(1.7,3)
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# CONNECTION WITH OTHER PACKAGES
# Although dwgtRank() computes the matched pair P-value bound,
dwgtRank(y[,1:2],gamma=2.3,alternative="greater",

m=8,m1=7,m2=8)$pval
# a simpler way to do it uses senU() in the DOS2 package
DOS2::senU(y[,1]-y[,2],m=8,m1=7,m2=8,gamma=2.3)
# where senU also provides bounds on point estimates and confidence
# intervals for each gamma
DOS2::senU(y[,1]-y[,2],m=8,m1=7,m2=8,gamma=1.5,conf.int=TRUE)

detach(aBP)
rm(p1,p2)
rm(y)

# USING SIMULATION TO GET THE GENERAL IDEAS OF DESIGN SENSITIVITY
# AND THE BAHADUR EFFICIENCY OF A SENSITIVITY ANALYSIS

# IN THIS LARGE SAMPLE SIZE, THE DESIGN SENSITIVITY PREDICTS
# U888 WILL HAVE MORE POWER THAN U555, AND IT DOES.
# SEE TABLE 2 OF ROSENBAUM (2023b), NORMAL tau=1/2
# FOR U888/125/GAP AND U555/125/GAP
set.seed(1)
ss<-10000
ysim<-matrix(rnorm(3*ss),ss,3)
ysim[,1]<-ysim[,1]+sqrt(2)/2 # This is tau=1/2 for Normal errors
# Compare U888/125/gap and U555/125/gap
dwgtRank(ysim[,3:1],gamma=3,alternative="less",scores=c(1,2,5),

range=FALSE,m=8,m1=8,m2=8)$pval
dwgtRank(ysim[,3:1],gamma=3,alternative="less",scores=c(1,2,5),

range=FALSE,m=5,m1=5,m2=5)$pval
# IF YOU INCREASED ss FROM 10000, AS ABOVE, TO INFINITY, THE
# POWER FUNCTION WOULD TEND TO A STEP FUNCTION WITH A SINGLE
# STEP DOWN FROM POWER 1 TO POWER 0 AT THE DESIGN SENSITIVITY.

# IN THIS SMALLER SAMPLE SIZE, THE BAHADUR EFFICIENCY PREDICTS
# U555 WILL HAVE MORE POWER THAN U888, AND IT DOES.
# SEE TABLE 3 OF ROSENBAUM (2023b), NORMAL tau=1/2
# FOR U888/125/GAP AND U555/125/GAP AT UPSILON = 1.5
set.seed(1)
ss<-100
ysim<-matrix(rnorm(3*ss),ss,3)
ysim[,1]<-ysim[,1]+sqrt(2)/2 # This is tau=1/2 for Normal errors
# Compare U888/125/gap and U555/125/gap
dwgtRank(ysim[,3:1],gamma=1.5,alternative="less",scores=c(1,2,5),

range=FALSE,m=8,m1=8,m2=8)$pval
dwgtRank(ysim[,3:1],gamma=1.5,alternative="less",scores=c(1,2,5),

range=FALSE,m=5,m1=5,m2=5)$pval

ef2C Evidence Factors For Matched Triples With Two Control Groups
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Description

In an observational complete block design, with bocks of size three, each containing a treated
individual and one control from each of two control groups, ef2C performs the evidence factor
analysis suggested in Rosenbaum (2023). One factor compares the treated group to the first control
group in a matched pairs analysis. The other factor pools the treated group and the first control
group and compares it to the second control group.

Usage

ef2C(y, gamma = 1, upsilon = 1, alternative = "greater",
trunc = 0.2)

Arguments

y With I blocks and 3 individuals in each block, y is and I x 3 matrix or dataframe
containing the outcomes. The first column is the response of the treated indi-
vidual. The second response is the response of the control from the first control
group. The third response is the response of the control from the second control
group.

gamma A real number >=1 giving the value of the sensitivity parameter for the compar-
ison of the treated group and the first control group. gamma=1 yields a random-
ization test.

upsilon A real number >=1 giving the value of the sensitivity parameter for the compar-
ison of the second control group and the combination of the treated group plus
the first control group. upsilon=1 yields a randomization test.

alternative Use alternative=greater if the treatment is expect to cause an increase in the
response in y. Use alternative=less if the treatment is expect to cause an decrease
in the response in y. In this context, a two-sided test is best viewed as two one-
sided tests with a Bonferroni correction, e.g., testing in both tails at level 0.025
to ensure overall level of 0.05; see Cox (1977). For more information, see the
notes.

trunc The two P-values from the two factors are combined using the trucated product
of P-values due to Zaykin et al. (2002): it is the P-value derived from the product
of those P-values that are less than trunc. For more information, see the notes.

Details

This is the recommended analysis in Rosenbaum (2023). The example below reproduces some
results from the example in that paper. That paper considered 40 test statistics in terms of the
Bahadur efficiency of a sensitivity – all of these analyses can be reproduced by the more flexible
but more complicated dwgtRank function.

The comparison of the treated group and the first control group is equivalent to dwgtRank(y[,1:2],gamma=gamma,m=8,m1=7,m2=8,range=TRUE,alternative="greater"),
and these settings are motivated by results in Rosenbaum (2011, 2015). Notice that y[,1:2] uses the
first two columns of y.

The comparison of the second control group and the merger of the treated group with the first control
group is equivalent to dwgtRank(y[,3:1], gamma=upsilon, m=8,m1=8,m2=8, range=FALSE, alter-
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native="less", scores=c(1,2,5)), and these settings are motivated by results in Rosenbaum (2023).
Notice that y[,3:1] compares the third column to the pooled group consisting of columns 1 and 2.

Value

pvals Upper bounds on the one-sided P-values for the two factors and their combina-
tion.

detail A matrix with some details of the computations that produced the P-values.

Note

The two P-values from the two factors are combined using the trucated product of P-values due
to Zaykin et al. (2002): it is the P-value derived from the product of those P-values that are less
than trunc. Taking trunc=1 yields Fisher’s method for combining independent P-values. Fisher’s
method is not ideal when combining P-value bounds produced by sensitivity analyses; see Hsu et
al. (2013). Reasonable values are trunc=.1, truc=.15 and trunc=.2. As illustrated in the example
below, lower truncation values produce smaller combined P-values when the P-values are below
the truncation point, but a P-value that barely exceeds the truncation point is effectively discarded.
Hsu et al. (2013) compare truncation values when used in a sensitivity analysis. For discussion of
combining sensitivity analyses as independent, see the required conditions in Rosenbaum (2011b,
2021). These conditions hold for the comparison performed by ef2C.

Note

The setting alternative = "less" simply replaces y by -y before testing in the upper tail.

Note

For a deeper understanding, see the documentation of dwgtRank. That function is more general,
but it requires more attention to detail by the user. The documentation for dwgtRank also produces
additional analyses from Rosenbaum (2023).

Author(s)
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Examples

# The calculation below reproduce analyses from Rosenbaum (2023).

data(aBP)
attach(aBP)

yD<-t(matrix(bpDiastolic,3,207))
yS<-t(matrix(bpSystolic,3,207))
vS<-c(yS[,1]-yS[,2],yS[,1]-yS[,3],yS[,2]-yS[,3])
vD<-c(yD[,1]-yD[,2],yD[,1]-yD[,3],yD[,2]-yD[,3])
y<-(yD/median(abs(vD)))+(yS/median(abs(vS)))

# EVIDENCE FACTOR ANALYSIS, COMBINING TWO FACTORS
# The evidence factor analysis compares treated to the first control group,
# then compares the second control group to the pooled group consisting of
# treated and first control, then combines the two analyses using meta-analysis.
# Treated/first-control matched pairs are compared using the method in
# Rosenbaum (2011).

ef2C(y,gamma=2.3,upsilon=1.45)
amplify(2.3,4)
amplify(1.45,2.5)

# THE COMBINED ANALYSIS IS INSENSITIVE TO LARGER BIASES
# The combined analysis is insensitive to larger biases
# than are its components
ef2C(y,gamma=2.6,upsilon=1.7)
amplify(2.6, 5)
amplify(1.7,c(2.7,3))

# The calculations above are also produced in the
# example for dwgtRank, where alternative
# analyses from Rosenbaum (2023) are compared.

####################################################
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# Comparing trucation points to understand trunc:
ef2C(y,gamma=2.6,upsilon=1.7,trunc=.2) # Default
ef2C(y,gamma=2.6,upsilon=1.7,trunc=1) # Fisher's method
ef2C(y,gamma=2.6,upsilon=1.7,trunc=.1)
ef2C(y,gamma=2.5,upsilon=1.6,trunc=.2)
ef2C(y,gamma=2.5,upsilon=1.6,trunc=.1)
# See Hsu et al. (2013) for discussion of the
# truncation point for a sensitivity analysis.

wgtRank Sensitivity Analysis for Weighted Rank Statistics in Block Designs

Description

Uses a weighted rank statistic to perform a sensitivity analysis for an I x J observational block
design in which each of I blocks contains one treated individual and J-1 controls.

Usage

wgtRank(y, phi = "u868", phifunc = NULL, gamma = 1)

Arguments

y A matrix or data frame with I rows and J columns. Column 1 contains the re-
sponse of the treated individuals and columns 2 throught J contain the responses
of controls in the same block. A error will result if y contains NAs.

phi The weight function to be applied to the ranks of the within block ranges. The
options are: (i) "wilc" for the stratified Wilcoxon test, which gives every block
the same weight, (ii) "quade" which ranks the within block ranges from 1 to I,
and is closely related to Quade’s (1979) statistic; see also Tardif (1987), (iii)
"u868" based on Rosenbaum (2011), (iv) u878 based on Rosenbaum (2011).
Note that phi is ignored if phifunc is not NULL.

phifunc If not NULL, a user specified weight function for the ranks of the within block
rates. The function should map [0,1] into [0,1]. The function is applied to the
ranks divided by the sample size. See the example.

gamma A single number greater than or equal to 1. gamma is the sensitivity parameter.
Two individuals with the same observed covariates may differ in their odds of
treatment by at most a factor of gamma; see Rosenbaum (1987; 2017, Chapter
9).

Details

This method is developed and evaluated in Rosenbaum (2022).

To test in the lower tail – to test against the alternative that treated responses are lower than control
responses, apply the function to -y. For a two-sided test, do both one-sided tests and apply the
Bonferroni inequality, doubling the smaller of the two one-sided P-value bounds; see Cox (1977,
Section 4.2).
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Value

pval Upper bound on the one-sided P-value when testing the null hypothesis of no
treatment effect against the alternative hypothesis that treated responses are
higher than control responses.

detail Details of the computation of pval: the standardized deviate, the test statistic, its
null expectation, its null variance and the value of gamma.

Note

The computations use the separable approximation discussed in Gastwirth et al. (2000) and Rosen-
baum (2018). Compare with the method in Rosenbaum (2014) and the R package sensitivitymw.

Author(s)
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See Also

An alternative approach avoids rank tests and uses weighted M-statistics instead, as in the sensitiv-
itymw package and Rosenbaum (2014). However, Bahadur efficiency calculations are available for
weighted rank statistics; see Rosenbaum (2022).

Examples

data(aHDL)
y<-t(matrix(aHDL$hdl,4,406))
wgtRank(y,phi="wilc",gamma=3.5) # Stratified Wilcoxon rank sum test
wgtRank(y,phi="quade",gamma=3.5) # Quade's test
wgtRank(y,phi="quade",gamma=4.5) # Quade's test, larger gamma
wgtRank(y,phi="quade",gamma=4.6) # Quade's test, larger gamma
wgtRank(y,phi="u868",gamma=5.4) # New U-statistic weights (8,6,8)
wgtRank(y,phi="u878",gamma=6) # New U-statistic weights (8,7,8)

# As an aid to interpreting gamma, see the amplify function.
amplify(3.5,8)
amplify(4.6,8)
amplify(5.4,8)
amplify(6,8)

# A user defined weight function, brown, analogous to Brown (1981).
brown<-function(v){((v>=.333)+(v>=.667))/2}
wgtRank(y,phifunc=brown,gamma=4.7)

wgtRanktt Adaptive Inference Using Two Test Statistics in a Block Design

Description

Tests twice, using the better of two test statistics; see Rosenbaum (2012, 2022).

Usage

wgtRanktt(y, phi1 = "u868", phi2 = "u878", phifunc1 = NULL, phifunc2 = NULL, gamma = 1)
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Arguments

y A matrix or data frame with I rows and J columns. Column 1 contains the re-
sponse of the treated individuals and columns 2 throught J contain the responses
of controls in the same block. A error will result if y contains NAs.

phi1 The weight function to be applied to the ranks of the within block ranges. The
options are: (i) "wilc" for the stratified Wilcoxon test, which gives every block
the same weight, (ii) "quade" which ranks the within block ranges from 1 to I,
and is closely related to Quade’s (1979) statistic; see also Tardif (1987), (iii)
"u868" based on Rosenbaum (2011), (iv) u878 based on Rosenbaum (2011).
Note that phi is ignored if phifunc is not NULL.

phi2 See phi1.

phifunc1 If not NULL, a user specified weight function for the ranks of the within block
rates. The function should map [0,1] into [0,1]. The function is applied to the
ranks divided by the sample size. See the example.

phifunc2 See phifunc1.

gamma A single number greater than or equal to 1. gamma is the sensitivity parameter.
Two individuals with the same observed covariates may differ in their odds of
treatment by at most a factor of gamma; see Rosenbaum (1987; 2017, Chapter
9).

Value

jointP Upper bound on the one-sided joint P-value obtained from two test statistics in
the presence of a bias of at most gamma.

cor12 Correlation of the two test statistics at the treatment assignment distribution that
provides the joint upper bound. Often, this correlation is high, so the joint dis-
tribution that is used here is much less conservative than use of the Bonferroni
inequality when testing twice.

detail Details about the two statistics separately. Equivalent to the result from wg-
tRank() run twice with different test statistics.

Note

For discussion of testing twice in matched pairs, see Rosenbaum (2012).

Testing twice is also possible in block designs using weighted rank statistics because the same value
of the unobserved covariate provides the upper bound for both statistics when using the separable
approximation in Gastwirth et al. (2000) and Rosenbaum (2018, Remarks 4 and 5). See also
Rosenbaum (2022) where the Bahadur efficiency of such tests is computed.

Other packages that use testing twice in a different way are "sensitivity2x2xk"" and "testtwice". The
"testtwice" package is restricted to matched pairs, and "sensitivity2x2xk"" is for binary outcomes.
With some attention to detail (e.g., the handling of zero pair differences), in the case of matched
pairs, the "testtwice" package and the wgtRanktt() function will yield identical results. In that sense,
wgtRanktt() extends the method to blocks designs.

Testing twice achieves the larger Bahadur efficiency of the two component statistics; see Berk and
Jones (1978).
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Examples

data(aHDL)
y<-t(matrix(aHDL$hdl,4,406))

# This is the simplest example of a general property. The
# example simply illustrates, but does not fully exploit
# the property. In this case, use of the stratified
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# Wilcoxon statistic is a mistake, because Quade's
# statistic correctly reports insensitivity to a bias
# of gamma=4.5, but the stratified Wilcoxon statistic
# is sensitive at gamma=3.5. The adaptive procedure
# that does both tests and corrects for multiple testing
# is insensitive to gamma=4.4; so, it is almost as good
# as knowing what you cannot know, namely that Quade's
# statistic is the better choice in this one example.
# The price paid for testing twice is very small;
# see Berk and Jones (1978) and Rosenbaum (2012, 2022).
wgtRank(y,phi="wilc",gamma=3.5)
wgtRank(y,phi="quade",gamma=3.5)
wgtRank(y,phi="wilc",gamma=4.5)
wgtRank(y,phi="quade",gamma=4.5)
wgtRanktt(y,phi1="wilc",phi2="quade",gamma=4.4)

# Sensitivity to gamma=3.5 is very different from
# sensitivity to gamma=4.4; see documentation for amplify.
amplify(3.5,8)
amplify(4.4,8)

# In this example, u878 exhibits greater insensitivity to bias
# than u868. However, adaptive inference using both is almost
# as good as the better statistic, yet it strongly controls the
# family-wise error rate despite testing twice;
# see Rosenbaum (2012,2022).
wgtRank(y,phi="u868",gamma=6) # New U-statistic weights (8,6,8)
wgtRank(y,phi="u878",gamma=6) # New U-statistic weights (8,7,8)
wgtRanktt(y,phi1="u868",phi2="u878",gamma=5.9)

# A user defined weight function, brown, analogous to Brown (1981).
brown<-function(v){((v>=.333)+(v>=.667))/2}
# In this example, the joint test rejects based on u878
wgtRanktt(y,phi1="u878",phifunc2=brown,gamma=5.8)
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